1,171 research outputs found

    An autonomic delivery framework for HTTP adaptive streaming in multicast-enabled multimedia access networks

    Get PDF
    The consumption of multimedia services over HTTP-based delivery mechanisms has recently gained popularity due to their increased flexibility and reliability. Traditional broadcast TV channels are now offered over the Internet, in order to support Live TV for a broad range of consumer devices. Moreover, service providers can greatly benefit from offering external live content (e. g., YouTube, Hulu) in a managed way. Recently, HTTP Adaptive Streaming (HAS) techniques have been proposed in which video clients dynamically adapt their requested video quality level based on the current network and device state. Unlike linear TV, traditional HTTP- and HAS-based video streaming services depend on unicast sessions, leading to a network traffic load proportional to the number of multimedia consumers. In this paper we propose a novel HAS-based video delivery architecture, which features intelligent multicasting and caching in order to decrease the required bandwidth considerably in a Live TV scenario. Furthermore we discuss the autonomic selection of multicasted content to support Video on Demand (VoD) sessions. Experiments were conducted on a large scale and realistic emulation environment and compared with a traditional HAS-based media delivery setup using only unicast connections

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10Ă—10\times while only using 1.04Ă—1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6Ă—1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required

    Robustness to Inflated Subscription in Multicast Congestion Control

    Get PDF
    Group subscription is a useful mechanism for multicast congestion control: RLM, RLC, FLID-DL, and WEBRC form a promising line of multi-group protocols where receivers provide no feedback to the sender but control congestion via group membership regulation. Unfortunately, the group subscription mechanism also o#ers receivers an opportunity to elicit self-beneficial bandwidth allocations. In particular, a misbehaving receiver can ignore guidelines for group subscription and choose an unfairly high subscription level in a multi-group multicast session. This poses a serious threat to fairness of bandwidth allocation. In this paper, we present the first solution for the problem of inflated subscription. Our design guards access to multicast groups with dynamic keys and consists of two independent components: DELTA (Distribution of ELigibility To Access) -- a novel method for in-band distribution of group keys to receivers that are eligible to access the groups according to the congestion control protocol, and SIGMA (Secure Internet Group Management Architecture) -- a generic architecture for key-based group access at edge routers

    QoS and QoE Aware N-Screen Multicast Service

    Get PDF
    The paper focuses on ensuring the quality-of-service (QoS) and quality-of-experience (QoE) requirements of users having heterogeneous devices in a multicast session. QoS parameters such as bit rate, delays, and packet losses are good indicators for optimizing network services but fall short in characterizing user perception (QoE). In N-Screen service, the users have different devices with heterogeneous attributes like screen size, resolution, and access network interface, and the users have different QoE on N-Screen devices with the same QoS parameters. We formulate the objective function of the N-Screen multicast grouping to ensure the minimum user’s QoE with smaller bandwidth requirement. We propose a dynamic user reassignment scheme to maintain and satisfy the QoE by adapting the user’s membership to the varying network conditions. The proposed schemes combine the available bandwidth and multimedia visual quality to ensure the QoS and QoE. In the network architecture, we introduce the functions of the QoS and QoE aware multicast group management and the estimation schemes for the QoS and QoE parameters. The simulation results show that the proposed multicast service ensures the network QoS and guarantees the QoE of users in the varying network conditions

    A RTT-based Partitioning Algorithm for a Multi-rate Reliable Multicast Protocol

    Get PDF
    Various Internet applications involve multiple parties and usually adopt a one-to-many communication paradigm (multicast). The presence of multiple re ceivers in a multicast session rises the problem of inte¡ r-receiver fairness. Transmitting with a rate which matches the slowest receiver will limit the throughput of other receivers and thus their satisfaction. A multi-rate mechanism where the receivers are distributed into subgroups with similar capacities, can improve the inter-receiver fairness for multicast sessions. In this paper, we deal with the problem of receivers partitioning and propose a simple algorithm based on the receivers RTT variations where an explicit estimation of the receivers capacities is avoided. Our partitioning algorithm, although simple, performs an on-the-fly partitioning depending on the receivers' feedback. We show that our partitioning algorithm approximates and in many cases, achieves the optimal solution with a minimum computation effort
    • …
    corecore