1,078 research outputs found

    Performance of a characteristic-based, 3-D, time-domain Maxwell equations solver on a massively parallel computer

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77035/1/AIAA-1993-3179-911.pd

    A multiarchitecture parallel-processing development environment

    Get PDF
    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems

    Acceleration of a Full-scale Industrial CFD Application with OP2

    Get PDF

    Performance Modeling and Prediction for the Scalable Solution of Partial Differential Equations on Unstructured Grids

    Get PDF
    This dissertation studies the sources of poor performance in scientific computing codes based on partial differential equations (PDEs), which typically perform at a computational rate well below other scientific simulations (e.g., those with dense linear algebra or N-body kernels) on modern architectures with deep memory hierarchies. We identify that the primary factors responsible for this relatively poor performance are: insufficient available memory bandwidth, low ratio of work to data size (good algorithmic efficiency), and nonscaling cost of synchronization and gather/scatter operations (for a fixed problem size scaling). This dissertation also illustrates how to reuse the legacy scientific and engineering software within a library framework. Specifically, a three-dimensional unstructured grid incompressible Euler code from NASA has been parallelized with the Portable Extensible Toolkit for Scientific Computing (PETSc) library for distributed memory architectures. Using this newly instrumented code (called PETSc-FUN3D) as an example of a typical PDE solver, we demonstrate some strategies that are effective in tolerating the latencies arising from the hierarchical memory system and the network. Even on a single processor from each of the major contemporary architectural families, the PETSc-FUN3D code runs from 2.5 to 7.5 times faster than the legacy code on a medium-sized data set (with approximately 105 degrees of freedom). The major source of performance improvement is the increased locality in data reference patterns achieved through blocking, interlacing, and edge reordering. To explain these performance gains, we provide simple performance models based on memory bandwidth and instruction issue rates. Experimental evidence, in terms of translation lookaside buffer (TLB) and data cache miss rates, achieved memory bandwidth, and graduated floating point instructions per memory reference, is provided through accurate measurements with hardware counters. The performance models and experimental results motivate algorithmic and software practices that lead to improvements in both parallel scalability and per-node performance. We identify the bottlenecks to scalability (algorithmic as well as implementation) for a fixed-size problem when the number of processors grows to several thousands (the expected level of concurrency on terascale architectures). We also evaluate the hybrid programming model (mixed distributed/shared) from a performance standpoint

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey

    Parallel solution of high-order numerical schemes for solving incompressible flows

    Get PDF
    A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained
    • …
    corecore