43,210 research outputs found

    Regularity scalable image coding based on wavelet singularity detection

    Get PDF
    In this paper, we propose an adaptive algorithm for scalable wavelet image coding, which is based on the general feature, the regularity, of images. In pattern recognition or computer vision, regularity of images is estimated from the oriented wavelet coefficients and quantified by the Lipschitz exponents. To estimate the Lipschitz exponents, evaluating the interscale evolution of the wavelet transform modulus sum (WTMS) over the directional cone of influence was proven to be a better approach than tracing the wavelet transform modulus maxima (WTMM). This is because the irregular sampling nature of the WTMM complicates the reconstruction process. Moreover, examples were found to show that the WTMM representation cannot uniquely characterize a signal. It implies that the reconstruction of signal from its WTMM may not be consistently stable. Furthermore, the WTMM approach requires much more computational effort. Therefore, we use the WTMS approach to estimate the regularity of images from the separable wavelet transformed coefficients. Since we do not concern about the localization issue, we allow the decimation to occur when we evaluate the interscale evolution. After the regularity is estimated, this information is utilized in our proposed adaptive regularity scalable wavelet image coding algorithm. This algorithm can be simply embedded into any wavelet image coders, so it is compatible with the existing scalable coding techniques, such as the resolution scalable and signal-to-noise ratio (SNR) scalable coding techniques, without changing the bitstream format, but provides more scalable levels with higher peak signal-to-noise ratios (PSNRs) and lower bit rates. In comparison to the other feature-based wavelet scalable coding algorithms, the proposed algorithm outperforms them in terms of visual perception, computational complexity and coding efficienc

    The MMT API: A Generic MKM System

    Full text link
    The MMT language has been developed as a scalable representation and interchange language for formal mathematical knowledge. It permits natural representations of the syntax and semantics of virtually all declarative languages while making MMT-based MKM services easy to implement. It is foundationally unconstrained and can be instantiated with specific formal languages. The MMT API implements the MMT language along with multiple backends for persistent storage and frontends for machine and user access. Moreover, it implements a wide variety of MMT-based knowledge management services. The API and all services are generic and can be applied to any language represented in MMT. A plugin interface permits injecting syntactic and semantic idiosyncrasies of individual formal languages.Comment: Conferences on Intelligent Computer Mathematics (CICM) 2013 The final publication is available at http://link.springer.com

    Providing enhanced social interaction services for industry exhibitors at large medical conferences

    Get PDF
    Large medical conferences offer opportunities for participants to find industry exhibitors that offer products and services relevant to their professional interests. Companies often invest significant effort in promotions that encourage participants to spend time at their stand (e.g. providing free gifts, leaflets, running competitions) and register some contact details. Attendees will use the conference to find others who also share similar professional interests, as well as keep up to date with developments on products such has pharmaceuticals and medical equipment. From both perspectives, a number of improvements can be made to enhance the overall experience by using existing active RFID technology: Vendors would be able to more closely monitor the success of their promotions with statistics on the stand's visitors, as well as find more potential customers by using real-time visualizations; Participants would be able to log their social interactions, keeping an electronic history of the people they have met. The SocioPatterns project and Live Social Semantics experiments have recently demonstrated a scalable and robust infrastructure that would support these kinds of improvements. In this paper, we propose an infrastructure that provides enhanced social interaction services for vendors and participants by using small active RFID badges worn by attendees and attached to fixed location

    Advanced solutions for quality-oriented multimedia broadcasting

    Get PDF
    Multimedia content is increasingly being delivered via different types of networks to viewers in a variety of locations and contexts using a variety of devices. The ubiquitous nature of multimedia services comes at a cost, however. The successful delivery of multimedia services will require overcoming numerous technological challenges many of which have a direct effect on the quality of the multimedia experience. For example, due to dynamically changing requirements and networking conditions, the delivery of multimedia content has traditionally adopted a best effort approach. However, this approach has often led to the end-user perceived quality of multimedia-based services being negatively affected. Yet the quality of multimedia content is a vital issue for the continued acceptance and proliferation of these services. Indeed, end-users are becoming increasingly quality-aware in their expectations of multimedia experience and demand an ever-widening spectrum of rich multimedia-based services. As a consequence, there is a continuous and extensive research effort, by both industry and academia, to find solutions for improving the quality of multimedia content delivered to the users; as well, international standards bodies, such as the International Telecommunication Union (ITU), are renewing their effort on the standardization of multimedia technologies. There are very different directions in which research has attempted to find solutions in order to improve the quality of the rich media content delivered over various network types. It is in this context that this special issue on broadcast multimedia quality of the IEEE Transactions on Broadcasting illustrates some of these avenues and presents some of the most significant research results obtained by various teams of researchers from many countries. This special issue provides an example, albeit inevitably limited, of the richness and breath of the current research on multimedia broadcasting services. The research i- - ssues addressed in this special issue include, among others, factors that influence user perceived quality, encoding-related quality assessment and control, transmission and coverage-based solutions and objective quality measurements

    Towards democratizing and automating online conferences: lessons from the neuromatch conferences

    Get PDF
    Legacy conferences are costly and time consuming, and exclude scientists lacking various resources or abilities. During the 2020 pandemic, we created an online conference platform, Neuromatch Conferences (NMC), aimed at developing technological and cultural changes to make conferences more democratic, scalable, and accessible. We discuss the lessons we learned

    Scheduling Virtual Conferences Fairly: {A}chieving Equitable Participant and Speaker Satisfaction

    Get PDF
    Recently, almost all conferences have moved to virtual mode due to the pandemic-induced restrictions on travel and social gathering. Contrary to in-person conferences, virtual conferences face the challenge of efficiently scheduling talks, accounting for the availability of participants from different timezones and their interests in attending different talks. A natural objective for conference organizers is to maximize efficiency, e.g., total expected audience participation across all talks. However, we show that optimizing for efficiency alone can result in an unfair virtual conference schedule, where individual utilities for participants and speakers can be highly unequal. To address this, we formally define fairness notions for participants and speakers, and derive suitable objectives to account for them. As the efficiency and fairness objectives can be in conflict with each other, we propose a joint optimization framework that allows conference organizers to design schedules that balance (i.e., allow trade-offs) among efficiency, participant fairness and speaker fairness objectives. While the optimization problem can be solved using integer programming to schedule smaller conferences, we provide two scalable techniques to cater to bigger conferences. Extensive evaluations over multiple real-world datasets show the efficacy and flexibility of our proposed approaches.Comment: In proceedings of the Thirty-first Web Conference (WWW-2022). arXiv admin note: text overlap with arXiv:2010.1462
    corecore