11 research outputs found

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Switching LPV Approach for Analysis and Control of TCP-based Cyber-Physical Systems under DoS Attack

    Full text link
    Cyberphysical systems (CPSs) integrate controllers, sensors, actuators, and communication networks. Tight integration with communication networks makes CPSs vulnerable to cyberattacks. In this paper, we investigate the impact of denial of service (DoS) attack on the stability of cyber physical systems by considering the transmission control protocol (TCP) and extract a sufficient stability condition in linear matrix inequality (LMI) form. To this end, we model the TCP-CPS under DoS attack as a switching LPV time delay system by using the Markov jump model. Then, we design parameter dependent stabilizing controller for CPS under DoS attack, by considering the network parameters

    Parallel and Distributed Immersive Real-Time Simulation of Large-Scale Networks

    Get PDF

    Parallel Simulation of Very Large-Scale General Cache Networks

    Get PDF
    In this paper we propose a methodology for the study of general cache networks, which is intrinsically scalable and amenable to parallel execution. We contrast two techniques: one that slices the network, and another that slices the content catalog. In the former, each core simulates requests for the whole catalog on a subgraph of the original topology, whereas in the latter each core simulates requests for a portion of the original catalog on a replica of the whole network. Interestingly, we find out that when the number of cores increases (and so the split ratio of the network topology), the overhead of message passing required to keeping consistency among nodes actually offsets any benefit from the parallelization: this is strictly due to the correlation among neighboring caches, meaning that requests arriving at one cache allocated on one core may depend on the status of one or more caches allocated on different cores. Even more interestingly, we find out that the newly proposed catalog slicing, on the contrary, achieves an ideal speedup in the number of cores. Overall, our system, which we make available as open source software, enables performance assessment of large scale general cache networks, i.e., comprising hundreds of nodes, trillions contents, and complex routing and caching algorithms, in minutes of CPU time and with exiguous amounts of memory

    Scalable fluid models and simulations for large-scale IP networks

    No full text
    In this paper we present a scalable model of a network of Active Queue Management (AQM) routers serving a large population of TCP flows. We present efficient solution techniques that allow one to obtain the transient behavior of the average queue lengths and packet loss/mark probabilities of AQM routers, and average end-to-end throughput and latencies of TCP users. We model different versions of TCP as well as different implementations of RED, the most popular AQM scheme currently in use. Comparisons between the models and ns simulation show our models to be quite accurate while at the same time requiring substantially less time to solve than packet level simulations, especially when workloads and bandwidths are high

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore