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SUPERVISED SEGMENTATION OF BIOMEDICAL IMAGES 

Rahul Kumar Singh 

Dr. Kannappan Palaniappan, Thesis Supervisor 

ABSTRACT 

 

Biomedical imaging and image analysis is a vital source of information for quantitative studies 

in life sciences and improving healthcare medical diagnostics. Various imaging algorithms have 

been developed to extract essential features and information that assists in this process. One critical 

aspect is assessing the quality of automatic image and video analysis algorithms. The accuracy of 

automatic algorithms is usually evaluated against ground truth, which is determined by manual 

annotations provided by multiple experts at different locations, to develop robust object detection, 

segmentation and classification algorithms. Another aspect of manual annotations is supervised 

segmentation i.e. finding boundaries of regions associated with objects of interest in images and 

videos. Therefore, a tool that can support a host of complex annotation creation and editing 

operations in a collaborative manner with an easy to use web interface for cloud-based editing, 

analysis and storage is a key requirement for which there are few scalable solutions available. 

FireFly is a tool that was developed for manual and assisted expert annotation of images and 

videos for algorithm development and discovery. FireFly provides multiple domain experts at 

geographically different locations a collaborative tool for shared visualization and annotation that 

allows them to create, visualize and validate consensus ground truth and perform various image 

analysis tasks. FireFly is a web-based Rich Internet Application that is built on Adobe Flex, PHP 

and MySQL. In the context of big data, FireFly is used for managing large image collections, video 

sequences, collaborative ground truth generation, tracking and labeling for high-throughput studies 

and algorithm development. The primary objective of this project was to enhance FireFly’s 

capabilities to allow interactive creation and editing of annotation objects like segments, contours 
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and automatic back-end analysis of Biomedical images by interfacing with MATLAB executables. 

Efficient algorithms were developed for local cache management of large collections of image 

frames each with possibly hundreds of annotated objects that have complex geometry like 

polylines and polygons, along with their associated labels and related attributes. The FireFly user 

interface was significantly enhanced to provide greater functionality and ease of use for the non-

specialist. FireFly has been used for several Biomedical applications in collaboration with NIH 

including malaria cell counting, wound healing cell assay analysis, detecting the boundaries of 

lung regions in patient chest x-ray images and tuberculosis disease classification for computer 

aided diagnosis. FireFly has also been used for the morphological analysis of vessel structure in 

capillaries and microvasculature of dura mater using epi-fluorescence microscopy images and for 

bacteria cell tracking. 

  

  



  

1 

  

Chapter 1                                               

Introduction 

1.1  Brief Introduction 

 

In the world of medical sciences, images have become a vital source of information utilized by 

biologists and doctors for diagnostics and research. Various imaging algorithms have been 

developed to extract essential features and information that assists in the decision process. The 

accuracy of these automatic algorithms has to be evaluated against ground truth since automatic 

analysis may not always be accurate. The images contain numerous objects and correcting each of 

them is time consuming. Several commercial tools which are used in medical image analysis are 

not quite as generic and only target a specific problem. FireFly has been designed with the sole 

intention to provide a unified platform for visualizing, editing, ground truth and data analysis.  

In this thesis we will discuss several of our biomedical projects. One of the main project we 

were concerned involves detecting lung boundaries in Chest X-rays [3] for analysis.  Detection of 

lung regions in chest x-ray images is an important component in computer-aided diagnosis (CAD) 

[3][5]. In certain diagnostic conditions, the relevant image-based information can be extracted 

directly from the lung boundaries without further analysis. For example, shape irregularity, size 

measurements and total lung volume, provide clues for serious diseases such as cardiomegaly, 

pneumothorax, pneumoconiosis or emphysema. CAD-based identification of lung disease based 

on accurate lung boundary segmentation plays an important role in the subsequent stages of 

automated diagnosis. With the contour editing and labelling support, FireFly proved to be a useful 

tool in this research. As FireFly fetches images via HTTP, a user can work remotely anywhere 

around the world and annotate the images by using different drawing tools on local machine. The 

annotations are stored in the database, which can be retrieved anywhere, anytime in future. This 

feature made it possible for us to work collaboratively on X-rays with researchers and radiologists 

based at University of Missouri, Columbia and National Institute of Health. Some additional 
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support and enhancements were made in order to support large lung boundaries which are 

described in more detail in Chapter 7. 

Another project described in this thesis is analysis for Dura-mater vasculature network from 

Epi-fluorescence microscopy vessel images. Initially, doctors had to manually mark the Vessels in 

these images. Manual marking was a labor intensive task. With the help of CGI scripting and 

MATLAB executables we were able to run a robust smoothing based thresholding [19] 

segmentation scheme on these images remotely on the server. The resultant segmentation mask 

was processed to extract the network graphs which was later corrected by doctors and further 

analyzed in FireFly to study tortuosity, curvature and angles. MATLAB interfacing and 

segmentation editing is described in detail in Chapter 4 and Chapter 5.  

Besides X-rays and Microvasculature, FireFly is being used for several other biomedical 

datasets like Malaria Cell Count, HeLa cells and Bacteria segmentation. FireFly is also being used 

for video surveillance tracking in UPS, VIRAT, and FPSS. 

Next section gives a brief overview of FireFly Version 3.0. 

1.2  FireFly Version 3.0 

With the current advancement in web, we are capable of handling rich interactive applications 

that can be as powerful as desktop applications. Web applications have advantage of being 

extremely portable, reduces memory and time required to install heavy software on the client’s 

machine. FireFly is a rich multimedia web-based tool based on Adobe Flex. The server side 

scripting is done using PHP and MySQL database is used to store annotations. In FireFly version 

3, the system architecture was extended using PERL CGI. CGI scripting was used for running 

MATLAB executable through Common Gateway Interfacing.  
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Figure 1.1 FireFly login page 

Figure 1.1 shows the login page and FireFly interface. FireFly was developed at Computation 

Imaging and Visual Analysis lab at University of Missouri, Columbia as a general tool for ground 

truth and image analysis. The system architecture and technologies used are described in detail in 

Chapter 2. Major changes from Version 2.0 to 3.0 are listed below- 

• Support for image collections 

• Automating backend analysis of images by interfacing with MATLAB executables 

• Contour and segment editing support 
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• Data visualization and analysis 

• More intuitive GUI with new drawing tools 

• Better local cache management and database update  

• Better lock mechanism and multiuser support 

• Support for multiple import/export data format    

FireFly is used for 6 main purposes: Visualization, Classification, Tracking, Labelling, Data       

Analysis and Segmentation, It provides an interface to the researches and doctors where the object 

produced by algorithms can be mapped directly on to the image. It becomes easier for the user to 

correct and mark due to several drawing/editing options available. The data analysis feature 

provides users a quick way to analyze the changes in data. The primary features of FireFly are 

explained below-  

 

1. Visualization- FireFly maintains an image base from where it fetches the images over 

HTTP. It visualizes the annotations in the form of objects on top of the image, which gives 

users a better interface for editing. FireFly uses various graphical objects for annotations 

like lines, boxes, points, polylines, polygons, curve and freeform. 

2. Classification- It is the process of separating objects into different categories. FireFly 

supports classification by maintaining a set of diverse classes. Users can easily mark 

objects with one class, which can be changed to any other class later. Each class is denoted 

with a specific color, which helps in distinguishing several objects with different classes 

on the screen. 

3. Tracking- Tracking is used to study lineage, cellular events and migration. In general, 

various automated trackers are used to generate the tracks. FireFly provides an interactive 

interface with different join and split modes for track editing, which enables the user to 

correct the tracks. These tracks can be edited interactively by using several track editing 

operations. Besides single object manual interactive tracking, FireFly also supports track 

split and merge operations. Track editing is described in more detail in [21]. 
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4. Labelling-Image labelling help us to mark and store important information corresponding 

to not only images but also segmented objects on the screen. Examples of labels are 

diseases in a chest X-ray or properties of a cell in a microscopic image. This feature of 

marking and saving information allows user to store some extra information besides just 

the coordinates or ground truth which can be utilized for further analysis. 

5. Data Analysis- Every image contains large amount of data associated, which can be 

utilized for further analysis. This data is very useful for the users as it can be used to 

compute various other parameters and features. FireFly provides a data analytics panel, 

which can be used for the computation and analysis. The parameters and features produced 

after analysis can be visualized by using the Data Visualization panel. 

6. Segmentation- It is the process of extracting or partitioning an image into similar regions. 

These segments or contours are the pixels which share similar characteristics. FireFly 

provides a rich interface to visualize these segments. Segments are represented by polygons 

and polylines. These segments can be edited with different editing options such as adding 

or deleting of vertices, splitting and merging of polylines or polygons. 

1.3 FireFly Datasets 

FireFly is a generic tool that supports a vast variety of datasets. Each dataset uses some of the 

functionalities mentioned above. The datasets are divided into two labs- Biomedical and 

surveillance. Examples of datasets with the primary functionalities used are described below-  

1. VIRAT- Fig 1.2 shows one of the primary functionalities of FireFly- tracking. Figure 1.2(a) 

is an image with no ground truth and Figure 1.2(b) shows the 2 tracks- orange track 

representing ‘walking person’ class and the red track represents ‘person unloading from 

car’ class. The red and orange circles specify the position of these objects in different 

frames. This connection is maintained in the database and is retrieved as per the 

requirement. 



  

6 

  

       

(a) Without ground truth and track                         (b) With ground truth and track 

Figure 1.2 VIRAT  

2. HeLa Cells- Figure 1.3 shows HeLa cells. These cells have been classified into Mitosis, 

G1, S-Early, S-medium, S-late, G2, Apoptosis, undecidable and other class. These cells are 

classified based on the time of formation and each cell contains the lineage information 

that is used to track the cell and its origination.  

                                                                                                     

 

 

 

 

 

(a) Without tracks                                      b) With tracks  

Figure 1.3 HeLA cells  
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3. Malaria Cells- Fig 1.4 shows Malaria cells. The labels have been classified into- 

parasitemic, uninfected and others. Classification is used to count the number of infected 

cells. Multiple colors are used to distinguish between different classes on the screen. 

(a)  Without ground truth                                       (b) With ground truth 

      Figure 1. 4 Malaria cells  

4.  Vessels- Figure 1.5 shows vessel images taken from mice. Figure 1.5(a) contains no 

annotations and Figure 1.5(b) contains the network extracted after segmentation. The mice 

were treated over the weeks and then the changes were analysed.  

(a) Without segmentation               (b) With segmentation 

   Figure 1.5 Vessels 
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In Figure 1.5(b) Medial Axis, Boundaries and Branch points are shown which are 

computed by automatic segmentation. For analysis the curvature, angle and tortuosity is 

computed from this graph and visualised in the form of column charts. 

5. Lung X-rays- Figure 1.6(a) shows lung X-rays without any ground truth and Figure 1.6(b) 

shows a lung X-ray with masks. Many diseases, including TB, can be discovered by 

segmenting out the correct portion of the lungs. FireFly was enhanced to support  the large 

X-ray boundaries. With the help of segmentation editing, the lung boundaries can be 

efficiently marked in lesser time. 

(a) Without ground truth                                                (b) With ground truth 

Figure 1.6 X-rays 

6.  Wound Healing – Figure 1.7(a) shows wound healing datasets without any annotations 

and Figure 1.7(b) shows wound healing with annotations.  With these images we mark the 

wound boundaries and monolayer voids which are used for tracking and studying dynamics 

of cells to understand the wound healing process. 
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(a)  Without annotations     (b) With annotations   

          Figure 1.7 Wound healing 

DATASETS OBJECTS 

Surveillance Video Labeling (UPS, VIRAT,  

FPSS) 

Points, Boxes, Lines, Polylines and  

Polygons, Circles 

Malaria Cell Count Points, Box 

Vessel Segmentation Polylines, Points, Boxes 

Lung X-ray Segmentation Polygons 

Lung X-ray Labeling Boxes, Curves, Circles, Lines, Points, 

Polygons, Polylines 

Bacteria Labeling Polylines, Polygons 

Bacteria Segmentation Polylines, Polygons 

Cell Labeling and Tracking Points 

Table 1.1 List of datasets supported by FireFly 
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1.4 Other Similar Tools 

In order to approach the solution for the above mentioned problem a study of existing 

annotation tools is necessary. There are few annotation tools already in existence. In this section 

we will be analyzing the supported features and the drawbacks associated with these tools. Some 

of the tools have been described earlier in D. Beard’s thesis [20] and P. Madala’s thesis [21] - 

LabelMe, LabelMe video, Kolam, ViPER, Allen Brain Atlas, Omero.web, Bisque, NeuronJ and 

DCellIQ.  

Besides the above mentioned tools here we will be discussing more tools like Viking, Cell 

Profiler, Ilastik, ICY, VATIC and AVM in detail. Also some enhancements with respect to ViPer 

and Kolam will be discussed later in this section. 

1.4.1 Viking 

Viking [6] was developed by James Anderson at the Marc lab, University of Utah. It is a web-

based tool that supports multiple users and is a collaborative management system for images and 

data. Viking supports multi-terabyte datasets. It was developed for use with the first retinal 

connectome, which was assembled using serial section Transmission Electron Microscopy and 

Computation Molecular Phenotyping. Viking performs real-time transformation of the original 

tiles using the fast texture mapping abilities of graphical processing units. It is based on Microsoft 

C#, SQL server Express 2008, XNA, MATLAB 2009b, Python 2.6, NCR toolset. 2D/3D graphics 

plot is done by using Viking plot, which is a separate web page on the website. It supports manual 

track editing and was mainly developed for tracking R1 cells. 

Viking is a web based tool that works through HTTP. With its current interface several new 

modules can be added, without making any changes to the interface.  It uses a multi-tiered 

architecture consisting of viewer, image tiling server, WSDL server and the database. A slice of 

an image from the volume can be viewed at any time using the viewer. It fetches the image tiles 

over HTTP and gives the user real time feedback by applying transformations in the backend. 

Viking provides a good interface to map these tiles at appropriate positions on the screen. It uses 

Microsoft SQL Express 2008 to store annotations. The service exposes various methods for 

updating the objects in the database. Even though Viking is a web-based application, it still 
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requires a dedicated graphics card, .NET framework, XNA 4.0 on the system. Since, it is not 

browser based, it requires Viking Viewer to be installed on the system before its use. Viking lacks 

any kind of segmentation support.  

 

       Figure 1.8 Viking interface [6] 

1.4.2 Cell Profiler 

Cell Profiler [4] was developed by Anne E. Carpenter and Thouis Jones at laboratories 

of David M. Sabatini and Polina Golland at the Whitehead Institute for Biomedical Research and 

MIT's CSAIL. The source code was originally written in MATLAB. Computationally intensive 

tasks used MATLAB's native compiled functions. Cell Profiler was later rewritten in Python. It 

was designed to help biologists measure phenotypes from a number of images without any 

knowledge of image processing. Cell Profiler also contains advanced segmentation algorithms. 

Since it is free source software, different modules can be added easily. Algorithms are kept 

together to form a pipeline, which is used for detecting objects and features. Cell Profiler consists 

of two different parts.  
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The first part consists of image processing and production of numerical data. This numerical 

data produced can be exported to Excel sheets or can be stored in the database. The second part 

consists of analysis, which can be utilized by researchers and biologist to examine the data 

produced. Initially, this part was called Cell Visualizer software project, later its name was changed 

to Cell Profiler Analyst. Cell Profiler gives the freedom to develop and add to its free source 

codebase. The user doesn’t have to worry about GUI, compilation and cross platform execution 

and can concentrate on developing its own algorithm.  

    

Figure 1.9 Cell Profiler interface [4] 

The algorithms can be implemented using Scipy and Numpy. Implementation of algorithms 

can also be done by integrating C and Java code with Python or directly using Cython, The plots 

can be generated by the Data-Tools menu. Some advanced algorithms such as advanced image 

alignment are not present in Cell Profiler but the algorithm plugin can be called from ImageJ. This 

feature provides Cell Profiler an advantage over other tools as it can interface with tools like 

ImageJ easily. Cell Profiler is a desktop based application requiring a prior installation and setup. 

It supports classification, tracking and segmentation. But it doesn’t provide any kind of editing of 

tracks or segments.  
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1.4.3 Ilastik 

The scientists at the Heidelberg Laboratory for Image Processing (HCI), University of 

Heidelberg first released Interactive Learning and Segmentation Toolkit in 2011. Ilastik [2] is a 

simple tool for image classification and segmentation. It uses mouse interaction for labelling the 

classes. The labels are then used to run a Random Forest classifier. Ilastik allows a real time 

feedback and it trains algorithm accordingly, which helps in faster labelling. Wrong clicks can 

direct the user to wrong classification. After the classifier has been trained, it can be exported and 

be used on a larger amount of data. 

 

Ilastik is easy to use and provides automated workflows for various features. It supports semi-

computerized and manual tracking and segmentation, object counting and classification. The 

process evaluation simultaneously occurs offline without slowing down the operation. The pixels 

are classified using annotations marked by the user, which are further used as segments. This 

classification works fine for distinct objects. However, if color and brightness are too similar the 

pixels can’t be distinguished. Ilastik provides two different workflows- manual and semi-

computerized. The manual workflow can be used for ground truth analysis. The main file format 

used by Ilastik is HDF5. The file format bmp, gif, jpg, tif, ras, png, ppm, pnm, hdc, xv, npy also 

can be imported directly into a project. Using Ilastik requires no experience in image processing. 

Ilastik is a desktop application that is built on QT and C++. Its exe file is available for WIN, Mac 

and Linux OS. It supports segmentation with Watershed algorithm and classification with random 

forest classifier. Even though Ilastik supports pixel and object classification, tracking, carving, 

density counting, headless operations, it lacks in providing the segmentation and track editing 

feature. Being a desktop application means it requires installation. It also requires larger storage 

space as the images have to be stored on the local machine. Ilastik works well for small set of 

images but for larger set it requires high storage unit and better processing power. 
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Figure 1.10 Ilastik interface [2] 

1.4.4 ICY 

ICY is a GPL open source software developed at Quantitative Image Analysis Unit at Institut 

Pasteur, France. It is a collaborative framework for mathematicians and biologists. Mathematicians 

can develop algorithms as plugins, which can be utilized by biologists for image analysis. Icy is 

an open source Java based desktop application. 

 ICY [22] has plugins for supporting its different functionalities. It uses BioFormates for 

loading and saving of XML files. It uses Flamingo for interface look and VTK for 3D rendering. 

The results, manually marked ROIs and other parameters are stored in the form of XML. When 

any plugin starts, these files are bundled together with images and loaded into memory. This data 

is shared across different plugins in the XML format. http://icy.bioimageanalysis.org works as a 

central repository for plugins. Users can write their own plugins, test on their local machines and 

it can be later uploaded in the repository. The biggest advantage for Icy is this scalable architecture 

which provides people with APIs to interface easily. Due to this feature, a number of plugins are 
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available. Currently ICY supports almost all formats of images available. Even though it supports 

all kinds of data but certain conversion has to be done before display, as all LUT (look up table) 

formats are not compatible with computer.  

ICY has great capability of visualizing all kinds of data; it has diverse set of tools and the 

support for plugins makes it a good solution for the users. The only drawback is that it is a desktop 

application which means, one must have Java Runtime Environment (JRE) setup. For plugin 

development eclipse setup with jdk 1.6 is required. Another drawback is that the image files must 

be present on the system, which results in heavy memory usage.  

                                

                 Figure 1.11 ICY interface [23] 

1.4.5 Video Annotation Tool 

Video Annotation Tool from Irvine, California (VATIC) [32] is an online interactive tool for 

annotating different kinds of datasets. This tool was developed at University of California, Irvine 

for computer vision research. The annotations work crowd sourced to Amazon’s Mechanical Turk. 

This tool has been written in python and can be deployed over cloud.  
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      The users can annotate while the video is being played. The bounding boxes can be used to 

mark objects. The speed of the video can be adjusted by the user anytime. Each object can be 

marked by using a different attribute. These attributes describes some action taking place. The 

action can be anything ranging from Person walking to Person opening a door. The objects can 

also be marked occluded, if it is off the screen. Some keyboard shortcuts available assists in 

marking of annotations. Manually marking each and every frame is tedious and time consuming, 

so an interpolation is applied to place the boxes in each frame. This box can be changed at any 

time by the user. The user has to mark only T number of frames and rest of the frame can be 

interpolated offline. The videos like car may require less time while videos like basketball requires 

more time, so the frame rate can be decided by the user depending upon the dataset. This system 

has been tested only on Ubuntu with Apache 2.2 HTTP and MySQL server.  

 

 

 

 

 

 

 

 

 

       Figure 1.12 Virtual annotation tool [32] 

         The tool setup can be downloaded from their website. Even though the tool is online but it 

needs to be installed and database needs to setup in order to be used. For annotation it only uses 

bounded box. There is no support for segmentation or track editing. The analysis can be done but 

it occurs outside the tool on the results that are generated from the tracking. 
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1.4.6 Advanced Virtual Microscope 

       Advanced Virtual Microscope (AVM) [31] is an image annotation tool developed at Applied 

Visions Laboratory, Texas Tech University. AVM was designed to work with multi-gigapixel 

virtual histology [30] slides. The images can be uploaded as slides and are stored remotely on the 

servers. It consists of 3 parts: Java Web service, a client application and a NoSQL database. 

Currently the application is hosted on Texas Tech server. The web services runs on Glass Fish 

server and it provides CRUD interface for the client and database. With the help of Feature 

generators, test classifiers can be trained and the values can be visualized to show different image 

sections. The client application helps to interact rapidly with very large images. The images are 

stored on the server in the form of small individual tiles of different resolutions. These tiles are 

fetched and displayed depending on the sub region. JPEG compression quality has to be selected 

while uploading the images before converting into tiles or it would be converted to a compatible 

format depending on user’s machine. If they are already in compatible tiff format, the images are 

directly uploaded without any conversions  

       AVM contains a study manager for viewing and editing studies on the right side of the viewer. 

Studies are combination of slides and annotations. By using the study manager various operations 

on these studies can be performed. Solutions are stored on server which is displayed at the center 

of the main window. These solution consists of annotations with class labels, features, generators 

and classifiers. Currently it only supports ImageJ for generating features and LIBSVM for 

classification.  

    Any slide can be selected and displayed in the viewer by double clicking on the name. There 

are various options available on the viewer for annotating the ROI like freehand, oval, rectangular 

and polygon. It does provide some good editing features like point push and select points. With 

the help of point push tool the ROI points can be pushed to an appropriate place but it only works 

when ROIs are selected in ROI manager whereas with the select point’s option individual points 

can be moved anytime. This tool doesn’t support any kind of polygon editing. It also doesn’t 

support any polyline or curve drawing tools. AVM is not browser based, the client application 

needs to be downloaded and installed on the user’s machine, which requires some extra effort 

during initial use. 
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Figure 1.13 Advanced virtual microscope 

    1.4.7 ViPER (Video Performance Evaluation Resource) 

ViPER was developed at the Language and Media Processing Lab- University of Maryland. It 

is a video-analyzing tool [12] designed to allow frame-by-frame markup of video metadata stored 

in the ViPER format. As discussed [21] ViPER Ground Truth provides an interface for tracking 

people and detecting text. It uses shapes like rectangle, ellipse, point, etc. to annotate the ground 

truth. ViPER has two new additional tools: ViPER-Performance Evaluation for comparing the 

results of analysis from ground truth and ViPER- Viz which is a set of UNIX scripts that can be 

used to compactly analyze ground truth and results of video clips.  

   

ViPER was developed in Java and is a desktop based application. The data is stored in XML 

format, which is read by ViPER for data analysis. It also provides an API through which interfacing 

can be done. As ViPER is a desktop application, it requires installation on the client’s machine 

and a lot of memory to store the images. 
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1.4.8 Kolam 

Kolam [1] was developed at the Computational Imaging and Visual Analysis Lab, University 

of Missouri, Columbia. It is an open source software built on QT API and UI framework. Kolam 

is used for visualizing and tracking in wide-area imagery and it supports manual and automatic 

tracking by interfacing with MATLAB executables. The user can also interface by writing these 

plugins in languages like C, C++ and Python. 

 Kolam provides an interactive visualization system and supports very large gig pixel per frame 

video. It provides a faster approach to monitoring, analyzing and evaluation of algorithms. It 

supports a dual cache for visualization of big data. Kolam supports datasets from gigabytes to 

petrabytes in size. It uses its own tiling mechanism to fetch and display tiles. The images are 

converted to tiles by using quad tree regular tiling process. Kolam also supports interactive color 

map and histogram enhancements. Its biomedical application mainly comprises high-resolution, 

high throughput image visualization for microscopy imagery. With the capability of manipulating 

images and ability to interface with user-written plugins many image processing analysis 

algorithms can be performed. Kolam also provides users with a multi monitor display which helps 

in visualizing big data and performs visual analysis. It has been successfully for cell tracking, 

lineage and analysis. Kolam is a desktop application that not only requires local software 

installation but the images also have to be present locally on the system in order to be visualized.  

Although, it supports Big data visualization and provides a rich interface for editing and 

tracking different objects across multiple frames, but the biggest drawback is that the large gig 

pixel images have to be present in the local memory. Storing images and performing analysis tasks 

consumes CPU memory and also demands extra storage space.  
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Figure 1.14 Kolam interface [24] 

As we can see the major drawback with most of the existing tools is that they are desktop based 

applications and too specific to certain types of data. Most of the tools require installation and high 

memory as the images have to be present on the system. FireFly on the other hand is web based 

tool. The images are stored on the server and fetched over HTTP on the client for visualization. 

Due to this feature, FireFly is accessible anywhere remotely. As the algorithm run on high power 

CPUs i.e. on the server, it gives freedom to the clients to use lightweight CPUs as no processing 

is required on the client machine. This feature makes the processing faster with no setup time on 

the client system. FireFly’s scalable architecture makes it easier for development and addition of 

new modules without disturbing the existing modules. 
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Chapter 2  

FireFly Architecture and Technologies 

2.1 New System Architecture 

As shown in Figure 2.1, FireFly is based on client/server technology. Firefly is a Rich Internet 

Application with its client side written in Adobe Flex. The Flex code is compiled to produce SWF 

(Shock Wave Flash) file which is a file containing byte code. This file is transmitted over the web 

to the client side. On the client side Action Script virtual machine runs this file in the browser 

using Adobe Flash Player.      

 

 

 

 

 

 

 

7 

 

                                                                                                                                                                                                           

Figure 2.1 New FireFly architecture 



  

22 

  

FireFly is a heavy client based application with most of the interactions and data changes 

happening on the client side. When there is change, a request for update is sent to the server using 

AMF (Asynchronous Message Format) which further updates the database. The services are 

maintained on the Apache server in PHP. Zend framework has been used to provide MVC (Model 

View Controller) architecture on the server side. The database used for storage is MySQL database. 

The images are fetched through HTTP and displayed in FireFly, from the image base maintained 

on the server. For providing a more real time feedback, the client side also maintains a local cache. 

This cache is continuously updated and stores current, previous two and next two images in the 

sequence. 

In FireFly v3, the architecture was extended and an additional module was added: MATLAB 

executable- PERL CGI interfacing. As shown in the Figure 2.1, a HTTP request is sent to invoke 

the PERL CGI script. The CGI script is placed in the CGI-bin folder. When an HTTP request is 

made to the CGI script with the required parameters the shell script is invoked. The shell script is 

used to execute the MATLAB executables. Once the backend processing is complete, a response 

is sent back to the client. The client sends another request to invoke PHP controller to load the 

results. This result is visualized in FireFly as different objects on the screen. 

2.2 Technologies Used  

FireFly is a rich and heavy client based application. It utilizes Flex for all the client side 

programming. There are multiple other client side technologies available that could have been 

used. Table 2.1 provides a comparison of 3 main technologies- Flex, Silverlight and HTML5. This 

section later describes why Flex technology was more beneficial for us as compared to other 

technologies: 
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1. Silverlight- 

PROS CONS 

.NET framework / Visual Studio Current adoption  

Developer availability  Interaction with HTML requires JavaScript 

Multithreaded   Maturity / longevity  

Powerful styling  Framework complexity  

                           (a) 

 2. HTML5- 

PROS CONS 

No plugin = lightweight  Features not present in old browsers  

Future proof  JavaScript language  

Maximum reach (browser / OS / platform)  Lack of maturity 

Multithreaded  Skills availability  

CSS / HTML are designer friendly  Developer tools not as advanced as Flex and 

Silverlight  

                 (b) 

3. Flex- 

PROS CONS 

Maturity / ubiquity  Single threaded  

Predictable runtime  Heavyweight – Flex libraries required  

An Object Oriented language and  

familiar tools for Java developers 

Interaction with HTML requires  

JavaScript  

Data services for Java  Skills availability  

                (c) 

Table 2.1 Pros and cons for (a) Silverlight (b) HTML5 (c) Flex [7] 
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2.2.1 Apache Flex (Formerly Adobe Flex)  

Flex was developed by Macromedia, which was later acquired by Adobe. After the acquisition, 

Adobe terminated Flex support and Flex was donated to the Apache Foundation. Flex is a cross-

platform development language. It is based on Adobe Flash and requires Adobe flash player to run 

on the browser. Flex has a separate data access layer and presentation layer, this separate 

visualization totally from services. Flex by core is still flash. Due to the requirement of a web 

based language that can be used to create animations similar to the ones created in Flash, Flex was 

developed. The animations in flash are maintained by the user by maintaining a specific frame 

rate. Each object is drawn in a frame and then the animation is played. By default, Flex supports 

24 frames per second, which is used for animating objects on the screen.  

Flex provides various classes and features that can be used to develop a Rich Internet 

Application. One of the features is an XML based user interface language called MXML. MXML 

makes it easier to layout the components on the interface.  

 

Figure 2.2 Flex framework [8] 

MXML gets converted to Action Script and Action Script is compiled to SWF file, which is a 

file with byte codes. The SWF file is read by AVM (Action script Virtual Machine) in Flash player 

the same way as Java byte codes are read by JVM.  
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2.2.2 Cairngorm and Swiz Framework 

To maintain the definite structure of an application, application frameworks are used.  One 

basic principle is to separate the application logic, data access and user view. Other usage of 

developing an application with a framework is its reusability. The developers can easily utilize the 

already implemented classes and libraries. 

FireFly uses Cairngorm framework, which is based on the Model View Controller model.  

                 

Figure 2.3 Cairngorm framework [29] 

One of the most important things to understand about Cairngorm is that everything should be 

mapped to an event [10]. Figure 2.3 illustrates a typical event flow- 

1. View- this is where the user interacts with components. 

2. Dispatch Event- An event is dispatched after any interactive operations from the user 

3. Front Controller – It receives the underlying logic and executes the command. 

4. Command- some business logic is executed by the Command. 

5. Model – The data that is altered by the logic in application. 

6. View – The view changes as the logic alters the data since the data is tied in the view. 
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2.2.3 Swiz Framework 

Swiz framework is used to simplify the operations and event handling in the application [11]. 

Swiz provides the framework to decouple the application code.  It provides a simple life cycle for 

asynchronous remote method invocation. Swiz provides two main tags- Autowire and Mediate. 

While autowire tags are used to represent the dependency of an object, mediate tags are responsible 

for handling the events, anywhere in the application. Swiz is an inversion of a control framework 

that uses the idea of dependency injection. Dependency injection is a software practice, which 

allows us to remove hard-coded dependencies and allow it to change either at compile time or 

run time. 

2.2.4 Server Interaction 

Server interaction can be divided into three main phases [10]: 

1. Execution Phase -When a command is dispatched, it calls the delegates.  The Delegate uses 

the Service Locator to get the required service and calls the specified method on the server. 

2. Application Tier Processing Phase- It runs on the backend server. It executes the heavy 

business logic on the server and sends back the data. To enable communication between 

the service and Flex we use AMF streaming. 

3. Response Phase- The delegate receives the data back, which then passes it to the responder. 

The responder changes the model and since the model is tied to the view, the view is 

updated simultaneously. 

FireFly uses Zend framework in the backend for writing services. Zend is also an MVC 

framework. FireFly has a dual MVC on server and the client side. FireFly uses AMF (Action Script 

Message) streaming to interact with services. This proves to be faster than HTTP GET and POST 

calls. The objects are serialized while sending to the server or client. When an object is sent from 

the server, Flash player can automatically serialize the object into the corresponding Action Script 

class. This is a great feature and helps in exchange of high volume of data. 
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2.2.5 CGI Scripting with PERL 

Common Gateway Interface (CGI) is a method to generate web content by executable files. It 

is mostly written in a scripting language. Practical Extraction and Report Language (PERL), which 

was developed by Larry Wall, was used in FireFly to run the MATLAB executable. The PERL 

script invokes a shell script, which runs the executables. The data is interchanged via simple text 

files. This mechanism is described in more detail in Chapter 5. 

2.3   Local Cache and Screen Buffer 

FireFly maintains a local cache along with the screen buffer. Local Cache maintains frames 

which have already been fetched from the server. Along with the current frame it buffers 4 extra 

frames (2 previous and 2 next). This buffering of image helps the user to have a real time feeling 

while browsing through the images. The local cache maintains a set of markedObjects fetched 

directly from the database. 

 

 

 

 

 

 

 

 

 

Figure 2.4 Local cache and screen buffer 
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 Whenever there is a change in objects on the screen, that objects is marked and stored in the 

local cache as dirty. This object is updated and saved in the database when the user changes frame 

or an explicit save operation is performed. As shown in Figure 2.4 Frame No. 2 is currently loaded 

in the screen buffer, so Frame 0, Frame 1, Frame 3 and Frame 4 have been fetched and stored in 

the cache. We use loadermax library to fetch the objects from the database and the images are 

fetched through HTTP. If any change occurs in the objects M1, M2,.etc. it is marked as dirty. By 

default these updates are saved in the database when the user goes to next or previous frame. If 

auto save option is off then there won’t be any update when the user switches the image. These 

updates can be always saved explicitly by using the save button in Save Panel. This new value is 

returned as a response from the database which refreshes the local cache and the screen buffer. 
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Chapter 3                                                  

Multiuser Annotations for Large Image 

Collections 

3.1 Restructuring of Database 

With the growth of our system, multiuser support became essential. Initially, FireFly supported 

image set specific instead of user specific annotations. Every sequence of image had annotations 

(circle, box, polygon, polylines, points etc.) specific to that set of images. For the new datasets like 

X-rays, Vessels and Malaria we had multiple users distributed all around the country. Different 

users required their own annotations for each set of images. In order to maintain consistency and 

avoid confusion, an additional level of FireFly’s hierarchy was introduced and the level names 

were changed on both the superficial level and the individual annotations to make annotations 

meaningful. So, in order to preserve consistency and increase the level of data abstraction some 

changes with respect to hierarchy were made. 

FireFly consisted of the one dataset level, which was divided into two different levels:

Labs

Imageset

Annontation

Project

Dataset

  

Figure 3.1 Expansion of dataset level into image set and annotation 

A. Image set- It consists of sequence or collection of images. 
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B. Annotations- It consists of annotations. Annotations are markings on objects that can be 

done by using one of the editing tools (points, lines, circles, boxes, polylines, polygons, freeform 

etc.). 

 

 

 

 

 

Figure 3.2  Multiple annotations on single image set 

3.1.1 Impact of Restructuring 

Due to changes in the hierarchy, modifications had to be made in the database and code base 

(consists of PHP services and Flex files). A dual-MVC is maintained on both server and client 

sides. Thus, the major models, controllers and services had to be modified according to the new 

changes in the database. Some of the functions had to be rewritten on both server and client side. 

All these modifications required a careful and timely approach, which also caused new 

implementations to be put on hold. Restructuring gave FireFly a multiuser approach to annotate 

same imageset simultaneously by different users. This assisted us in involving multiple 

radiologists and researchers both at the University of Missouri and National Institute of Health to 

mark and verify the annotations simultaneously. 

3.1.2 Old vs New Representation 

The old representations had 3 levels as shown in Fig. 3.3 

Lab: It consisted of LabID, Title, and Description 

Project: It consisted of ProjectID, LabID, AuthID, Creator, and Title 

Dataset: It consisted of ProjectID, DatasetID, Type, Edit Date, Title, Permission, and Lock 

Image set Annotation1 

Annotation3 

Annotation4 

Annotation2 
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The new user labs menu has 4 levels of hierarchy: 

Lab: It consists of LabID, Labname, and Description. At the University of Missouri, our 

projects can be easily divided into two types- Biomedical and Surveillance. Biomedical projects 

contain projects such as HeLa, bacteria, satellite cells, wound healing and vessels. Surveillance 

project contains projects related surveillance and tracking, for example, UPS, FPSS, VIRAT, 

VIVID, WAMI, and Four Hills etc. The lab for the National Institute of Health is hidden from 

general public guest account and is only visible for NIH accounts. 

Projects: It consists of ProjectID, Creator, and Title. It fetches the data from project and project 

user table. Each project has different image sets. 

Imageset: This consists of the image level. The images can be a video sequence or collection. 

This level contains image set name, resolution width, resolution height and number of frames. 

Figure 3.3 Old representation of user labs menu  
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Annotation: This level contains Annotation ID, Annotation Title, Permission, and Edit. 

Annotations are user specific and have user name as suffix. Multiple users can get access to the 

same annotation and data coherency is maintained by the lock mechanism.     

        

 

Figure 3.4  Hierarchy and intuitive name of datasets 

FireFly version 3 handles multiple users and several datasets. The naming convention for the 

datasets or annotations has to be clear and concise to avoid any confusion and maintain data 

integrity. Initially, there was only one kind of dataset for each set of images, without any intuitive 

names. With multi-user support, there was a need to have unique and more intuitive names. 

Annotations were named majorly in two categories: 

User Specific-These annotation were user specific and only a specific user was granted R/W 

access so these were named after the userID. 

Test Data- These data were used for training and testing purposes. Several users had access to 

this data. So these were named with a test suffix. 
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The project names and image names were changed to make it more intuitive and 

understandable depending upon source and labs corresponding to the images.   

3.1.3 Multiple Annotations and Data Sharing 

FireFly supports multiple annotations, which can be shared amongst multiple users. A single 

image set is shared among different users. Multiple users can mark on the same data provided they 

are provisioned with the access to do it. In order to avoid inconsistency, a lock mechanism has 

been built in FireFly. If one user is logged in an annotation, the annotation is locked for other users. 

Other users can access the annotation only in ‘Read’ mode. Read mode allows the user to read the 

data but doesn’t give permission to edit the data. As the first user logs out, the lock is released in 

the database. Once the lock is released other users can log in and access in Read/Write mode 

depending on their role in database. 

Our future goal would be to copy annotations from one user to another user through GUI. 

Currently this feature is provided at the backend but is not present in the GUI. This would create 

an easy way to exchange data between users. 

3.2 Video Sequence vs Image Collection 

FireFly was designed to handle continuous video sequences. The image sequences were 

composed of images in increasing order of frame numbers. 

The continuous video sequence had two benefits: 

1. Transferring image over HTTP was easier as the images were in a definite order. This 

allowed us to buffer next 2 and previous 2 images. For e.g. For Frame no. 10 we can fetch 

+2 and -2 images easily. It provides a faster approach to fetch and display images.  

2. It also took less storage space in the database and allowed us to maintain a unique link 

between frame Number and marked Objects.  

The Bio-Medical X-rays and Vasculature images are mostly collection of images instead of a 

sequence with no specific pattern or number. These image names mostly depended on the date and 

patient’s records. The random collection of images with random names made selection of the next 
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image difficult as there was no fixed sequence to identify the next image to be transferred over 

HTTP. 

3.2.1 Symbolic Links 

The image names correspond to something specific and important, so preserving name was 

crucial. This increased our problem since FireFly only supporting a video sequence and not image 

collections. A change in code and database was not feasible, as it would require a big change and 

could also cause duplication of code and database tables. A short and feasible solution was to 

generate symbolic links. 

There are two types of links that can be made in Linux: 

• Symbolic links: Refer to a symbolic path indicating the abstract location of another file 

• Hard links: Refer to the specific location of physical data. 

With the creation of symbolic links, the images could be stored outside the FireFly folder. 

Figure 3.5 Soft links with the actual image names 
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A symbolic link (also known as a soft link) consists of a special type of file that serves as a 

reference to another file or directory. UNIX/Linux like operating systems often uses symbolic 

links. 

To create a symbolic link in UNIX or Linux, at the shell prompt, following command can be 

used:  

ln –s {target-filename} {symbolic-filename} 

ls –l: It lists all the links and their actual file names. 

By creating multiple links, entire set of images can be linked to a specific frame numbers. These 

frame numbers can be utilized for fetching and displaying on the client side. The same number is 

also used in the database to store annotations. Additional problems like creating copy of images in 

our data_sources folder were also resolved by creating symbolic links. 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Figure 3.6 Database table to store image information 

We could now access the files by using these links remotely which reduced duplication of 

images. Since each image was of a different size so we had to explicitly create a table in database 

to store the extra information. Figure 3.6 shows the database table to store the extra information. 

A CGI script written in PERL was used to perform following functions: 

1. Generation of soft links and linking them with actual images. 



  

36 

  

2. Creating a text file, containing the image names with corresponding frame numbers. The 

text file is stored in the results folder that can be later downloaded by the user using 

‘Download Results’ in ‘Data Analytics’ panel.  

3. The script invokes the PHP script to load the details like name, resolution height, resolution 

width, and info in the database. 

With the help of the symbolic link we were able to efficiently handle all kinds image 

collections such as lung X-rays, vessel images. 
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Chapter 4 

Segments and Contours Editing 

4.1 Need for Segments and Contours Editing 

Manual Editing of automated segmentation results has always been a challenging task. 

Segmentation editing involves changing of parameters such as width, height and length of the 

graphical shapes, which may involve different levels of complexities depending on the contour. 

Box and line objects in FireFly supported simple editing. However, Figures, which were being 

used to represent segmentation results on the image, were primarily polygons and polylines. Thus, 

simple editing had to be extended and modified for polygons and polylines.  

 

Figure 4.1 Lung boundaries with edit points 
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Figure 4.2 Vessels with edit points 

A variety of editing operations were added for smooth editing of contours and segments. Our 

recent work consists of large datasets with more than thousand points along the contours, for e.g.  

Lung X-rays and Vessels as shown in Figures 4.1 and 4.2. The points visible on the screen are sub 

sampled pixels from the actual result generated from MATLAB. Besides simple movement of the 

contour points, it also required additional manual editing operations to correct the contour data. 

Any merge or split operation involves creation and deletion of objects from the database. To 

maintain consistent information in the database, auto-populating of ParentID, ChildrenID and label 

properties was also needed along with updated coordinates. Practically, this manual edit operation 

and manual update is time consuming and infeasible for large population of objects. Therefore, an 

automatic segment editing and updating algorithm is required when an edit operation is made on 

an object. This involves studying all possible scenarios of manual edit operations. The possible 

instances, when manual correction is required are:  

 Adding vertex in contour and segments            
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 Deleting vertex in contour and segments 

 Splitting of contour and segments 

 Merging of contour and segments            

 Cases involving multiple edit operations 

 The edit operations in FireFly are contained within the Tool Panel. The editing option is 

hidden by default as shown in Figure 4.3 (a). Polygon/Polyline Editing checkbox must be selected 

to show all the possible options on the screen. The checkbox can be selected by three different 

ways: 

1. By pressing Ctrl+P, a user can enter into Polygon/Polyline mode. If the user is already in 

P/P mode the user can press Ctrl+P to exit the mode.  

2. By checking the checkbox also a user can enter into P/P mode. Once the user has selected 

the checkbox he enters into the editing mode. To exit, the checkbox can be unselected.  

3. Red Arrow indicates the user is in P/P mode. A user can directly click on this arrow to 

enter into P/P mode. Pressing escape also exits the P/P mode. 

 

             

(a) Without edit mode     (b) With edit mode 

Figure 4.3 Tool panel 
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4.2 Adding Vertex in Contours and Segments 

 A contour can be a closed figure, which is represented by a polygon or an open segment 

represented by a polyline.      

                          

              Figure 4.4 Segment represented by polyline showing the vertex to be inserted                        

      Figure 4.5 Contour represented by polygon showing the vertex to be inserted 

User interface operations 

Figures 4.4 & 4.5 show the mechanism of vertex insertion. For inserting a vertex, a user must 

be in editing mode. To make insertion active, the add radio button must be selected. A user can 
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also enter insertion mode by pressing ‘A’ button on keyboard. Inserting a vertex involves only a 

LMB click. A vertex is inserted at the point of click. The old boundaries are deleted and new 

boundaries are drawn and the new vertex is inserted. Multiple vertices can be added with 

continuous clicks. As the vertices are added, the shape is auto updated with new boundaries. 

Figures 4.6 & 4.7 show the objects after insertion of vertices. 

               

 

 

 

                                      Figure 4.6 Segment after add operation 

 

 

 

 

 

 

              

                                         Figure 4.7 Contour after add operation 
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Backend operations 

The new vertex inserted can be at any position. As all the points are stored sequentially in an 

array, an automatic array update is needed at the client side and the database. The insertion of new 

vertex takes place by using the following algorithm: 

Step 1: The mid-point is calculated for each pair and stored in a data structure 

Step 2: Euclidian distance is found between each mid-point and the new vertex 

Step 3: The midpoint with the least distance is chosen 

Step 4: The new vertex coordinates are inserted in between the pair with minimum distance 

from the new vertex.  

Step 5: The updated value is shown on the screen with deletion of new boundaries and drawing 

of new boundaries. Simultaneously, the data is transmitted through AMF to the client side and the 

database is updated simultaneously. 

4.3 Deleting Vertex in Contours and Segments 

In the process of contour and segment editing, the deletion of a vertex is similar to addition.  

User interface operations 

For deleting any vertex, the user has to select the delete radio button. A user can also enter into 

delete mode by pressing ‘D’ key on the keyboard. LMB click provides the automatic deletion 

feature. Multiple vertices can be deleted by clicking on the vertices in continuation. Auto-update 

is being performed at the backend and new updated Figure is continuously displayed on the screen. 

Figures 4.8 and 4.9 show the vertex that needs to be deleted. Hovering of the mouse over the vertex 

changes the pointer to a hand cursor. LMB click will mark the vertex for deletion. The vertex is 

marked with yellow color and is removed after the update. To exit the deletion mode, the user has 

to uncheck the box or select another editing option or exit P/P mode.   



  

43 

  

  

            

 

 

 

 

 

        Figure 4.8 Contour with vertex to be deleted 

                    

 

 

                    Figure 4.9 Segment with vertex to be deleted 

Backend operations 

The vertex deleted can be at any position. An automatic update is needed to store the new 

changed points. The deletion of new vertex takes place by using following steps: 

Step1: An invisible circumference is created around the vertex. As the mouse enters this area, the 

cursor changes to a hand, which indicates that the vertex can be selected. 

Step 2: LMB click marks the vertex for deletion. After selection, the vertex is removed from the 

data structure. 

Step 3: The data structure is updated with the remaining vertices.          

Step 4: The updated value is shown on the screen with deletion of old boundaries and insertion of 

new boundaries. Simultaneously, the data is updated in the database. 
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                           Figure 4.10 Segment after deletion of vertex 

 

 

 

 

 

          

       Figure 4.11 Contour after deletion of vertex 

4.4 Splitting of Contours and Segments 

The result of algorithmic analysis can segment out a portion as a whole instead of different 

individual objects. Due to noise present in image or wrong parameter values can cause variance in 

the segmentation results. This may lead to incorrect perception of objects and create some false 

branches along with original objects. As shown in the Figures 4.12 and 4.13 splitting is necessary 

between objects. To enter into split mode a user has to either select Split option in the tools panel 

or press ‘S’ from the keyboard. 
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User interface operations 

 Splitting operation is done differently for closed contours and open segments. For a closed 

contour, the user must select two pairs of vertices in the object whereas, for open segment, the user 

has to select one pair of vertices in the object. 

 

Steps for closed contour: 

Step 1: LMB click 1 and LMB click 2 to select the first pair. The color of the vertices turns yellow 

to signify the vertices has been selected. LMB click 3 and LMB click 4 for selecting second pair 

and the vertices turn yellow. The split operation is performed in the backend and updated Figure 

is displayed on the screen. 

 

Note: In split operation, the first vertex selection in both the pairs represents a joining edge of 

the first object. The second vertex selection of the pair represents a joining edge for the second 

object.  

 

 

 

 

 

 

 

 

 

 

 

 

               

Figure 4.12 Splitting of a contour 
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Steps for open segment: 

Step1: LMB click 1 marks the end of the first object 

Step2: LMB click 2 marks the starting of second object 

                

     

Figure 4.13 Splitting of a segment 

Backend Operations for Closed Contour 

 

 The complexity for this operation was to update two different data structures with new points, 

such that not only is the old data preserved but also the newly created data doesn’t overlap with 

the existing data. Each object contains an array of points in increasing order of their drawing, 

which are connected on the screen. To update the data structure efficiently, following steps were 

performed-  

 

Step1: The vertices that are derived in the data structure for object 1 are as follows: 

a. First vertex of the selected data structure to vertex 1 of first selected pair 

b. First vertex of second selected pair to the last vertex. 

Step2: A new object is created with new set of vertices derived from the original contour. The 

vertices that are derived in the object 2 data structure are as follows: 

a. Second vertex of the selected pair 1 to second vertex of selected pair 1.      
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Figure 4.14 Contour after split operation 

Backend operation for open segment 

An open segment can be broken along two adjacent vertices, which the user must select.   

 

Step1: The vertices from first vertex to first selected vertex are derived on the first data structure 

for object 

Step2: The vertices from the second vertex selected to the last vertex are derived into the data 

structure for the new object. 

 

     

 

 

 

                                  

        Figure 4.15 Segments after split operations 
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4.5 Merging of Contours and Segments 

Disturbances or noises in algorithmic analysis may yield separate patches of segments or 

contours instead of a single contour or segment. In order to correct the errors, the merge operation 

can be used. The segments and contours have different steps for merging. To enter into merge 

mode a user has to select merge from the panel or press ‘G from the keyboard. 

 

Steps for Closed Contour 

Step 1: ‘LMB click 1’ and ‘LMB click 2’ to select the first pair in the first object. The color of the 

vertices is turned to yellow to signify it has been selected.  

Step2: ‘LMB click 3’ and ‘LMB click 4’ for selecting second pair in the second object. The color 

of the vertices turns to yellow to signify it has been selected. The merge operation is performed 

and updated figure is displayed on the screen. 

Note: In merge operation the first vertex selection from both the pairs represents the first 

joining edge between two objects. The second vertex selection from both pairs represents the 

second joining edge between two objects.  

 

         

 

Figure 4.16 Merging of closed contour 
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Backend Operations for Closed Contour 

 

 The complexity for this operation was to update one data structure with combination of two 

data structures while maintaining the correct order of the vertices. Each object contains an array 

of points in increasing order of their drawing, which are connected on the screen. To update the 

data structure efficiently, following steps were performed. 

The vertices are derived based upon the first vertex of the data structure and the selected pair 

of vertices. The vertices are derived in the counter clockwise direction. 

 First, the vertices from Object 1 are derived and second, the vertices from Object 2 are derived 

in the new data structure. However, the order in which the vertices are derived depends upon the 

following scenarios-  

 

Object 1 

 

Scenario 1: Selected vertex 1 is the first vertex 

Step1: The vertices are derived from first vertex to the second vertex selected 

 

Scenario 2: Selected vertex 2 is the last vertex 

Step 1: The vertices is derived from the first selected vertex to the last vertex 

 

Scenario 3: Selected vertex 1 and vertex 2 is NOT the first vertex or the last vertex 

Step 1: The vertices are derived from selected vertex 1 to the last vertex 

Step 2: The vertices from first vertex to selected vertex 2 are derived 

 

Object 2 

Scenario 1: Selected vertex 1 is the first vertex 

Step1: The vertices are derived from selected vertex 1 to selected vertex 2 

 

Scenario 2: Selected vertex 2 is the last vertex 

Step 1: The vertex is derived from selected vertex 1 to the last vertex 

Scenario 3: Selected vertex 1 and vertex 2 are not first or last vertices 
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Step 1: The vertices are derived from selected vertex 1 to last vertex 

Step 2: The vertex from first vertex to selected vertex 2 are derived 

 

Firstly, the vertices are derived from object 1 and then from object 2. Since the contour is 

drawn in the order of vertices that are saved in the database, it is necessary to maintain correct 

order of the vertices. 

 

 

 

 

 

 

 

 

            

 

         Figure 4.17 Merged contours 

4.5.1 Complexity with Merging of Contours 

 

Contours are represented by polygons in FireFly. Currently based on above algorithm, merging 

is different if the polygons are drawn in same direction or opposite direction. On the UI it looks 

the two polygons drawn in opposite direction look. But at the backend these are two different 

scenarios. FireFly stores all the vertex coordinates in the ascending order as it is drawn. This order 

is used while drawing a polygon on the screen every time. There are two ways to merge two 

polygons between any given 2 pairs of vertices if they don’t have any vertices in between selected 

vertices in each pair. Figure 4.18(a) shows two polygons which were drawn in clockwise direction 

and Figure 4.18(b) shows two polygons which were drawn in anticlockwise direction. Here the 

result is Figure 4.18(c) as both are in same direction so the algorithm works fine. Figure 4.19 shows 

the same operation done on two polygons drawn in opposite directions. Figure 4.19(a) shows two 
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polygons drawn in opposite direction. Figure 4.19(b) shows the final results after merging.  Here 

results become different as the polygons were drawn in opposite directions.  

            

(a) Both polygons in clockwise direction          (b) Both polygons in anticlockwise direction 

                                     

  (c ) Result of merge in both cases 

    Figure 4.18 Merging of two polygons with same orientation          

 

 

 

(a) Polygons in opposite directions  (b) Results after merge 

           Figure 4.19 Merging of polygons drawn in opposite directions   
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Complexity increases if we have points between selected pair of vertices. As shown in Figure 

4.20(a) there are four segments that can be selected, this selection can produce 4 different kinds of 

shapes as show in Figure 4.20(b), (c), (d), (e).  

                                    

(a) Merging options for complex polygons 

 

 

 

 

 

 

 

 (b)Joining two outer segments                                   (c) Joining inner in 1 and outer in 2 

 

 

 

 

 

 

 

 (d) Joining both inner segments    (e) Joining outer 1and inner 2 

                   Figure 4.20 Merging in complex polygons 
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The problem here that the orientation of the polygon can’t be determined. As the polygons can 

be drawn in either direction, determining its orientation only with the help of vertex coordinates is 

challenging. One way would be to let users decide which segments to choose but this may require 

a lot of mouse clicks.  Currently, with the help of Firefly we can generate polygons only with outer 

segments and the inner segments are ignored. The inner join would be a cross if the Polygons are 

drawn in different direction and join would be straight with no cross if the polygons are drawn in 

same direction. Our future work would be to support all the possible cases. 

Steps for Open Segment: 

Step1: ‘LMB click 1’ marks the connecting point in the first object. 

Step2: ‘LMB click 2’ marks the connecting point in second object. 

The connecting of a segment can be done in 4 ways. The resulting shape is dependent upon the 

vertices that are selected to be joined.  

 

 

   

 

 

 

 

        

 

 

 

   Figure 4.21 Merging of segments 
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1. Joining first vertex of object 1 to first vertex of object 1 as shown in Figure 4.22 

 

 

 

 

 

 

                                

Figure 4.22 Results after merge operation with join1 

2. Joining first vertex of object 2 and last vertex in object 1 as shown in Figure 4.23 

         

 

 

 

 

 

 

 

     Figure 4.23 Results after merge operation with join 2 

3. Joining first vertex of object 1 and last vertex in object 2 as shown on Figure 4.24 

                 

 

 

 

 

 

  

 

           Figure 4.24 Results after merge operation with join 3 
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4. Joining last vertex in object 1 and last vertex in object 2 as shown in Figure 4.25 

              

      

 

 

 

 

 

                        Figure 4.25 Results after merge operation with join 4 

Backend operation for open segment 

An open segment can only be joined at either the first vertex or the last vertex. Depending on 

the vertex that is selected by the user, different backend operations might be taking place. 

 

Scenario 1: First vertex of Object 1/Object 2 and first Object 1/Object 2. The resultant shape will 

be same in both the cases however, the format in which it is stored in the database changes 

Step1: The vertices from first to last are derived from the first object 

Step2: After the last vertex of first object, the vertices from first to last are derived from the 

second object.  

Depending upon which object is chosen first, the first and last vertices are decided. 

Scenario 2: First vertex of object 1 and last vertex in object 2 

Step 1: The vertices from first to last of Object 1 are derived 

Step 2: The vertices are derived from last to first (in reverse order) at the end of last vertex of 

first Object. The first vertex of object 2 becomes the last vertex 

Scenario 3: Joining first vertex of object 1 and last vertex in object 2. 

Step 1: The vertices from Object 1 are derived from first to last 

Step 2: The vertices form Object 2 are derived from last to first 

Scenario 4: Joining Object 1 last vertex to Object 2 last vertex 

Step 1: The vertices from Object 1 first to last is derived 

Step 2: The vertices from Object 2, last to first is derived (in reverse order)  
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4.6 Cases Involving Multiple Edit Operations 

Sometimes the user may require a figure which can’t be achieved by just one operation. 

Multiple operations can be done one after another for achieving these figures. Some of the cases 

have been discussed below. The vertices marked with yellow represent the active vertices. These 

vertices are either deleted, added or can be a merging or splitting point in the contour or segments. 

4.6.1 Closed Contours                                                                                                                                     

Case 1:                                                                                                                                                                               

Step 1: Delete the points. Figure 4.26(a) shows the vertices to be deleted marked as yellow.         

Step 2: Join the objects. Figure 4.26(b) shows selected vertices in yellow. The two contours 

are joined along these vertices. Figure 4.26(c) shows the figure after joining of two contours.                  

Step 3: Add vertices to get final Figure. Figure 4.26(d) shows the final figure after insertion 

of new vertices. The vertices marked in yellow are the new vertices added. 

                       (a) Initial contours                                (b) Contours after deletion of vertices 

                  (c) Joining two contours                     (d) Single contour after insertion of new vertices  

Figure 4.26 Closed contours- case 1 

 

a. Original Figure 
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Case2: 

Step 1: Split object 1. Figure 4.27(a) shows 2 pair of vertices along which the first contour can 

be split 

Step 2: Delete object 3.  Figure 4.27(b) shows a new contour to be deleted. Figure 4.27(c)    

shows the contours after deletion of unwanted contour and two pair of points along which 

contours can be joined 

Step 3: Join remaining contour. Figure 4.27(d) shows the final contour after merging 

 

               (a) Original Contours                             (b) Contours after splitting of object 1 

  (c) Contours after deleting new contour         (d) Single contour after merging  

Figure 4.27 Closed contours- case 2 
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4.6.2 Segments 

Case 1: 

Step 1: Split object 1 into three different objects by using split operation. Figure 4.28(a) shows 

two pairs of vertices along which the segment has to be split. Figure 4.28(b) shows segments 

after split  

Step2 : Delete the new segment at bottom. Figure 4.27(b) shows the segments after deleting of 

the bottom segment. It also shows the vertices along which the segments canbe joined 

Step3: Merge the two segments. Figure 4.28(d) shows the final figure after merging.   

  (a) Original segment                                    (b) Segments after splitting  

   (c) Segments after deleting new segment    (d) Final figure after merging of segments  

          Figure 4.28 Segments- case 1 

 

 

 



  

59 

  

Case 2: 

Step 1: Delete unwanted vertices. Figure 4.29(a) shows the vertex to be deleted marked as 

yellow. Figure 4.29(d) shows the segments after deletion of vertices and also the points along 

which the segment have to be merged marked as yellow. 

Step 2: Merge the segments. Figure 4.29(c) shows the segments  after merging 

Step 3: Insert new vertices. Figure 4.29 (d) shows the single segment after insertion of new 

vertices. 

            (a) Original segments       (b) Segments after deletion of vertices 

               (c) Segment after merging                      (d) Final segment after adding of vertices                                                     

Figure 4.29 Segments- case 2            
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4.7 Protection and Editing Mode 

 

Dragging of an object in FireFly was handled by left mouse drag event. The users would often 

drag objects accidently, and correcting it was time consuming. Various solutions were suggested 

to fix the above-mentioned problem and the final solution chosen was to use ‘Shift+LMB (Left 

Mouse Button) to move objects.’ 

Dragging LMB has always been used to move the image around in the workspace. Being an 

essential feature this couldn’t be overwritten. 

Several other options were taken into consideration: 

a. Scrolling Mode- A separate mode for moving objects. The user had to continuously switch 

between the drawing and scrolling modes. In order to draw and edit at the same time, the 

user had to make multiple switches using shortcut keys and mouse events. A larger 

programming effort was required to implement this. The user still required a lot of mouse 

motion to switch between modes, which made this method inefficient.  

b. Ctrl-P to translate polygon- the user would use this shortcut to enter into polygon mode to 

move a polygon. A polygon can be moved by a simple LMB drag but at the same time it 

would stop other LMB drag options for the image, other objects, and edit points. This 

method also required multiple mode changes, which didn’t solve the problem completely.  

c. Ctrl + LMB drag – A general solution to move all objects in FireFly. This way LMB-drag 

will move the image; LMB-click can select the object but will not move the drawn objects 

accidently. Ctrl + LMB drag can move the object and not image. 

‘Ctrl’ key in Windows doesn’t map the same in Mac machines. Thus, ‘Ctrl’ had to be replaced 

by the ‘Shift’ key. Finally, ‘Shift + LMB’ drag was chosen as default option for moving objects. 
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Chapter 5 

Web-based Supervised Image Segmentation  

5.1 MATLAB Interfacing 

Microvasculature analysis required a tool that could not only be used for editing and marking in 

vessels images but also can be linked with MATLAB to provide a quick interface for analysis. 

Hence, we developed a semi-computerized Dura mater laminae analysis system [25] for 

fluorescence microscopy images of brain tissues. Figure 5.1 shows vessels image in Firefly. 

                                               Figure 5.1 Vessels image 
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Processing images with MATLAB on the local system requires heavy memory and usage space 

on the disk, which makes the system slow. On the other hand running MATLAB and processing 

the image on the server would make the process faster and prevent wastage of local memory. 

One way was to run the algorithm separately manually and load the data in the database through 

PHP controllers, which would have been done on developer’s side and user would be notified after 

everything was done. User won’t have any control and would totally depend on developer every 

time. Bridging the gap between the client side and MATLAB was necessary as it would provide 

flexibility and ease of execution directly from the client side. Also, the user would be having the 

control over MATLAB executables. 

CGI calls are sent in Firefly through the client UI which is written in Flex. The user has 

freedom to select and process any image. The client machine is free from this execution process 

as processing occurs on the server. The results produced are loaded in FireFly. Simultaneously, 

the results are transferred through HTTP to the client side and displayed on the interface which 

can further be edited and processed by the user. 

 5.1.1 Architecture of CGI 

Our web application is based on Apache server with a Linux background. With the PERL CGI 

interfacing we could add a new module within the existing architecture without disturbing any 

frameworks on the client or server side. The HTTP calls are sent through Flex on the client side. 

On the server side two layered scripting is used to run the executables. Flex calls CGI PERL script, 

which calls another shell script and the shell script calls MATLAB executables. The data is 

exchanged through query strings through HTTP. The data between PERL, Shell script and 

MATLAB is interchanged using text files as shown in Figure 5.2. This result from MATLAB 

executable is further read by PHP controller and saved into database and also sent to the client side 

for visualization simultaneously. 
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Figure 5.2 Architecture of CGI 

5.1.2 Study of Different Technologies 

Web developers have variety of ways to exchange the data dynamically over the web. These 

methods involve writing little scripts in one of the scripting languages. These scripts differ in two 

ways: 

1. The location of the script 

2. The execution of the script 

The following table summarizes different technologies: 

Method Script Location Script Execution File extension 

CGI CGI-bin folder on 

the server 

Server 

 

.cgi 

PHP, ASP HTML  Server .php, .asp 

JavaScript HTML  On the client side by the 

browser 

n/a 

Java 

(Servlets) 

Server On the client side n/a 

 

    Table 5.1 Comparison of different technologies [28] 
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 The script code for PHP and ASP are embedded in the HTML code. The source code is 

executed at the server and the result is pasted at the same place of the script when it is transmitted 

to the client. 

The process is somewhat similar with CGI [28] scripts also. The server sees the tag with the 

CGI script; it executes the server-located script file. It pastes the result at the place of the tag and 

then sends this file. A common example is a hit counter script. The execution of the script will be 

incrementing the counter and the result are put in the HTML and sent on the client side and 

displayed at the place where SSI directive tag was located. 

  Browser provides an option to enable or disable JavaScript and Java by radio buttons or 

check boxes. But this isn’t true for PHP or CGI. The reason behind this is as JavaScript and Java 

are executed on the browser (or not, if it is disabled). Browser has no idea about PHP or CGI. It 

just gets pure HTML. 

Developers working with “frontend” web pages and who are accessing backend databases 

normally use the embedded script method (PHP, ColdFusion, ASP (i.e. client/server Web 

applications). Our application does something similar, it’s based on Client/Server model. Due to 

certain security and cross browser calling issues, running scripts through PHP services became 

difficult. FireFly is based on two different technologies. The flex on the client side calls PHP script. 

The HTML page consists of SWF file rather than PHP script. Using CGI became a big advantage 

as scripts are stored in separate files.  Scripts can be stored separately in CGI-bin folder and can 

be executed just by a GET request.  

5.1.3 CGI (Common Gateway Interfacing) through Flex in FireFly 

Due to our high interactive requirement there are continuous calls to server. By using URL 

Loader class we were able to handle the requests efficiently on the flex side. The parameters were 

interchanged through query string and the call were sent to the server by URL loader method. 

V = new URLLoader(); 



  

65 

  

var vr:URLRequest=new 

URLRequest("http://FireFly.cs.missouri.edu/services/public/index.php/do?frameNumber="+fra

meBuffer.currentFrame+"&annotationID="+annotationID); 

 

5.1.4 PERL Scripting Language for CGI 

Common Gateway Interface (CGI) is a method to generate web content by executable files. It 

is mostly written in a scripting language. Practical Extraction and Report Language (PERL), which 

was developed by Larry Wall, has been used in FireFly to run the MATLAB executables. PERL 

can be run on variety of platforms, such as Windows, Mac OS, and UNIX. Large projects written 

in PERL include cPanel, Slash, Bugzilla, RT, TWiki, and Movable Type. PERL as a CGI scripting 

language became very popular and some of the high-traffic websites that use PERL extensively 

include Amazon.com, bbc.co.uk, Priceline.com, Craigslist, IMDB, LiveJournal, Slashdot 

and Ticketmaster. It is also an optional component of the popular LAMP technology stack for web 

development, in lieu of PHP or Python. 

5.1.5 MATLAB Executables and MCR 

Using Math Works application deployment products, the recoding of MATLAB algorithms 

can be avoided. This reduces errors and maintenance becomes easier. As you develop in MATLAB 

you can easily develop and deploy an executable, which can be standalone or software 

components. MATLAB builder products work with MATLAB Compiler to create components for 

standard use with Java, .NET, or Excel. The components can be deployed easily on operating 

systems, which are supported by MATLAB. 

The MATLAB Compiler Runtime (MCR) is a set of libraries, which helps the MATLAB 

standalone executables to run on machines that do not have MATLAB, installed. MATLAB, 

MATLAB Compiler, and the MCR together enable you to create applications or software 

components quickly and securely. Since we just needed an environment that can run the 

executables, MCR was installed in the CGI bin folder.  
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5.1.6 Invoking Shell Script and MATLAB Executables from the GUI 

 The user interface hides the complications on the server side and it displays a message 

“Running Analysis”, which indicates the script is running on the server. Figure 5.3 shows the 

message when the user clicks Run Analysis button in the Segmentation Panel. When the user 

clicks, the request is sent to the CGI script in CGI-bin. CGI script runs the shell script which 

executes the MATLAB executable. The image is processed and segmentation results are written 

on server which is later fetched on client side for visualization. 

 

Figure 5.3 Running MATLAB executable in FireFly 

5.2 Segmentation Results 

Currently Firefly uses the segmentation described in [27]. Figure 5.4 shows the segmentation 

results for some of the Vessels images. When the MATLAB executable is called the algorithm 

produces a black and white segmentation mask as a result of processing. Figure 5.5(a) shows the 

original vessels images. Figure 5.4(b) shows the segmentation mask for the vessel images. The 

masks are further processed to extract the graphs; these graphs are shown in Figure 5.4(c) which 

are in the form Medial Axis, Boundaries and Bifurcation Points. These graphs are represented in 

FireFly with the help of Polylines and point objects. 
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(a) Original images             (b) Segmentation masks      (c) Vessels graph 

Figure 5.4 Segmentation results 

5.3 Alpha Blending of Images 

In the context of imaging, alpha values signify transparency with values ranging from 0 to 1, 

with 1 being opaque and 0 being transparent. Alpha channels carry transparency information for 

each image.  
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The segmentation mask generated from MATLAB are mostly black and white images. To test 

the accuracy, a new window containing the actual image and result image can be opened from the 

Data Analytics panel. This window contains the mask placed on top of the original image. As 

shown in Figure 5.5 the two images are fused together and displayed in a single panel. The vertical 

scroll bar on the right can be used to change the alpha value of mask, which changes the 

transparency of the mask. In Figure 5.5(c), the result image is shown with an alpha between 0 and 

1.  

 

     

 

 

 

(a) Original image                                 (b) Segmentation mask 

 

 

 

 

 

 

 

                (c )   Alpha blending panel 

                                                    Figure 5.5 Alpha blending 
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5.4 Loading Data through PHP Controllers 

Loading of data is done through PHP controllers. The data after processing of vessels images 

contain three different kinds of objects: Boundary, Medial Axis and Bifurcation Points. 

Boundaries, medial axis are represented by polyline and Bifurcation Points are displayed using 

point objects. A separate controller was written to read this data for vascular images.   

ReadSegController reads each line from the text files generated and inserts into database. Once 

the results are loaded, the response handler refreshes the screen buffer with new objects. The user 

can perform various editing operations on the results. Once a user has completed the editing 

process, another MATLAB executable can be called through GUI. By clicking on ReAnalyze 

button, analysis could be run on server on the existing segmentation results. This executable 

generates values for Tortuosity, Angles and Curvature which is then visualized in form of graphs 

as shown in Figure 5.7. 

 

 

 

 

 

 

 

  

           Figure 5.6 Image with processing result 
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Figure 5.7 Graph analysis 
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Chapter 6 

Data Analytics and Visualization 

Data Visualization is a new and promising field in Computer Science. It uses Computer 

graphics to show the patterns, trends, and relationships among the data sets. With the evolution 

and collection of huge data sets, there is always a need of some novel way to represent and visualize 

the data. Due to variations in the data sets, a data specific approach is always important. 

Visualization is graphically presenting the data that helps in analysis of the information in a better 

way. It’s a process by which, we transform numbers, relations, concepts, processes etc. into a 

visual form, which can be perceived and understood by human eyes. By visualization, we 

emphasize on the relation between the objects rather that a single data value. In the words of 

Friedman (2008) the “main goal of data visualization is to communicate information clearly and 

effectively through graphical means. It doesn’t mean that data visualization needs to look boring 

to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both 

aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse 

and complex data set by communicating its key-aspects in a more intuitive way. Yet designers 

often fail to achieve a balance between form and function, creating gorgeous data visualizations 

which fail to serve their main purpose to communicate information”. Effectiveness and 

expressiveness are the two main criteria by which we can analyze our visualization. If we are able 

to express our relations clearly then we are effective. With new technologies we use animations 

and images to visualize the big data sets which were not effectively visualized by simple graphs.  

Need for data visualization? 

Human perception is always better when we see a picture rather than big numbers. From a 

well-drawn picture, it is much easier to find the trends and relations. Data Visualization takes the 

load from numbers to pictures, which not only saves time but also helps in making quick decisions. 

With emerging new researches we have new and even bigger data sets so we cannot use the old 

traditional graphs but would have to come up with some new interactive way of visualizing the 

data sets. 
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Problem 

One of the biggest challenges was to use a technique based on the client server model. 

Visualization had to be performed on the client side, and data had to be fetched from the server 

side. The visualization had to be intuitive and also dynamic in nature. There were various toolkits 

and online kits available, which were explored and some of them are discussed below. 

6.1 Study of Toolkits and Online kits 

A. Google Chart API [13] 

Good Chart API, a tool that offers visualization for dynamic charts is very robust. It works well 

with any browser that supports SVG and VML. The API supports just about any line graphs, bar 

charts, maps and even QR codes. It is a good tool for someone who is not looking for a lot 

customization and is comfortable with using the Google ’look’. However, since it is generated on 

the client side, it often creates problems for devices that do not support JavaScript. 

             

    Figure 6.1 Google chart API [13] 

B. FLOT [14] 

Another tool with a great library for line graphs and bar charts is FLOT. FLOT works well 

with all browsers that support canvas. A nice feature about FLOT is that you have access to plenty 

of callback functions, so you can easily run your own code and style the results when readers 

hover, click, mouse out etc. This feature gives much more flexibility than other charting packages; 
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however, there is a steeper learning curve. FLOT is a jQuery library, and if you’re already familiar 

with jQuery, callbacks, styling and behavior of the graphics can be easily manipulated. 

 

     Figure 6.2 FLOT [14] 

C.  Raphael [15] 

Another great library for creating charts and graphs is Raphael.  

 

      Figure 6.3 Raphael [15] 

Unlike other libraries, Raphael focuses on SVG and VML as output, which has its own pros 

and cons. Since, SVG is a vector format, the results look great at any resolution; however, it creates 

a DOM node for each element and can be slower than creating rasterized images via canvas. The 

advantage of using Raphael is that one can easily interact with each DOM element and attach 
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events, just like HTML. There are plenty of demos available on the website to demonstrate how 

Raphael can create common charts and graphs and since it can also render arbitrary SVG, it has 

the ability to create some very complex visualization as well. 

 

D.  D3JS [16] 

(Data-Driven Documents) is a JavaScript library that supports SVG rendering. D3 is a great 

tool to create simple to complex visualizations such as Voronoi diagrams, tree maps, word clouds, 

circular clusters to name a few.  

 

 

Figure 6.4 D3JS [16] 

E.  Flare [17] 

Flare is a tool that runs on Adobe Flash Player and is an Action Script library, which is used 

to create visualizations from basic charts, complex interactive graphics, visual encoding, animation 

etc. Another benefit of using Flare is that it features modular design that enables the developer to 

customize visualization techniques. 
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 Figure 6.5 Flare [17] 

 

6.2 Data Visualization in Flex 3 

The main purpose of Data visualization is to enable the user to present data in such a way that it 

not only simplifies but also makes room for data interpretation and data relationship. A type of 

data visualization, which creates two-dimensional representations of data, is charting. Flex 

supports the most common 2-D charting types. Flex also allows the user to have a great control 

over the appearance of the charts as well. Flex provides some basic charts and with the classes it 

provides we can convert these graphs to an interactive graph.  

Single data series can be shown on a simple chart, where a series is a group of related data 

points. Flex allows you to not only create chart types but also customize them. The controls to 

customize are located in the mx.charts package. Cartesian charts are charts that typically represent 

a set of data points in 2-D space in rectangular form. All chart controls are subclasses of Cartesian 

Chart class with the exception of Pie Chart class. Pie Chart class on the other hand is a subclass of 

the Polar Chart class, which represents the data points in the circular space.  
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Events and Effects of Chart [18] 

When a user clicks/double clicks on a chart control, a chart event is triggered. These events are 

of type Chart Event. The Chart Event is part of the charts package, which are imported in the 

appropriate classes into the mx.charts.events package. 

You can select the data points by either writing a program or by the following ways described 

below- 

1. Mouse selection: By hovering the mouse pointer and clicking on the left mouse button over a 

data point. 

2. Keyboard selection: Use the keys on the keyboard to select one or more data points. 

3. Region selection: By drawing a rectangle on the chart, this defines the range, and selects all 

data points within that range. 

4. Programmatic selection: Programmatically select one or more data points using the chart 

selection API. 

All chart controls inherit basic charting characteristics from the Chart Base class. 

                          

    Table 6.1 Flex data visualization table [18] 



  

77 

  

6.3 Data Visualization in FireFly 

6.3.1. Vessels Graph 

Figure 6.6 shows the Curvature graph for Vessels. This chart is plotted by using columns chart in 

Flex 3. The text files generated by MATLAB are read and data is sent to the client side. These 

results are plotted using the column chart in mx.chart package. Vessels analysis contains Angles, 

Curvature and Tortuosity. Any of these options can be chosen form Data Visualization Tab. The 

value selected from drop down will generate the graph for that image as shown in Figure 6.6.  

 

Figure 6.6 Vessels with curvature graph 

6.3.2 Malaria Count Graph 

 Figure 6.7 shows Malaria Count Graph. This column chart shows the total number of objects in 

each class computed individually and represented in the form of columns. Malaria dataset contains 

four classes Parasitemic, Uninfected, Other and Parasite Outside Cell. The graph in Malaria dataset 

is used to visualize number of infected cells. This graph can also be utilized in other datasets to 

visualize total number of objects in each class for an image. 
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Figure 6.7 Malaria image with malaria count column chart 

6.3.3 Data Grid and Scatter Plot 

Even though there was a need for large number of features to visualize, graphical analysis 

linked with the numerical data was the main requirement. To do so, Scatter Plot in the Flex 3.0 

with the data grid was used. Figure 6.8 shows how one can select any ID in the data grid and the 

corresponding values in the graph are highlighted. Due to different variations needed for the 

studies, six different plots had to be plotted. The Columns in the data grid are selectable and one 

click on the name sorts the whole grid according to that particular column. The points in the graphs 

are also selectable. By selecting any point, we can see the highlighted ID in the Data grid. This 

can help in finding the outliers in the graphs. We show different graphs with different axis values, 

the graphs automatically change its axis scale as we plot different values.  

Currently this graph shows different parameter like center, x, y coordinates for a box. Our 

future work would be to extend this feature for all types of objects. 
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     Figure 6.8 Data grid with scatter plot 

6.3.4 Bar Graph with Pie Chart 

Bar graph in combination with Pie chart helps us to identify the number and percentage at the 

same time. Figure 6.9 shows bar graph that can be converted to pie charts. The user would just 

click on the bar graph and drag it to the other panel to convert it into a pie chart. A Pie chart assists 

in determining the ratio of the particular value in comparison to other values. With the bar graph, 

features can be computed and visualized and by Pie chart is used to compare two or more features 

at once. 

When the user points their mouse pointer on any of these bar graphs they can see the data tips 

which tell the values of that particular data point. Figure 6.9 shows an example of Heights Column. 

The user can select button in the Pie Chart if the user does not want to drag each one by one. The 

Pie Chart is also interactive if you click on one part that part moves out and you can see others as 

they were before. 
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    Figure 6.9 Bar graph and pie chart 

6.3.5 Zoomable Line Chart 

The variance of features along a timeline can be studied using this line chart that is zoom-able. 

The user can easily select an area to zoom. The axis adjusts dynamically depending on the zoom 

level. As shown in Figure 6.10 the square shows the area to be zoomed and Figure 6.11 shows the 

area zoomed. 

     

 

 

 

 

         Figure 6.10 Zoomable line chart 
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This kind of approach not only helps to study the graph at macroscopic level but also at 

microscopic level. ’Reset Zoom’ button will reset the zoom at the initial point and the user can 

again start selecting the portion of the line. 

               

     Figure 6.11 Zoomed portion of line chart 
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Chapter 7 

Optimizing Web-Based Performance 

7.1 Dataset Locks  

FireFly uses a single database to support multiple users, which makes maintaining data 

coherency a challenge. In order to protect data from being overridden and to provide multiple users 

access to the same data set, data lock mechanism was introduced. When selecting an annotation, 

its lock status can be checked under the ‘Edit’ column.  

 

Figure 7.1 Annotation with R/W access 

Figure 7.1 shows an example of an unlocked/open annotation. The ‘Perm’ column indicates the 

permission/security granted to the user once they enter the dataset. The ‘Perm’ value shown in 

Figure 7.1 indicates that the user has Read/Write (R/W) permissions, in other words, the user has 

editing capabilities. If the dataset is locked for editing, the user will get a ‘Read Only (R)’ 

permission status. Once the user that has locked the dataset for editing logs out, the lock is released 

in the database and other users can log in with an ‘R/W’ access.  

 

                                   

                         Figure 7.2 Alert box if another instance of same user is logged in 
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If one user hasn’t logged out from the dataset and tries to log into the same dataset on the same 

machine with a different browser or on a different machine, an alert message is displayed. Figure 

7.2 shows the alert message displayed to the user. An option is given to the user to log in 

‘Read/Write mode’ or ‘Read’ only mode. This data lock mechanism has helped us maintain the 

integrity of our data and allowing several users to work successfully at once.  

7.2 Internet Explorer vs. Other Browsers 

 7.2.1 Conflicts with Shortcut Keys 

FireFly uses short keys to access certain features, which not only help reduce GUI space on 

the user screen but also provide alternate GUI options to the users. Some of these short cut keys 

have conflicts in Internet Explorer. However, FireFly runs as expected in other browsers such as 

Firefox, Chrome, Safari, etc. Table 8.1 lists the shortcut keys that conflict with Internet Explorer 

browser keys. These keys were selected since they relate to the meaning of the feature and it’s 

easier for the user to remember.  

 

Keyboard Short 

Keys 

FireFly Internet Explorer 

F1 Debug info window Help and support 

Ctrl + T Enable track mode Opens new tab 

Ctrl + J Joining the tracks View downloads history 

   Table 7.1 FireFly vs. Internet Explorer 

The debug info window can now be accessed in Internet Explorer using ‘Ctrl + F1’ keyboard 

short cut. To enable/disable track mode a user can click on the blue arrow in the tools panel. 

7.2.2 Cache in Internet Explorer 

When a web service is accessed for the first time through Adobe Flex, the first set of data is 

received correctly, however, when another request is made to the same data, IE does not receive 

the most recent data. This issue has been identified to exist only in Internet Explorer and not in 

other browsers. The cause of the problem is that Internet Explorer maintains a cache of its web 

service results. When a request for data is sent via Flex, Internet Explorer tends to get it via the 

cache instead of requesting from the Web Service. A work around to this problem is to change the 
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settings of Internet Explorer. The user can access ‘website data settings’ via Internet Explorer 

settings. Figure 7.3 shows Website Data Settings in Internet Explorer with 4 available options: 

 Every time I visit the webpage 

 Every time I visit Internet Explorer 

 Automatically 

 Never 

To successfully implement the work around and operate FireFly on Internet Explorer, the 

user must select ‘Every time I visit a webpage.’ By selecting this option, the request for data will 

be directly sent to the web service each time instead of the IE cache.  

  

                      

Figure 7.3 Website data settings 

7.3 User Interface Improvements for Biomedical Image Annotation  

 

The data set such as lung x-rays was far more demanding than the other datasets primarily 

because it required support for large lung boundaries and a better user interface to handle the 

masks. The lung X-ray labelling was a difficult task and was done as a combined effort by 

radiologists and researchers both at the University of Missouri-Columbia and the National Institute 

of Health. To support the business requirements, several enhancements to FireFly’s user interface 

had to be made.  
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                                         Figure 7.4 Lung X-ray with the mask 

 The enhancements to the user interface were as followed-  

1) Change in Class Label Colors- Class labels were changed to white text on a black 

background (instead of a colored background) with a small colored square signifying 

the class label color. This made multiple labels in a complex image a lot easier to be 

read. Intensive research was done on web color brewers to choose a unique range of 

colors for each class type.  

2) Object Auto Complete & Auto Save - Advancing to the next frame in the middle of 

drawing mode didn’t automatically save the annotations, which was causing problems 

to the user. Few users wanted the tool pointer to revert back to selector/pointer tool 

each time they advance to the next image while others wanted to still be in polygon, 

polyline or spline drawing mode. Eventually, completing the object and auto-saving it 

when a user advances to the next image resolved the issue. In the new frame, the user 

continued to be in polygon drawing mode and needed to press the ‘Esc’ key to exit 

from the polygon/polyline/spline drawing mode and revert to the selector/pointer 

mode.  
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3) Select/Unselect Checkbox- With multiple classes, it was often tedious and time 

consuming for the user to select and unselect classes one at a time, especially when 

labeling a large number of objects. As a solution, a new checkbox was introduced to 

allow the user to select all or unselect all objects at once.   

4) Info Message Window Relocation: The info message window was relocated from 

center top to bottom left of the screen. This window is used to display messages related 

to the current operations. While labeling the X-rays, the placement of the info message 

window was determined to be an obstacle by the users as it had to be moved each time 

the user tried to mark something. It was relocated down on the left corner to provide a 

better view to the user. 

5) Undo Option- The user being in polygon drawing mode used to accidentally drop an 

object in order to adjust the image. A quick shortcut for removing the object was added. 

Ctrl + Z is used to undo last operation in case of object drawn. If a user has dropped 

multiple objects he can do Ctrl + Z as many number of times he wants and the objects 

will be erased in the decreasing order it was drawn. The user cannot undo anything 

once it has been saved in the database. 

6) Object Glow- Each time an object was selected, it used to glow. However, this glow 

was removed from all drawing objects and was added to the point object. 

 

Support of lung boundaries was a challenging task in the beginning. Since each lung had many 

points on the screen and drawing, editing and displaying had to be done in real time. With 

continuous feedback from researchers and radiologists at University of Missouri and National 

Institute of health, FireFly evolved to be a valuable tool in marking the masks and labeling X-rays. 
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7.4 Incremental Save vs. Bulk Save 

  FireFly uses Loader max to load the data. FireFly v2 supported a bulk save and retrieval. This 

saving technique worked well for datasets with smaller number of objects in the frame. However, 

this became a problem when FireFly was being used for larger datasets such as cell count of 

Malaria cells. These images as show in Figure 7.5 had more than 500 objects on each frame.  

 

            

Figure 7.5 Malaria cell count 

Each save would update all the objects in the database even the ones that weren’t changed. 

For small operations like changing colors, it took more than a minute to be saved in the database. 

Moreover, each class change operations were being directed to save operations in the database 

instead of just changing in the local cache. Similarly, the delete operation would delete the object 

from the database and update all the objects on the screen. These bulk saves caused issues when 

the user tried to draw or edit any objects on the screen. The response received used to refresh the 

entire screen, which would also lose any unsaved changes. This caused inconsistency and the user 

wasn’t even notified as to which objects were saved and which weren’t. A prompt solution was 
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required to enhance the saving mechanism and after multiple discussions the following solution 

was proposed-  

1. Operations like dropping new objects, deleting an object or changing any attributes of 

the object such as class must not update the database at that instance and the changes 

must only be saved in the local cache and screen buffer. 

2.  Dirty bits have to be associated with each object which would signify a change in the 

object. This change can be anything from changes in coordinates to attributes. 

3. Saving only the objects, which were drawn, deleted or changed into the database and 

not update all the objects. This process was called incremental save. 

 

              

                           Figure 7.6 Bulk save 
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    Figure 7.7 Incremental save 

The solution was achieved by updating the saving mechanism on both the client and server 

side. On the client side, each object was associated with a change bit. This change bit was a 

Boolean variable that signifies that the attributes or dimensions of the object have been changed. 

The delete bit would be set if that object is deleted from the screen. The new objects were marked 

with markedObjectID=0. When any of these operations happened, each object was marked with 

the change and the screen was updated. When the user moved to the next frame with the auto save 

option on or did an explicit save; only the objects, which were changed, were saved in the database. 

This reduced the number of objects from more than 500 to 2 or 3 being transferred by HTTP. This 

reduced time remarkably for any database update. The operation that took more than a minute to 

be saved was now done in 2 or 3 seconds. Figure 7.6 shows Bulk save, where all the element are 

sent as a request queue to the server and updated in the database. Figure 7.7 shows the Incremental 

save in which only the objects which have been changed, deleted or added are sent as a request 

queue to the server for the update. This change was a major enhancement to FireFly’s performance 

and it enabled users to function and correct ground truth faster and efficiently.  
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Chapter 8 

New Intuitive GUI Tools 

Flex gives us a freedom of three coordinate [26] system. 

 

1. Global coordinates- The coordinates system with respect to workspace in Adobe Flash 

player is called Global coordinate system. The origin of the coordinate system is located at 

the upper-left corner of the stage (workspace of the application). With the MouseEvent 

class, the X, Y coordinates which can be accessed are the actual coordinates of the stage of 

the application and not screen coordinates.  

2. Local coordinates- The coordinate system with respect to the component is called the Local 

Coordinate system. The origin is located at the upper-left corner of the component. Flex 

transforms coordinates internally to global coordinates while drawing each component. 

Any object can be drawn using its local coordinate system. 

3. Content coordinates- The content coordinates system includes all the component content. 

Even though if any area is not visible it will be still in the coordinate system and can be 

seen by using scroll.  

                            

                Figure 8.1 Coordinate system in Flex 
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Each object and image is treated as a different component in FireFly. FireFly works with local 

coordinate system for individual components. In the case of an image we take the coordinates 

based on the local coordinate system for the image. This allows us to move the image freely on 

the screen without caring about the zoom level and position of image on the screen. MouseX and 

MouseY function always provide the coordinates of the image not the screen.  

For drawing any object on an image, the first coordinate of the object is taken as origin and the 

object is drawn using the local coordinate system. As Flex takes care of transformations in the 

background, the object doesn’t have to be transformed if the image is moved or zoomed. In the 

database, the image coordinates are stored instead of the local coordinates. After all the operations 

are done, the offset is added to the local coordinates to convert into image coordinates. These 

image coordinates are stored in the database. 

8.1 Creeping of Polygons and Polylines 

 

All the GUI elements in FireFly have been implemented using these transformations. Elements 

like polygons and polylines involve a series of summation of the delta difference between the 

consecutive coordinates. Polygons and polylines existed in FireFly without any editing options. 

To make these objects editable interactive edit points had to be added on exact vertex positions 

similar to boxes and lines. These edit points provided an interface for the user to change polygons 

and polylines once they have been created. As the edit points are moved the two lines connected 

to this point are redrawn. This feature proved to be very beneficial in marking lung boundaries and 

vessels. But during the course of marking the wound boundaries, the edit points were found to be 

shifted from their actual positions i.e. they were not at the vertex and were displaced by few sub 

pixels. This issue proved to be a bottleneck in marking the boundaries as every time the user 

clicked on the edit point the whole shape was redrawn and shifted by few subpixels. To solve this 

problem whole implementation of polyline and polygon had to be changed and made consistent 

with the interactive edit point calculation. Figure 8.1 (a) shows the displaced points from the object 

and Figure 8.1 (b) shows the correct placement of the points after change in implementation. 
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(a) Creeping of points                    (b) Correct position of points 

Figure 8.2 Creeping of points in wound dataset 

Figure 8. 3 shows the earlier code for the calculation of the delta between coordinates and then 

drawing other polylines. The code was found to be complex and due to unnecessary calculations 

a small value was being added which became significant after multiple additions. This made the 

actual line to be shifted by few sub pixels. On the other hand the edit points were plotted based on 

the calculation shown in Figure 8.4. The whole code for polylines and polygons was rewritten and 

modularized. Figure 8.4 shows the method to calculate the distance and Figure 8.5 shows the 

method to draw the polyline based on the delta which is already calculated. A separate method for 

calculation of distance reduced code at several places. This method can be called whenever the 

objects have to be redrawn or edit points have to be placed. The calculated delta distance has the 

same value now as from both the places the same function is being called. Hence, there is no 

shifting or creeping of points. 
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                   Figure 8.3 Old code for calculating and drawing  

                        

        Figure 8.4 New code for calculating distance 
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               Figure 8.5 New code for drawing   

      

8.2 Additional Annotation Objects 

FireFly supported drawing objects like box, lines and points, which were used for object 

annotations. Polygons and polylines did not provide the user with any editing options, which made 

it difficult for the user to mark or change any vertex. The only option was to delete the whole 

object and redraw it. 

Taking into consideration the growth and support of datasets with a variety of shapes and 

figures, new GUI elements had to be implemented. The new features implemented were: 

 Circle 

 Polygon (with editing option) 

 Polyline (with editing option) 

 Free Form 

 Curve 

8.2.1 Circle 

This drawing tool is used for annotating circular objects. The Bresenham’s algorithm is used 

for drawing a circle in FireFly. The algorithm is as follows: 

Bresenham's circle algorithm calculates the locations of the pixels in the first 45 degrees. It 

assumes that the circle is centered at the origin. For every pixel (x, y), it calculates and draws a 
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pixel in each of the 8 octants of the circle: 

 

PutPixel(CenterX + X, Center Y + Y) 

PutPixel(CenterX + X, Center Y - Y) 

PutPixel(CenterX - X, Center Y + Y) 

PutPixel(CenterX - X, Center Y - Y) 

PutPixel(CenterX + Y, Center Y + X) 

PutPixel(CenterX + Y, Center Y - X) 

PutPixel(CenterX - Y, Center Y + X) 

PutPixel(CenterX - Y, Center Y - X) 

 

Interactive editing of the circle was an important requirement for marking the objects. Figure 

8.6 displays a circle drawing with a center point and a point on the circumference. Each time the 

points are moved, the circle is updated. A new table was created in the database to store the center 

and circumference points. 

 

                  

                Figure 8.6 Circle drawing with edit points 
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8.2.2 Polygons 

Simple polygon drawing has been supported for a long time in FireFly. But once a polygon 

was drawn it can’t be changed or edited. For any small changes the polygon needs to be deleted 

and redrawn. This wasn’t a feasible technique especially in the case of lung boundaries as shown 

in Figure 8.3. Hence, polygon drawing was extended with new editing features. With this editing 

feature now, the vertices can be moved anywhere on the screen providing a rubber band drawing 

effect. Besides the moving vertex, the remaining vertices are fixed and don’t move. Vertex 

movement causes interactive changes on the connected edges only. As the points are moved, the 

edges are interactively erased and redrawn without moving any of the other vertices. This provided 

a rapid approach to mark the ground truth for several objects in multiple X-ray images. For drawing 

any line in Flex moveTo(x, y) and lineTo(x1, y1) methods are used. The first click is taken as 

origin in the local coordinate system, so we have to move to (0, 0) and then draw a line to the 

distance computed (difference of the actual coordinates). Drawing a polygon is summation of 

multiple moveTo and lineTo functions. Multiple lines are drawn one after another and finally the 

last vertex is joined to the first vertex to complete a polygon. 

                  

                  Figure 8.7 Polygons used for marking lateral side of lungs 
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8.2.3 Polylines 

Similar to polygons, an enhanced version of polylines with more editing options was required. 

Implementation of polylines is very similar to polygons with the basic difference being the join 

between the last and first vertex. Polyline also uses the same concept of moveTo and lineTo 

functions as polygons. Polylines are being used to mark boundaries and medial axis in vessels, as 

shown in Figure 8.8. Polylines also support rubber band drawing, which means that each time a 

vertex is moved; interactive changes are made along the edges. As the vertices are moved, the 

edges are interactively erased and redrawn without moving any of the other vertexes. This provided 

a rapid approach to mark the ground truth for several objects in multiple vessel images.  

 

    Figure 8.8 Polylines in vessels image 
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8.2.4 Curve 

This type of drawing tool is useful for marking curled objects, as number of points is reduced 

along the curved surfaces. Curves are represented by a polynomial equation. Interactive curve 

editing was a challenging task since each new point changes the polynomial equation totally. 

Another challenge was database storage, as only coordinate points are stored and not the constants.  

An approach similar to polylines and polygons was applied and a three point Bezier curve was 

implemented. The first and last clicks became the fixed points and the second point was the control 

point for the curve. Instead of having a single curve, multiple Bezier curves were plotted next to 

each other. The control point in the middle is used to interpolate the curve. The user can 

interactively interpolate and change the bending of curve by moving the control point. As shown 

in the Figure 8.9, the curve consists of 5 curves joined together to represent one curve.  

     

     Figure 8.9  Curves 

8.2.5 Free Form 

This type of drawing tool is used to draw free form shapes. However, a disadvantage of using 

this tool can be the total number of points that are required for irregular shapes. Each of these 

points has to be stored in the database. The drawing algorithm samples the point along straight 

lines, which are then stored in the database. Sampling helps to reduce points however, for larger 

and irregular shapes it can be extremely time consuming. Moreover, editing is difficult because of 

the presence of voluminous points. The algorithm for free form drawing is similar to the algorithm 
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for polygons. Instead of click event the drag event from the mouse is captured to place the points. 

These points are connected through straight lines to give the final figure. 

                              

     Figure 8.10 Free form 

8.3 Redesign of Save/Display Panel 

Several features had to be added which were related to the object’s appearance. This led to the 

redesigning of the panel. Instead of a single tab, the features are separated under 2 different tabs 

as shown in Figure 8.11(c). At an intermediate stage Data Visualization tab was also added as 

shown in Figure 8.11(b). Later this tab was removed and added in the Segmentation panel. 

           

(a) Version  2.0    (b) Version 2.5 



  

100 

  

                          

    (c) Version 3.0 

      Figure 8.11 Save/Display panel- version updates 

Figure B.8 shows a more detailed view of Save/Display panel. The description of old features 

has been already described under P. Madala’s Thesis [21]. The new features added with their 

functions are: 

Appearance: 

a. Edit Points: Used to increase or decrease the size of the edit points 

b. Line Thickness: Used to increase or decrease the thickness of a line in line objects 

c. Polygon Thickness: Used to increase or decrease the thickness of boundaries of the 

polygons 

d. Polyline Thickness: Used to increase or decrease the thickness of the polylines 

e. Box Thickness: Used to increase or decrease the thickness of sides of the boxes 

f. Circle Thickness: Used to increase or decrease the thickness of circumference of circles 
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g. Boundary fill/ no fill for Polygon: These provide an option to make interior of a polygon 

filled or empty with a semi-transparent color. 

h. Boundary fill/ no fill for Box: These provide an option to make inside of a box filled or 

empty with a semi-transparent color. 

8.4 Redesign of Frame Advance Panel 

Frame Advance Panel consists of features relative to zoom, buffer and movement of frames.    

The zoom functionality, initially consisted of just a scroll bar, which was replaced by an input box 

and two + and – buttons. The input box shows the zoom level, which the user can also directly 

input. + and – button represents zoom in and zoom out functionality and are dependent upon the 

zoom level. Ctrl + and Ctrl – can also be used to zoom in and out.       

                  

                    (a)Version 2.0                        (b) Version 3.0 

Figure 8.12 Frame advance panel- version updates 

The four direction buttons indicate image movement. If the user wants to move the image left, 

right, up and down during editing, they can use one of these buttons for image movement.  

8.5 Redesigning of Tools Panel 

Tool Panel consisted of all the drawing tools. But with recent addition of polygon and polyline 

editing, several new modes were introduced which required a complete redesigning of the panel 

with some new features. Figure 8.9(a) shows the tool panel in Version 2. Figure 8.9(b) shows tool 
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panel in Version 2.5 with new P/P editing options. Figure 8.9(c) shows the Version 3.0, with 

editing and different mode select options. The red and blue arrow indicate track and 

polygon/polyline editing mode. The database operations were moved from Save/Display panel to 

the tools panel as a separate tab Save.  

The tool tab contains all the tools with P/P editing tools. The save tool has all the options to save, 

delete and retrieve objects from the database. More detailed view of the tools panel has been shown 

Appendix B. 

 

                                           

 

(a) Version 2 

 

 

 

 

 

 

(b) Version 2.5       (c) Version 3.0 

Figure 8.13 Tools panel version updates 
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Chapter 9 

Import/Export for Image Analysis 

 

FireFly currently supports 4 different file formats. FireFly being a more generic tool had to 

adapt to different kinds of file imports and exports. Initial versions supported .csv files, which 

were used to load data for cell tracking. With new datasets the need for new formats evolved. 

FireFly mainly exports/imports data for two major features: tracking and segmentation 

Both features required different fields and data, which meant they had to be exported in 

different formats. The export format was also dependent on the requirements from users of various 

projects. Initially, the segmentation results for Lungs and Microvasculature image sets were 

exported in two different formats, however, this later evolved to a more standard ROI format to 

support multiple user need.  

9.1 KW 18 Format 

KW 18 format is primarily used for tracking purposes. The results from different tacking 

algorithms or ground truth are exported in this format, which is further imported by FireFly to load 

the data in its database with the use of controllers. FireFly exports the data in the same format. The 

GUI for the file to be downloaded is in the attribute panel as shown in Figure 9.1. The data is 

transferred using AMF (Asynchronous Message Format) to the client side, which is written into a 

text file on user’s local machine.  
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    Figure 9.1 GUI for writing KW 18 file 

Field details for KW18 format: 

No. Field Description 

1 Track-ID Unique ID for each track 

2 Track-Length   Length of the track i.e. number of frames the 

track exists. 

3 Frame-number Frame number where the track starts 

4-5 Tracking-plane-loc (x, y)  Location of the plane 

6-7 Velocity (x, y)  Velocity of track object 

8-9 Image-loc (x, y)  Location of the image 

10-13 Imgbox 

(TL_x, TL_y ,BR_x,  BR_y) 

Coordinates of bounding box (top left and 

bottom corner) 

14 Area Area of the box 
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15-17 World-loc (x, y, z) Camera location 

18 Timestamp   Time-stamp during image acquisition. 

19 Object-type-id   ID to classify the object 

20 Activity-type-id  ID to classify activity 

                                         Table 9.1 Details of KW18 format 

 

Figure 9.2 KW-18 file 

9.2 Lung Boundaries Format 

Ground truth for lungs consisted of two main objects in the X-ray- left and right lung. The user 

needed only the coordinates from their ground truth. Two different text files for each lung were 

written. This format was chosen as it was easier to parse and presence of unwanted fields was 

removed. 



  

106 

  

Figure 9.3(a) contains the coordinates for the left lung and Figure 9.3(b) contains the 

coordinates for the right lung. FireFly reads and stores the coordinates in the order it was written 

in database. The drawing algorithm also fetches and draws the objects in the given order of points. 

 

 

 

 

 

 

 

 

 

(a) Left Lung                 (b) Right lung 

Figure 9.3 Lung coordinates 

9.3 Microvasculature File Format 

The file support required for Vasculature analysis was similar to lung segmentation. The main 

difference was presence of multiple objects instead of two objects. The objects were segments that 

were results from MATLAB executables. These results had to be loaded in the database and 

displayed in FireFly as polylines and points. 
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It was imperative to be able to distinguish between two objects in this file format. The points 

are drawn in the same order as they are saved in the database. The coordinates were written in the 

same order with assigned unique object ID’s. As shown in Figure 9.3(a), (b), (c), the first two 

columns contain the coordinates and the third column contains the unique object IDs, which are 

used for identification of objects in FireFly. The files were divided into three types, based on class 

type- Boundaries, Branch Points and Medial Axis. 

          (a) Boundary                              (b) Medial Axis          (c) Branch Points     

     Figure 9.4 Microvasculature file format  

9.4 Data Analytics File Format for Microvasculature 

The dataset that required this file format was Vessels. In vessels the data came from different 

species of mice before and after treatment. There was a need to study the Curvature, Angles and 

Tortuosity. To meet the requirement, data analytics feature was developed in FireFly. This feature 

allows users to run data analysis and generate the results. The results are further displayed in 

FireFly in the form of graphs by using one of the data visualization tools. The file format created 
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to study the curvature; angles and tortuosity are shows in Figures 9.4(a), (b) and (c). The first 

column in the file denotes the number for the angle, curvature, tortuosity and the second column 

denotes the associated value, which gave the user a quick way to read and plot the graph in FireFly. 

 

 (a)  Curvature    (b) Angles   (c) Tortuosity  

   Figure 9.5 Data analytics format  
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9.5 Region of Interest (ROI) Format 

FireFly supports multiple techniques of exporting data. However, for every new format, change 

was required to the existing file formats. A uniform file format was needed, which would fulfil all 

the requirements for segmentation results. File import was more time consuming as the file was 

written in a vertical format rather than horizontal format. To insert a 10-point object, 10 lines had 

to be scanned, which was reasonable for lesser number of objects. But a more scalable format was 

needed for data with multiple objects in same frame. We supported files based on specific type of 

objects. The ROI format allowed us to support any kind of object with any kind of data. Figure 9.6 

shows the file, it comprises of a minimum of 7 columns with the exception of the first row, which 

only contains 3 elements or columns.  

                 Figure 9.6 ROI format file 

The file is named based on the image name instead of the frame number, for example, 

1_01769case.bmp. The first row contains number of objects, resolution height and resolution 

width. All the rows besides the first row have the following fields in each column- 

a. Frame-Number-ObjectID: This field is a combination of frame number and ObjectID. 

Combined together, it gives a unique ID to the object outside FireFly.  
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b. Class- It defines class of the object. 

c. Comment-Displays comments saved with respect to the object during labelling or marking 

of ground truth. 

d. Object type- It indicates if the object is box, circle, line, point, polygon, polyline, free form, 

and b-spline. 

e. Total number of points- Depending upon the object type, this field signifies total number 

of x, y coordinates written after this column for this object. For example,  

Box: 2- the top left and bottom right coordinates of the box. 

Circle: 2- the center and the edit point coordinate. 

Point: 1- the coordinates of the point 

Line: 2- the coordinates of two endpoints. 

Polygon: n- the number of points in the polygon  

Polylines: n- the number of points in the polyline 

Freeform- n- the number of points in the freeform  

B-spline: n- the number of points in b-spline  

The point coordinates are written in x, y format. For example, a box will be denoted as x1, y1, 

x2, and y2. A polygon will be denoted as x1, y1, x2, y2…xn, yn. This format gives us a preview of 

the number of objects in the file and only a fixed number of lines would have to be scanned. It also 

gives us the information of number of coordinates, which helps us to split the coordinates and 

process in a much faster and efficient manner.  
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9.6 Downloading Results 

Besides the direct link of KW18 formats, FireFly provides a feature of downloading all the 

results stored in the server. Every annotation has its file stored separately. A PERL script zips the 

folder including the subdirectory. The zipped folder is transferred over HTTP and downloaded on 

the client’s machine. 

                        

Figure 9.7 GUI for downloading results 

  



  

112 

  

Chapter 10 

Conclusion & Future Work 

10.1 Summary  

Rich Internet Applications (RIAs) facilitate physical, audible and visual interaction. FireFly 

fulfills these goals by supporting labelling, segmentation, visualization, classification and tracking. 

After studying various technologies for interfacing, PERL was used to bridge the gap between 

FireFly and MATLAB. It has been extended to generate automated segmentation results by 

interfacing through CGI. This feature helped us to run our analysis on microvasculature images 

and extract graphical analysis on medial axis, boundary and branch points.  Data analytics was an 

important feature, as it gave a platform to analyze and visualize data in the form of graphs. The 

current segmentation editing (add, delete, split and merge) and labeling features are being used by 

the National Institute of Health for generation of ground truth for lung segmentation [5] and 

labeling chest X-rays. NIH is also utilizing FireFly’s capabilities for malaria infected cell counting. 

With the support of various importing/exporting formats, it is easier to work and transfer data to 

other applications. Additional GUI tools have also made FireFly a more user-friendly application 

for image annotation.  

The new data set lock saving and other GUI changes has increased FireFly’s performance 

drastically. It allows researchers and doctors to efficiently collaborate by having more control of 

the system with individual accounts and sharing capabilities.  

The researchers and doctors can now work collaboratively and solve more complex problems; 

they also have more control of the system with the user specific annotation levels. This is helping 

them to work concurrently on the same images but with different set of annotations. Some of the 

future works that can help Firefly to be more efficient are described below-  
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10.2 Future Work 

10.2.1 Comparison of Different Segmentation Results 

FireFly currently supports segmentation and segmentation editing. However, a separate page 

to view and compare different segmentation result will be useful. Currently the segmentation 

algorithms can be run from FireFly and the resulting masks are stored on the server. These resulting 

masks from various algorithms can be compared and visualized over the web in a better format to 

provide a better feedback to the researchers for their algorithms. 

10.2.2 OMERO Interface 

OMERO handles a wide variety of formats. The data can be loaded from their servers directly. 

It maintains a central repository of images. By creating an interface, the data can be retrieved and 

loaded in the UI. This will provide a better place for data storage and also an easy access to large 

variety of files. OMERO has identified itself to be one of the biggest libraries and a standard tool 

for biological microscopic images. It will be a useful enhancement for FireFly to interface with 

OMERO’s backend server to gain access to these images.  

10.2.3 Big Tiff File Support 

The current image loader in FireFly does not support the tiff format. It only supports gif, png 

and jpg. FireFly version 1 supported pss files, which were high-resolution images. These files were 

converted to jpg tiles on the server and a respective tile was sent to the client. It used open zoom 

library to display the tiled images. This library is no longer supported. In order to support big tiff 

files, an external tiling server is needed. This server will take in big tiff images and tile them 

depending on the zoom level.  The client can interact with the server by requesting a particular 

tile. Once that tile is transferred to the client by HTTP, it can be easily displayed.  Deep zoom is 

another library that can be utilized to display the tiles on the client side. 

10.2.4 UNDO Function 

Currently FireFly supports undo function in only one case: when user has dropped an object 

and the object is not saved in the database. The user can perform undo function by pressing Ctrl + 

Z. The objects are deleted in the decreasing order of their creation. A separate data buffer was 
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created to store each new objectID for the objects dropped, which was later used to delete the 

objects from the screen buffer. Currently no temporary buffer is maintained in FireFly. All the 

functions are handled directly without any intermediate storage. For e.g. if the user is drawing a 

polyline, we cannot undo a single line segment, instead the whole object has to be undone. The 

approach to solve this problem would be, by introducing a temporary storage buffer, which will 

store all the steps sequentially. This storage buffer has to also maintain the information of services. 

Any operation would have to be stored in local cache before sending a service call to PHP services 

for database update. This would mean that prior to performing any operation; all the details must 

be stored in a temporary data structure as we may lose all the information when the cache is 

refreshed with the updates. For e.g. to undo a delete function, the same object with the same 

information has to be inserted with all the existing properties back in the database. This would 

create a local storage problem as FireFly is a web based application and only a minimum amount 

of data must be stored on the local machine. A selective undo approach can also help in reducing 

the number of steps and complexity. Selective undo will mean only doing undo till the updates are 

not saved in the database. It will also save storage space in the temporary storage buffer as it will 

save the data for only a single image.  

10.2.5 Single Attribute Panel to Query Information for any Annotation Object 

Attribute Panel currently holds the attributes and tracks information of the object. Each object 

has its own Attribute Panel. Double clicking the object opens the attribute panel for that particular 

object. Currently for each object a separate Attribute Panel is opened. These Attribute Panels have 

to be closed each time the user switches the image. A single Attribute Panel is required to 

automatically update the attributes and track information. With a single Attribute Panel, the user 

would be able to control all the objects through one panel instead of several Attribute Panels. Since 

the tracks are also managed through attribute panels, a clever way of handling this situation has to 

be developed, as multiple tracks can be turned on and off through the Attribute Panel. This feature 

would provide users a more intuitive way of handling different objects and their track information. 

10.2.6 Triggering External (MATLAB, C++) Algorithms and Data Analytics/Cloud Computing 

FireFly version 3 supports interfacing with MATLAB for specific datasets. Currently the 

parameters are exchanged through text files. In future, a more general approach to interface FireFly 
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with any MATLAB executables is required. This will require some the following points to be taken 

into consideration - 

a. Exchange of Data-The exchanging of data must be in a standard format like JSON/XML.  

b. API- A proper Application Programming Interface has to be provided through which the 

users can interface easily. 

This will give a more generic approach to the users for interfacing. There is also a need for a GUI 

based uploading of executables, which is currently uploaded manually.  

Another feature that can be added is running of executables on a public or private cloud. The 

user should be able to upload the data and executables on his personal or private cloud. FireFly 

can run the executable on his cloud and fetch the data through web and store in its database or 

store in user’s database. This approach will make FireFly more scalable. Currently FireFly’s 

services are hosted on MERU server but in the future to make it more scalable the services can be 

pushed to a public cloud. We can use cloud as Platform as a Service or can host our own cloud by 

utilizing Infrastructure as a Service. Each of these approaches would help us to enhance FireFly’s 

functionalities. 

10.2.7 Conversion to Flex4 

In comparison to Flex 3, the new features in Flex 4 are certainly much more advantageous. 

However, migrating to Flex 4 is a challenge. Features that were introduced in Flex 4 [9] are - 

1. Integration with Adobe Catalyst- Adobe wanted to present the world with a new designer 

tool for creating Rich Internet Applications, Adobe Catalyst. While developing Flex 4, they 

mainly focused on creating a platform for this new tool. This new tool separated the work 

of designers and developers allowing them to continue working in their old ways while 

also efficiently collaborating.  

2. Spark Component Architecture- Flex 4 introduces new spark architecture. The components 

model, core logic, skinning and layout are broken and they act autonomously. Most of the 

components from Flex 3 can be used in Flex 4 as the new model is built upon Halo model. 

UI component has been extended to make new classes. Each version of Flex has all the 

components needed to build an application like data-grid, buttons, layout containers etc. 
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and they are bundled together in libraries. The introduction of new Spark architecture is 

mainly going to layout the foundation for Adobe Catalyst. The major change from the old 

Halo architecture is the introduction of separation levels. Sparks affects package implements 

the animation effects. It allows more flexibility to create animation for random objects. The effects 

have been re-implemented in Flex 4 while maintaining backward compatibility with Flex 3 

allowing the old effects to be used at the same time.  

3. MXML 2009- MXML is a XML based language used for laying out components on the 

interface. Numerous changes have been introduced to support the new Spark architecture 

while also maintaining the support for Halo components. MXML 2009 continues to support 

the old core, skinning and layout along with the newer Spark components.  

4. Improvements to View States- A simple state change used to produce change in the View 

state. It was introduced in Flex 2. This feature has been simplified in Flex 4 and is now 

easier to understand and use. IncludeIn and ExcludeIn can be used on the attributes to 

manipulate them based on the change of state.  

5. FXG Support- with the FXG support in Flash player, the designers will be able to design 

the components in Catalyst or CS4 illustrator and it can be imported as it is without any 

modifications. This will assist the developers to use the components that were designed 

outside Flex. FXG is the declarative used by a designer to create components. 

6. Skinning Enhancements- In order to modify the visual components independently, Spark 

component has now changed skins to control all visual aspects. The components can be 

modified outside the core logic as it resides outside the component core.  

7. Updated Layout Model- The majority of containers used in Flex 3 like HBox and VBox, 

which were used for horizontal and vertical layouts, are not included in the Gumbo library. 

The layout is now handled through delegation. 

Migrating from Flex 3 to Flex 4 has immense benefits, however, it can be difficult at the same 

time since FireFly is a developed application and all the current components are not supported in 

Flex 4. Migrating would be beneficial in the long run but will also need a careful approach. A 

different branch has been created in SVN codebase and slowly the components are being migrated. 
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10.2.8 Support for Mobile Computing Platforms like iOS, Android, etc. 

Currently FireFly has been tested and used only on web browsers. It does run on tablets that 

Flash support on their browsers. In iPad’s case, the mobile version of Flash required high memory 

so is not supported. However, FireFly can be run using third party web browsers on iPads. Another 

way FireFly can be run on mobile platforms is by developing the client side in Android or iOS. 

Currently web services are written in PHP using Zend framework. FireFly’s data interchange is 

done using AMF (Asynchronous Message format). For mobile device app support, a different data 

format exchange will be required. Currently, the services are bound to flex calls.  

By creating a wrapper of REST services on top of our existing services, we can support any 

kind of GET, PUT, POST and DELETE REST calls. These REST services will interact with our 

existing Zend services. This internal exchange between the existing services and REST services 

can be done in any format like AMF, JSON, and XML. A support of JSON or XML will enable 

us to interact with any mobile application. Although, the existing services can be utilized but the 

client side still has to be rewritten completely for Android or iOS. The tentative architecture is 

shown in Figure 10.1. 

 

 

 

 

. 

  

 

 

 

    Figure 10.1 Support for mobile devices  
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Appendix A 

Development and Debugging in FireFly 
 

FireFly is built on Adobe Flex3, PHP, MySQL and PERL. It uses Adobe Flex 3 on the client side 

and PHP on server side. There are two development IDE’s that can be used for developing in 

Flex3- 

1. Adobe Flash Builder- It was previously known as Adobe Flex builder. Flash Builder was 

built on top of eclipse. It can be downloaded from: 

https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder 

2. Eclipse- It can be also used for Flex development with the flash builder plugin. Eclipse can 

be downloaded from:  

http://download.eclipse.org/eclipse/downloads/ 

  The plugin can be downloaded from: 

       http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2  

 

FireFly is compiled using Flex 3.5 SDK.  Adobe Flash Builder already contains this SDK. 

For Eclipse it can be downloaded from: 

http://opensource.adobe.com/wiki/display/flexsdk/Downloads 

Flash player is required to run the compiled SWF file. Latest version can be downloaded from: 

http://get.adobe.com/flashplayer/ 

 Links for tutorial and documentation on Flex: 

 http://www.adobe.com/support/documentation/en/flex/flex3.html 

 http://blog.flexexamples.com  

 http://cookbooks.adobe.com/flex 

https://www.adobe.com/cfusion/tdrc/index.cfm?product=flash_builder
http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2
http://opensource.adobe.com/wiki/display/flexsdk/Downloads
http://get.adobe.com/flashplayer/
http://www.adobe.com/support/documentation/en/flex/flex3.html
http://blog.flexexamples.com/
http://cookbooks.adobe.com/flex
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FireFly’s codebase is maintained using SVN. Currently FireFly v3.0 is in the HEAD version. 

Flash builder or Eclipse can be connected by enabling the SVN plugin in the IDE or connected 

directly through tortoise SVN. 

The link shows how to install SVN in Flash builder. 

http://blogs.adobe.com/jasonsj/2010/03/installing_subclipse_in_flash_builder_4.html 

PHP 

The IDE that can be used for PHP development is Adobe Dreamweaver. It can be downloaded 

from http://www.adobe.com/products/dreamweaver.html  

With the Apache server the services can be hosted locally. Depending on the operating system 

LAMP, WAMP, XAMP can be used to host services locally. PHP code is currently deployed on 

MERU server. The code can be checked out locally connecting through SECUREFX FTP client. 

To direct the request to the local services instead of MERU the path in service-config-file has to 

be changed to local host. 

PERL 

Eclipse PERL plugin can be useful for PERL development and it can be downloaded from 

http://www.epic-ide.org/download.php. Strawberry PERL is the MS windows version of PERL; it 

is already equipped with everything needed for running in a windows machine. It has been 

designed very close to PERL environment on UNIX systems. Apache server needs to be enabled 

before running any PERL scripts. 

Database 

FireFly uses MySQL database to store all the information. Database can be connected through 

MySQL Workbench or Toad. Database resides on MERU and it can be connected by pawprint and 

password. For running scripts on MERU putty can be used. For loading images or any other files 

directly SECUREFX can be used. 

 

http://blogs.adobe.com/jasonsj/2010/03/installing_subclipse_in_flash_builder_4.html
http://www.adobe.com/products/dreamweaver.html
http://www.epic-ide.org/download.php


  

120 

  

Debugging of FireFly 

Firefox plugin firebug is a beneficial tool to test any GUI bug. This plugin throws an exception 

when it comes across any error on the browser. Charles debugger is used for testing and debugging 

AMF requests and responses. It is a monitoring tool used for observing different request and 

responses.  
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Appendix B 

FireFly Manual 

 

The home page of FireFly is shown in Figure B.1.The user can login by using his username 

and password. 

 

                                         Figure B.1 FireFly login page 
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     Figure B.2 User lab menu 

Figure B.2 shows the User lab menu. It is divided into four parts- Lab, Projects, Imageset, and 

Annotation. The user must select the lab in order to view the associated projects. After selecting 

the project, the underlying image sets will be displayed. Each image set can have different set of 

annotations. User’s R\W access depends upon the access level of the user in the dataset. If dataset 

is being used by any other user, it will be displayed as locked in order to prevent concurrent editing 

of the same dataset. 



  

123 

  

Figure B.3 shows the workspace in FireFly. It has six panels that are expandable and 

collapsible. It also has an attribute panel which is only displayed after a double click on the objects. 

The position of the image can be changed anytime using normal mouse movements. The panels 

are described below. 

    

 

          Figure B.3 Workspace 
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Class Chooser Panel 

This Panel contains all the classes which are contained in a given project. The user has to select 

one of the classes and start marking the objects on the screen. The objects on the screen will be 

marked with the color of the class selected. By default first class in the panel is selected. The check 

box on the left side shows the classes that are currently visible on the screen. Unchecking the check 

box will make the objects of that class disappear from the screen. All the classes can be made 

invisible by unchecking the show all check box. Checking show all will make them visible again. 

Count show button shows a column chart with number of objects in each class. This graph auto 

updates itself as we switch the frame. 

                                       

      Figure B.4 Class chooser panel  
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Frame Advance Panel 

This panel contains all the movements, zooming options, buffer and other information related 

to frames. It contains the lab, project, annotation name and access level of the user at the top. 

It has four direction buttons to move the image in four directions. The input box to set the zoom 

factor, the plus and minus buttons can be used to zoom in and out. Ctrl + and Ctrl - can also be 

used to zoom in and zoom out from the keyboard. It also contains another direction button at the 

bottom, which is used to navigate to next and previous frames. It also contains the input box in the 

middle which can be used as navigation to a specific frame. Left and right arrow on the keyboard 

can also be used for a advancing to different frames. The bar at the bottom shows the number of 

images buffered. Bad Frame check box is used to mark bad frames. 

                         

                              Figure B.5 Frame advance panel 

Drawing Tools Panel  

It has two tabs Tools and Save. The tool tab has all the drawing tools. FireFly currently supports 

Point, Line, Box, Polyline, Polygon, Curve, Circle, and Freeform. The black arrow indicates 

default tool select mode. This mode represents no tool is selected and the user can move the image 

using the same mouse events. Red arrow indicates the Polygon/Polyline editing mode. 
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Polygon/Polyline editing checkbox enables the user to enter into edit mode. A user can also enter 

into this mode by pressing Ctrl+P. In this mode, user can edit the polygon/polyline by selecting 

one of the options add, delete, split and merge. The actions used in editing are done by using LMB 

click. P/P mode is described in more detail in Chapter 4. Blue arrow indicates tracking mode. 

Tracking is described in more detail in P. Madala’s thesis [21]. 

Save tab under Current Frame Objects contains buttons for saving, deleting all objects, 

exporting the image and saving on local machine. It contains a button Refresh (LC) to refresh 

cache from updated values in database. Under Copy Objects it contains for buttons copying 

annotations.  It also contains an AutoSave checkbox, which is used to turn the mode on or off. 

         

(a) Tools tab                                         (b) Save tab 

Figure B.6 Drawing tool panel  

Figure B.7 shows all the drawing objects supported in Firefly. The drawing is interactive and 

are just drawn by using LMB click and drag events. For completing a Polygon, Polyline, Curve 

‘C’ key is used. 
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                (e) Freeform 

 

 

 

 

 

Figure B.7 Different drawing shapes in FireFly 

 Display Panel 

This Panel is divided into two tabs. Trajectories, Appearance. Trajectories contains all the 

functions related to trajectories such as number of ponts, sampling, head and tail, trajectory color, 

(b) Curve 

(d)  Circle 

(c)  Polyline (a) Square 

(g) Polygon (h) Line 

(f) Point 
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trajectory thickness, trajectory points size. trajectory length etc, All the options are used for making 

changes in trajectory. 

Appearance tab consists of functions related with the appearances. It contains class label- 

turning on/off, control thickness of- line, circle, polyline, polygons, boundary fill option for square 

and polygons. It also contains point object size, edit point size, class label/format and info and font 

size control. 

   

(a) Appearance tab                                   (b)   Trajectory tab 

           Figure B.8 Save/Display panel  
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Data Analytics Panel 

 This panel contains all the analysis options to be done on images and data. Running the 

analysis would invoke segmentation algorithm on the server and results are produced which are 

then loaded on image. Graph analysis computes different values for Angle, Curvature and 

Tortuosity and displays in the form of graphs. Segmentation mask displays the actual image and 

the segmentation mask on top of each other. By varying the alpha it can be utilized to monitor the 

accuracy of algorithm, Segments delete, deletes all the segments on the screen. Results download, 

downloads all the result on the system. Class Count shows count of objects in a class in the form 

of graphs. 

Data Visualization contains the tools for visualization of data. FireFly currently supports bar graph, 

pie chart, line chart, data grid for visualization of data. 

     

 

 

 

 

 

(a) Segmentation Analysis Tab                       (b) Data Visualization Tab                             

Figure B.9 Data analytics panel  
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Figure B.10 Help panel 

 

            

(a) Classification tab                                     (b) Segmentation tab 
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(c)Trajectory  tab 

Figure B.11 Attribute window  

Attribute Window 

This contains all the attributes related to the objects, track and segmentation. This panel has 

been described in more detail in P. Madala’s thesis [21]. It contains 3 tabs Classification, Segm, 

Trajectory. Classification contains all the attributes related to classification of the object. Segm 

has options related to segmentation. Trajectories tab contains all the attributes related to 

trajectories of the object. The user can input it manually or change interactively. The class can be 

change from the drop down menu. It has an option to show the track. The KW18 files can be 

downloaded from the panel.  
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               Figure B.12 Debug window 

Debug Window 

Debug Window shows all the debug messages. Whenever any operation is happening, it 

prints a message in the Debug window. It can be turned on and off using F1 key or Ctrl+F1 key.                     

         

              Figure B. 13 Info and message window 

The text in white shows the information of the objects, frame, scale, and location. It can be 

turned on or turn off using F2 or Ctrl + F2. The text in yellow shows different messages to provide 

user a feedback of the operations happening. 
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