5,507 research outputs found

    Towards NFC payments using a lightweight architecture for the Web of Things

    Get PDF
    The Web (and Internet) of Things has seen the rapid emergence of new protocols and standards, which provide for innovative models of interaction for applications. One such model fostered by the Web of Things (WoT) ecosystem is that of contactless interaction between devices. Near Field Communication (NFC) technology is one such enabler of contactless interactions. Contactless technology for the WoT requires all parties to agree one common definition and implementation and, in this paper, we propose a new lightweight architecture for the WoT, based on RESTful approaches. We show how the proposed architecture supports the concept of a mobile wallet, enabling users to make secure payments employing NFC technology with their mobile devices. In so doing, we argue that the vision of the WoT is brought a step closer to fruition

    Active management of multi-service networks.

    Get PDF
    Future multiservice networks will be extremely large and complex. Novel management solutions will be required to keep the management costs reasonable. Active networking enables management to be delegated to network users as a large set of independent small scale management systems. A novel architecture for an active network based management solution for multiservice networking is presented

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    Addressing the Challenges in Federating Edge Resources

    Full text link
    This book chapter considers how Edge deployments can be brought to bear in a global context by federating them across multiple geographic regions to create a global Edge-based fabric that decentralizes data center computation. This is currently impractical, not only because of technical challenges, but is also shrouded by social, legal and geopolitical issues. In this chapter, we discuss two key challenges - networking and management in federating Edge deployments. Additionally, we consider resource and modeling challenges that will need to be addressed for a federated Edge.Comment: Book Chapter accepted to the Fog and Edge Computing: Principles and Paradigms; Editors Buyya, Sriram
    • …
    corecore