189 research outputs found

    Terabit Burst Switching Final Report

    Get PDF
    This is the final report For Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. The primary objective of the project has been to demonstrate the feasibility of Burst Switching, a new data communication service, which seeks to more effectively exploit the large bandwidths becoming available in WDM transmission systems. Burst switching systems dynamically assign data bursts to channels in optical datalinks, using routing information carried in parallel control channels

    A Hardware Architecture for Scheduling Complex Real-Time Task Sets

    Get PDF
    The problem of jointly scheduling both hard deadline periodic tasks and soft aperiodic tasks has been the subject of considerable research in real-time systems. One of the most widely accepted solutions for this problem are slack stealing algorithms. However, these algorithms are rather impractical, since they all imply a considerable scheduler overhead. This paper faces the overhead problem by introducing a complete hardware architecture that implements slack stealing in hardware using an optimal algorithm redesigned to be implemented efficiently in hardware. The proposed solution is a circuit that behaves as a kind of sophisticated interrupt controller taking the task workload and the interrupts as inputs, and providing the highest priority task to be executed in the CPU. From the point of view of hardware design, the algorithm involves two main problems: first, to select the highest priority task at every moment and, second, to locate a set of slack gaps in a real-time computation. Locating slack gaps in a real-time computation is a problem that requires to “look forward in time” into the forecast schedule of a given workload. This paper analyses the different approaches for solving this problem and presents a novel architecture to solve it efficiently using a technique based on an event-driven simulation of the future of a real-time computation. A timing analysis of the proposed design is also presented

    Dynamic Window-Constrained Scheduling for Real-Time Media Streaming

    Full text link
    This paper describes an algorithm for scheduling packets in real-time multimedia data streams. Common to these classes of data streams are service constraints in terms of bandwidth and delay. However, it is typical for real-time multimedia streams to tolerate bounded delay variations and, in some cases, finite losses of packets. We have therefore developed a scheduling algorithm that assumes streams have window-constraints on groups of consecutive packet deadlines. A window-constraint defines the number of packet deadlines that can be missed in a window of deadlines for consecutive packets in a stream. Our algorithm, called Dynamic Window-Constrained Scheduling (DWCS), attempts to guarantee no more than x out of a window of y deadlines are missed for consecutive packets in real-time and multimedia streams. Using DWCS, the delay of service to real-time streams is bounded even when the scheduler is overloaded. Moreover, DWCS is capable of ensuring independent delay bounds on streams, while at the same time guaranteeing minimum bandwidth utilizations over tunable and finite windows of time. We show the conditions under which the total demand for link bandwidth by a set of real-time (i.e., window-constrained) streams can exceed 100% and still ensure all window-constraints are met. In fact, we show how it is possible to guarantee worst-case per-stream bandwidth and delay constraints while utilizing all available link capacity. Finally, we show how best-effort packets can be serviced with fast response time, in the presence of window-constrained traffic

    Real-time communication in packet-switched networks

    Full text link

    Efficient Q. S support for higt-performance interconnects

    Get PDF
    Las redes de interconexión son un componente clave en un gran número de sistemas. Los mecanismos de calidad de servicio (qos) son responsables de asegurar que se alcanza un cierto rendimiento en la red. Las soluciones tradicionales para ofrecer qos en redes de interconexión de altas prestaciones normalmente se basan en arquitecturas complejas. El principal objetivo de esta tesis es investigar si podemos ofrecer mecanismos eficientes de qos. Nuestro propósito es alcanzar un soporte completo de qos con el mínimo de recursos. Para ello, se identifican redundancias en los mecanismos propuestos de qos y son eliminados sin afectar al rendimiento. Esta tesis consta de tres partes. En la primera comenzamos con las propuestas tradicionales de qos a nivel de clase de tráfico. En la segunda parte, proponemos como adaptar los mecanismos de qos basados en deadlines para redes de interconexión de altas prestaciones. Por último, también investigamos la interacción de los mecanismos de qos con el control de congestión

    Real-Time Communication in Packet-Switched Networks

    Get PDF
    Abstract The dramatically increased bandwidths and processing capabilities of future high-speed networks make possible many distributed real-time applications, such as sensor-based applications and multimedia services. Since these applications will have tra c characteristics and performance requirements that di er dramatically from those of current data-oriented applications, new communication network architectures and protocols will be required. In this paper we discuss the performance requirements and tra c characteristics of various real-time applications, survey recent developments in the areas of network architecture and protocols for supporting real-time services, and develop frameworks in which these, and future, research e orts can be considered

    Performance Management in ATM Networks

    Get PDF
    ATM is representative of the connection-oriented resource provisioning classof protocols. The ATM network is expected to provide end-to-end QoS guaranteesto connections in the form of bounds on delays, errors and/or losses. Performancemanagement involves measurement of QoS parameters, and application of controlmeasures (if required) to improve the QoS provided to connections, or to improvethe resource utilization at switches. QoS provisioning is very important for realtimeconnections in which losses are irrecoverable and delays cause interruptionsin service. QoS of connections on a node is a direct function of the queueing andscheduling on the switch. Most scheduling architectures provide static allocationof resources (scheduling priority, maximum buffer) at connection setup time. Endto-end bounds are obtainable for some schedulers, however these are precluded forheterogeneously composed networks. The resource allocation does not adapt to theQoS provided on connections in real time. In addition, mechanisms to measurethe QoS of a connection in real-time are scarce.In this thesis, a novel framework for performance management is proposed. Itprovides QoS guarantees to real time connections. It comprises of in-service QoSmonitoring mechanisms, a hierarchical scheduling algorithm based on dynamicpriorities that are adaptive to measurements, and methods to tune the schedulers atindividual nodes based on the end-to-end measurements. Also, a novel scheduler isintroduced for scheduling maximum delay sensitive traffic. The worst case analysisfor the leaky bucket constrained traffic arrivals is presented for this scheduler. Thisscheduler is also implemented on a switch and its practical aspects are analyzed.In order to understand the implementability of complex scheduling mechanisms,a comprehensive survey of the state-of-the-art technology used in the industry isperformed. The thesis also introduces a method of measuring the one-way delayand jitter in a connection using in-service monitoring by special cells

    A flexible medium access control framework for multimedia application support in wireless ATM

    Get PDF
    Includes bibliographical references.The field of wireless communications has seen phenomenal development over the last decade. With the current abundance of applications that use broadband multimedia over wired networks it is logical that users will want to have access to these same multimedia streams [rom a mobile terminal. Wireless solutions for connectivity to networks such as Ethernet networks already exist, however, a method of supporting access to an ATM network from a mobile terminal has not yet been standardised. Transporting ATM data over the wireless medium poses a number of problems. The Medium Access Control (MAC) layer of any proposed wireless ATM network would be responsible for resolving many of these problems. Unfortunately, research into MAC layers is hampered by the fact that most existing MAC layers cannot be modified in order to experiment with the effectiveness of the many MAC protocol techniques that exist

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization
    corecore