53 research outputs found

    Improvements to deep convolutional neural networks for LVCSR

    Full text link
    Deep Convolutional Neural Networks (CNNs) are more powerful than Deep Neural Networks (DNN), as they are able to better reduce spectral variation in the input signal. This has also been confirmed experimentally, with CNNs showing improvements in word error rate (WER) between 4-12% relative compared to DNNs across a variety of LVCSR tasks. In this paper, we describe different methods to further improve CNN performance. First, we conduct a deep analysis comparing limited weight sharing and full weight sharing with state-of-the-art features. Second, we apply various pooling strategies that have shown improvements in computer vision to an LVCSR speech task. Third, we introduce a method to effectively incorporate speaker adaptation, namely fMLLR, into log-mel features. Fourth, we introduce an effective strategy to use dropout during Hessian-free sequence training. We find that with these improvements, particularly with fMLLR and dropout, we are able to achieve an additional 2-3% relative improvement in WER on a 50-hour Broadcast News task over our previous best CNN baseline. On a larger 400-hour BN task, we find an additional 4-5% relative improvement over our previous best CNN baseline.Comment: 6 pages, 1 figur

    Fast N-Gram Language Model Look-Ahead for Decoders With Static Pronunciation Prefix Trees

    Get PDF
    Decoders that make use of token-passing restrict their search space by various types of token pruning. With use of the Language Model Look-Ahead (LMLA) technique it is possible to increase the number of tokens that can be pruned without loss of decoding precision. Unfortunately, for token passing decoders that use single static pronunciation prefix trees, full n-gram LMLA increases the needed number of language model probability calculations considerably. In this paper a method for applying full n-gram LMLA in a decoder with a single static pronunciation tree is introduced. The experiments show that this method improves the speed of the decoder without an increase of search errors.\u

    Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

    Get PDF
    In this thesis, research on large vocabulary continuous speech recognition for unknown audio conditions is presented. For automatic speech recognition systems based on statistical methods, it is important that the conditions of the audio used for training the statistical models match the conditions of the audio to be processed. Any mismatch will decrease the accuracy of the recognition. If it is unpredictable what kind of data can be expected, or in other words if the conditions of the audio to be processed are unknown, it is impossible to tune the models. If the material consists of `surprise data' the output of the system is likely to be poor. In this thesis methods are presented for which no external training data is required for training models. These novel methods have been implemented in a large vocabulary continuous speech recognition system called SHoUT. This system consists of three subsystems: speech/non-speech classification, speaker diarization and automatic speech recognition. The speech/non-speech classification subsystem separates speech from silence and unknown audible non-speech events. The type of non-speech present in audio recordings can vary from paper shuffling in recordings of meetings to sound effects in television shows. Because it is unknown what type of non-speech needs to be detected, it is not possible to train high quality statistical models for each type of non-speech sound. The speech/non-speech classification subsystem, also called the speech activity detection subsystem, does not attempt to classify all audible non-speech in a single run. Instead, first a bootstrap speech/silence classification is obtained using a standard speech activity component. Next, the models for speech, silence and audible non-speech are trained on the target audio using the bootstrap classification. This approach makes it possible to classify speech and non-speech with high accuracy, without the need to know what kinds of sound are present in the audio recording. Once all non-speech is filtered out of the audio, it is the task of the speaker diarization subsystem to determine how many speakers occur in the recording and exactly when they are speaking. The speaker diarization subsystem applies agglomerative clustering to create clusters of speech fragments for each speaker in the recording. First, statistical speaker models are created on random chunks of the recording and by iteratively realigning the data, retraining the models and merging models that represent the same speaker, accurate speaker models are obtained for speaker clustering. This method does not require any statistical models developed on a training set, which makes the diarization subsystem insensitive for variation in audio conditions. Unfortunately, because the algorithm is of complexity O(n3)O(n^3), this clustering method is slow for long recordings. Two variations of the subsystem are presented that reduce the needed computational effort, so that the subsystem is applicable for long audio recordings as well. The automatic speech recognition subsystem developed for this research, is based on Viterbi decoding on a fixed pronunciation prefix tree. Using the fixed tree, a flexible modular decoder could be developed, but it was not straightforward to apply full language model look-ahead efficiently. In this thesis a novel method is discussed that makes it possible to apply language model look-ahead effectively on the fixed tree. Also, to obtain higher speech recognition accuracy on audio with unknown acoustical conditions, a selection from the numerous known methods that exist for robust automatic speech recognition is applied and evaluated in this thesis. The three individual subsystems as well as the entire system have been successfully evaluated on three international benchmarks. The diarization subsystem has been evaluated at the NIST RT06s benchmark and the speech activity detection subsystem has been tested at RT07s. The entire system was evaluated at N-Best, the first automatic speech recognition benchmark for Dutch

    Low latency modeling of temporal contexts for speech recognition

    Get PDF
    This thesis focuses on the development of neural network acoustic models for large vocabulary continuous speech recognition (LVCSR) to satisfy the design goals of low latency and low computational complexity. Low latency enables online speech recognition; and low computational complexity helps reduce the computational cost both during training and inference. Long span sequential dependencies and sequential distortions in the input vector sequence are a major challenge in acoustic modeling. Recurrent neural networks have been shown to effectively model these dependencies. Specifically, bidirectional long short term memory (BLSTM) networks, provide state-of-the-art performance across several LVCSR tasks. However the deployment of bidirectional models for online LVCSR is non-trivial due to their large latency; and unidirectional LSTM models are typically preferred. In this thesis we explore the use of hierarchical temporal convolution to model long span temporal dependencies. We propose a sub-sampled variant of these temporal convolution neural networks, termed time-delay neural networks (TDNNs). These sub-sampled TDNNs reduce the computation complexity by ~5x, compared to TDNNs, during frame randomized pre-training. These models are shown to be effective in modeling long-span temporal contexts, however there is a performance gap compared to (B)LSTMs. As recent advancements in acoustic model training have eliminated the need for frame randomized pre-training we modify the TDNN architecture to use higher sampling rates, as the increased computation can be amortized over the sequence. These variants of sub- sampled TDNNs provide performance superior to unidirectional LSTM networks, while also affording a lower real time factor (RTF) during inference. However we show that the BLSTM models outperform both the TDNN and LSTM models. We propose a hybrid architecture interleaving temporal convolution and LSTM layers which is shown to outperform the BLSTM models. Further we improve these BLSTM models by using higher frame rates at lower layers and show that the proposed TDNN- LSTM model performs similar to these superior BLSTM models, while reducing the overall latency to 200 ms. Finally we describe an online system for reverberation robust ASR, using the above described models in conjunction with other data augmentation techniques like reverberation simulation, which simulates far-field environments, and volume perturbation, which helps tackle volume variation even without gain normalization

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network
    corecore