1,109 research outputs found

    Dynamic Images Carousel Transmissions Over Multiple Multicast Groups

    Get PDF
    Pertumbuhan Internet yang medadak serta kemajuan yang pesat dalam teknologi komputer-meja tahap tinggi telah memudahkan penyebaran data dan multimedia pada skala yang lebih meluas. The skyrocketing growth of internet and the advancement of high-end desktop computers have facilitated multimedia data distribution in large-scale

    Application Layer Multicasting Overlay Protocol a NARADA Protocol

    Get PDF
    The conventional wisdom has been that Network Layer Internet protocol(IP) is the natural protocol layer for implementing multicast related functionality but it is still plagued with concerns pertaining to scalability, network management, deployment and support for higher layer functionality such as error, flow and congestion control. In this context, an alternative architecture is, Application layer multicast (End Systems Multicasting), where at Application layer, implements all multicast related functionality including membership management and packet replication. This shifting of multicast support from routers to end systems has the potential to address the most problems associated with IP multicast. In Application-layer multicast, applications arrange themselves as a logical overlay network and transfer data within the overlay network (between end hosts). In this context, we study these performance concerns in the context of the NARADA protocol (an application layer multicasting protocol). In Narada, end systems self-organize into an overlay structure using a fully distributed protocol. We present details of NARADA and evaluate it using NS-2 simulations. Our results indicate that the performance penalties are low both from the application and the network perspectives. We believe the potential benefits of transferring multicast functionality from routers to end systems, significantly outweigh the performance penalty incurred

    Mediator-assisted multi-source routing in information-centric networks

    Get PDF
    Among the new communication paradigms recently proposed, information-centric networking (ICN) is able to natively support content awareness at the network layer shifting the focus from hosts (as in traditional IP networks) to information objects. In this paper, we exploit the intrinsic content-awareness ICN features to design a novel multi-source routing mechanism. It involves a new network entity, the ICN mediator, responsible for locating and delivering the requested information objects that are chunked and stored at different locations. Our approach imposes very limited signalling overhead, especially for large chunk size (MBytes). Simulations show significant latency reduction compared to traditional routing approaches

    Dynamic Images Carousel Transmissions Over Multiple Multicast Groups [TK5105.2. S959 2004 f rb] [Microfiche 7962].

    Get PDF
    Pertumbuhan Internet yang medadak serta kemajuan yang pesat dalam teknologi komputer-meja tahap tinggi telah memudahkan penyebaran data dan multimedia pada skala yang lebih meluas. The skyrocketing growth of internet and the advancement of high-end desktop computers have facilitated multimedia data distribution in large-scale

    Multicast in DKS(N, k, f) Overlay Networks

    Get PDF
    Recent developments in the area of peer-to-peer computing show that structured overlay networks implementing distributed hash tables scale well and can serve as infrastructures for Internet scale applications. We are developing a family of infrastructures, DKS(N; k; f), for the construction of peer-to-peer applications. An instance of DKS(N; k; f) is an overlay network that implements a distributed hash table and which has a number of desirable properties: low cost of communication, scalability, logarithmic lookup length, fault-tolerance and strong guarantees of locating any data item that was inserted in the system. In this paper, we show how multicast is achieved in DKS(N, k, f) overlay networks. The design presented here is attractive in three main respects. First, members of a multicast group self-organize in an instance of DKS(N, k, f) in a way that allows co-existence of groups of different sizes, degree of fault-tolerance, and maintenance cost, thereby, providing flexibility. Second, each member of a group can multicast, rather than having single source multicast. Third, within a group, dissemination of a multicast message is optimal under normal system operation in the sense that there are no redundant messages despite the presence of outdated routing information

    Network architecture for large-scale distributed virtual environments

    Get PDF
    Distributed Virtual Environments (DVEs) provide 3D graphical computer generated environments with stereo sound, supporting real-time collaboration between potentially large numbers of users distributed around the world. Early DVEs has been used over local area networks (LANs). Recently with the Internet's development into the most common embedding for DVEs these distributed applications have been moved towards an exploiting IP networks. This has brought the scalability challenges into the DVEs evolution. The network bandwidth resource is the more limited resource of the DVE system and to improve the DVE's scalability it is necessary to manage carefully this resource. To achieve the saving in the network bandwidth the different types of the network traffic that is produced by the DVEs have to be considered. DVE applications demand· exchange of the data that forms different types of traffic such as a computer data type, video and audio, and a 3D data type to keep the consistency of the application's state. The problem is that the meeting of the QoS requirements of both control and continuous media traffic already have been covered by the existing research. But QoS for transfer of the 3D information has not really been considered. The 3D DVE geometry traffic is very bursty in nature and places a high demands on the network for short intervals of time due to the quite large size of the 3D models and the DVE application requirements to transmit a 3D data as quick as possible. The main motivation in carrying out the work presented in this thesis is to find a solution to improve the scalability of the DVE applications by a consideration the QoS requirements of the 3D DVE geometrical data type. In this work we are investigating the possibility to decrease the network bandwidth utilization by the 3D DVE traffic using the level of detail (LOD) concept and the active networking approach. The background work of the thesis surveys the DVE applications and the scalability requirements of the DVE systems. It also discusses the active networks and multiresolution representation and progressive transmission of the 3D data. The new active networking approach to the transmission of the 3D geometry data within the DVE systems is proposed in this thesis. This approach enhances the currently applied peer-to-peer DVE architecture by adding to the peer-to-peer multicast neny_ork layer filtering of the 3D flows an application level filtering on the active intermediate nodes. The active router keeps the application level information about the placements of users. This information is used by active routers to prune more detailed 3D data flows (higher LODs) in the multicast tree arches that are linked to the distance DVE participants. The exploration of possible benefits of exploiting the proposed active approach through the comparison with the non-active approach is carried out using the simulation­based performance modelling approach. Complex interactions between participants in DVE application and a large number of analyzed variables indicate that flexible simulation is more appropriate than mathematical modelling. To build a test bed will not be feasible. Results from the evaluation demonstrate that the proposed active approach shows potential benefits to the improvement of the DVE's scalability but the degree of improvement depends on the users' movement pattern. Therefore, other active networking methods to support the 3D DVE geometry transmission may also be required
    corecore