453 research outputs found

    Scalable XML Collaborative Editing with Undo short paper

    Get PDF
    Commutative Replicated Data-Type (CRDT) is a new class of algorithms that ensures scalable consistency of replicated data. It has been successfully applied to collaborative editing of texts without complex concurrency control. In this paper, we present a CRDT to edit XML data. Compared to existing approaches for XML collaborative editing, our approach is more scalable and handles all the XML editing aspects : elements, contents, attributes and undo. Indeed, undo is recognized as an important feature for collaborative editing that allows to overcome system complexity through error recovery or collaborative conflict resolution

    Research report : Collaborative Peer 2 Peer Edition: Avoiding Conflicts is Better than Solving Conflicts

    Full text link
    Collaborative edition is achieved by distinct sites that work independently on (a copy of) a shared document. Conflicts may arise during this process and must be solved by the collaborative editor. In pure Peer to Peer collaborative editing, no centralization nor locks nor time-stamps are used which make conflict resolution difficult. We propose an algorithm which relies on the notion or semantics dependence and avoids the need of any integration transformation to solve conflicts. Furthermore, it doesn't use any history file recording operations performed since starting the edition process. We show how to define editing operations for semi-structured documents i.e. XML-like trees, that are enriched with informations derived for free from the editing process. Then we define the semantics dependence relation required by the algorithm and we present preliminary results obtained by a prototype implementation.Comment: 12 page

    Developing Collaborative XML Editing Systems

    Get PDF
    In many areas the eXtensible Mark-up Language (XML) is becoming the standard exchange and data format. More and more applications not only support XML as an exchange format but also use it as their data model or default file format for graphic, text and database (such as spreadsheet) applications. Computer Supported Cooperative Work is an interdisciplinary field of research dealing with group work, cooperation and their supporting information and communication technologies. One part of it is Real-Time Collaborative Editing, which investigates the design of systems which allow several persons to work simultaneously in real-time on the same document, without the risk of inconsistencies. Existing collaborative editing research applications specialize in one or at best, only a small number of document types; for example graphic, text or spreadsheet documents. This research investigates the development of a software framework which allows collaborative editing of any XML document type in real-time. This presents a more versatile solution to the problems of real-time collaborative editing. This research contributes a new software framework model which will assist software engineers in the development of new collaborative XML editing applications. The devised framework is flexible in the sense that it is easily adaptable to different workflow requirements covering concurrency control, awareness mechanisms and optional locking of document parts. Additionally this thesis contributes a new framework integration strategy that enables enhancements of existing single-user editing applications with real-time collaborative editing features without changing their source code

    On Consistency of Operational Transformation Approach

    Full text link
    The Operational Transformation (OT) approach, used in many collaborative editors, allows a group of users to concurrently update replicas of a shared object and exchange their updates in any order. The basic idea of this approach is to transform any received update operation before its execution on a replica of the object. This transformation aims to ensure the convergence of the different replicas of the object, even though the operations are executed in different orders. However, designing transformation functions for achieving convergence is a critical and challenging issue. Indeed, the transformation functions proposed in the literature are all revealed incorrect. In this paper, we investigate the existence of transformation functions for a shared string altered by insert and delete operations. From the theoretical point of view, two properties - named TP1 and TP2 - are necessary and sufficient to ensure convergence. Using controller synthesis technique, we show that there are some transformation functions which satisfy only TP1 for the basic signatures of insert and delete operations. As a matter of fact, it is impossible to meet both properties TP1 and TP2 with these simple signatures.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Logoot: A Scalable Optimistic Replication Algorithm for Collaborative Editing on P2P Networks

    Get PDF
    International audienceMassive collaborative editing becomes a reality through leading projects such as Wikipedia. This massive collaboration is currently supported with a costly central service. In order to avoid such costs, we aim to provide a peer-to- peer collaborative editing system. Existing approaches to build distributed collaborative editing systems either do not scale in terms of number of users or in terms of number of edits. We present the Logoot approach that scales in these both dimensions while ensuring causality, consistency and intention preservation criteria. We evaluate the Logoot approach and compare it to others using a corpus of all the edits applied on a set of the most edited and the biggest pages of Wikipedia
    corecore