11,061 research outputs found

    Neural Architecture Search using Deep Neural Networks and Monte Carlo Tree Search

    Full text link
    Neural Architecture Search (NAS) has shown great success in automating the design of neural networks, but the prohibitive amount of computations behind current NAS methods requires further investigations in improving the sample efficiency and the network evaluation cost to get better results in a shorter time. In this paper, we present a novel scalable Monte Carlo Tree Search (MCTS) based NAS agent, named AlphaX, to tackle these two aspects. AlphaX improves the search efficiency by adaptively balancing the exploration and exploitation at the state level, and by a Meta-Deep Neural Network (DNN) to predict network accuracies for biasing the search toward a promising region. To amortize the network evaluation cost, AlphaX accelerates MCTS rollouts with a distributed design and reduces the number of epochs in evaluating a network by transfer learning, which is guided with the tree structure in MCTS. In 12 GPU days and 1000 samples, AlphaX found an architecture that reaches 97.84\% top-1 accuracy on CIFAR-10, and 75.5\% top-1 accuracy on ImageNet, exceeding SOTA NAS methods in both the accuracy and sampling efficiency. Particularly, we also evaluate AlphaX on NASBench-101, a large scale NAS dataset; AlphaX is 3x and 2.8x more sample efficient than Random Search and Regularized Evolution in finding the global optimum. Finally, we show the searched architecture improves a variety of vision applications from Neural Style Transfer, to Image Captioning and Object Detection.Comment: To appear in the Thirty-Fourth AAAI conference on Artificial Intelligence (AAAI-2020

    Scalable Planning and Learning for Multiagent POMDPs: Extended Version

    Get PDF
    Online, sample-based planning algorithms for POMDPs have shown great promise in scaling to problems with large state spaces, but they become intractable for large action and observation spaces. This is particularly problematic in multiagent POMDPs where the action and observation space grows exponentially with the number of agents. To combat this intractability, we propose a novel scalable approach based on sample-based planning and factored value functions that exploits structure present in many multiagent settings. This approach applies not only in the planning case, but also in the Bayesian reinforcement learning setting. Experimental results show that we are able to provide high quality solutions to large multiagent planning and learning problems

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Scaling Monte Carlo Tree Search on Intel Xeon Phi

    Full text link
    Many algorithms have been parallelized successfully on the Intel Xeon Phi coprocessor, especially those with regular, balanced, and predictable data access patterns and instruction flows. Irregular and unbalanced algorithms are harder to parallelize efficiently. They are, for instance, present in artificial intelligence search algorithms such as Monte Carlo Tree Search (MCTS). In this paper we study the scaling behavior of MCTS, on a highly optimized real-world application, on real hardware. The Intel Xeon Phi allows shared memory scaling studies up to 61 cores and 244 hardware threads. We compare work-stealing (Cilk Plus and TBB) and work-sharing (FIFO scheduling) approaches. Interestingly, we find that a straightforward thread pool with a work-sharing FIFO queue shows the best performance. A crucial element for this high performance is the controlling of the grain size, an approach that we call Grain Size Controlled Parallel MCTS. Our subsequent comparing with the Xeon CPUs shows an even more comprehensible distinction in performance between different threading libraries. We achieve, to the best of our knowledge, the fastest implementation of a parallel MCTS on the 61 core Intel Xeon Phi using a real application (47 relative to a sequential run).Comment: 8 pages, 9 figure
    • …
    corecore