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ABSTRACT

PERFORMANCE MODELING AND PREDICTION FOR THE SCALABLE SOLUTION 
OF PARTIAL DIFFERENTIAL EQUATIONS ON UNSTRUCTURED GRIDS

Dinesh Kumar Kaushik 
Old Dominion University, 2002 

Advisor Dr. David E. Keyes

This dissertation studies the sources of poor performance in scientific computing codes based 

on partial differential equations (PDEs). which typically perform at a computational rate well 

below other scientific simulations (e.g., those with dense linear algebra or N-body kernels) on 

modem architectures with deep memory hierarchies. We identify that the primary factors respon

sible for this relatively poor performance are: insufficient available memory bandwidth, low ratio 

of work to data size (good algorithmic efficiency), and nonscaling cost of synchronization and 

gather/scatter operations (for a fixed problem size scaling). This dissertation also illustrates how 

to reuse the legacy scientific and engineering software within a library framework.

Specifically, a three-dimensional unstructured grid incompressible Euler code from NASA has 

been parallelized with the Portable Extensible Toolkit for Scientific Computing (PETSc) library 

for distributed memory architectures. Using this newly instrumented code (called PETSc-FUN3D) 

as an example of a typical PDE solver, we demonstrate some strategies that are effective in toler

ating the latencies arising from the hierarchical memory system and the network. Even on a single 

processor from each of the major contemporary architectural families, the PETSc-FUN3D code 

runs from 2.5 to 725 times faster than the legacy code on a medium-sized data set (with approxi

mately 10° degrees of freedom). The major source of performance improvement is the increased 

locality in data reference patterns achieved through blocking, interlacing, and edge reordering.
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To explain these performance gains, we provide simple performance models based on memory 

bandwidth and instruction issue rates.

Experimental evidence, in terms of translation lookaside buffer (TLB) and data cache miss 

rates, achieved memory bandwidth, and graduated floating point instructions per memory refer

ence, is provided through accurate measurements with hardware counters. The performance mod

els and experimental results motivate algorithmic and software practices that lead to improvements 

in both parallel scalability and per-node performance. We identify the bottlenecks to scalability 

(algorithmic as well as implementation) for a fixed-size problem when the number of processors 

grows to several thousands (the expected level of concurrency on terascale architectures). We also 

evaluate the hybrid programming model (mixed distributed/shared) from a performance stand

point.
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I

CHAPTER I 

INTRODUCTION

The rapidly evolving field of parallel computing has come a long way, passing through several 

overlapping yet distinct phases [36]. In the past, the emphasis was on solving grand size problems 

faster. However, today we want to solve these problems not only fast computationally, but with 

rapid turnaround time (including the time taken to develop the new application on a new architec

ture) as well. On one hand, we want scalable and portable algorithms while on the other, we want 

tunable, general purpose software. We want to harness the advantages of object oriented technol

ogy without compromising performance. In addition, multiprocessing is becoming increasingly 

attractive, thanks to the evolution of highly integrated microprocessors and memory chips. Within 

the next decade, it should be feasible to integrate a billion transistors on a reasonably sized silicon 

chip [44]. At this level of integration, there is a growing need for finding a very high degree of 

concurrency to utilize the offered processing power. Though architectural concurrency is easy to 

achieve, algorithmic concurrency to match is less so in scientific codes. Intuitively, this is due to 

global domains of influence in many problems presented to the computer as implicitly discretized 

operator equations — implicitness being all but legislated for the multiscale systems of global cli

mate, transonic airliners, petroleum reservoirs etc., the simulation of which justifies expenditures 

for the highest-end machines.

These architectural trends, characteristic of the modem computing technology in general, are 

of great significance for the field of scientific computing [21], which tries to simulate complex 

physical phenomena that are difficult to study experimentally. The study of computational sci

ence is not a proper subset of numerical analysis [49], where emphasis is laid on the optimal

complexity for a specified level of accuracy implicitly assuming flat memory [36]. With future 

The model journal used for this dissertation is BIT.
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machines having deep memory hierarchies, there is bound to be much stronger algorithmic and 

architectural interaction, rendering the arithmetic complexity estimates increasingly irrelevant at 

the implementation level.

The architecture of the terascale systems available these days, built around hierarchical dis

tributed memory, is hostile to conventional sequential optimal PDE algorithms in some respects. 

The distributed aspects must be overcome with judicious combinations of message-passing and 

shared memory programming models. The hierarchical aspects must be overcome with register 

blocking, cache blocking, and prefetching. Algorithms for PDE-based simulations must be highly 

concurrent and straightforward to load balance, latency tolerant, cache friendly (with strong tem

poral and spadal locality of reference), and highly scalable (in the sense of convergence rate) as 

problem size and processor number are increased in proportion. The goal for algorithmic scala

bility is to fill up the memory of arbitrarily large machines while preserving constant (or at most 

logarithmically growing) running times with respect to a proportionally smaller problem on one 

processor. Domain-decomposed multilevel methods are natural for all of these requirements. We 

argue that domain decomposition is natural for the software engineering of simulation codes. 

Valuable legacy code designed for a sequential PDE analysis can often be reused subdomain-by- 

subdomain in the solver framework of a parallel library.

1.1 PRESENT STUDY —  SCOPE AND OUTLINE 

Scope

The motivation behind this work is to demonstrate the feasibility of a highly scalable parallel 

solver for PDEs within an object oriented library framework. In order to achieve this goal, we 

identify the following relevant issues that this work attempts to address.

•  Available memory bandwidth on most contemporary processors is insufficient to match the
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3

available processing power. Therefore, the data structure design needs to optimize the use 

of this scant resource.

•  The reasons behind the wide gap between peak performance and observed performance of 

PDE-based scientific computing codes need to be investigated. This, in turn, requires the 

development of performance models that are realistic and consider the effect of architectural 

parameters (like memory bandwidth, instruction issue rate, etc.).

•  Until automated tools like parallel compilers or source-to-source translators can discover 

enough of the concurrency that is latent in most scientific computations, manual expression 

of that concurrency is the only alternative for achieving high performance. Within a well- 

defined class of applications, therefore, parallel libraries are a natural solution.

•  The legacy scientific and engineering software (which holds a great investment of effort) 

needs to be reused within the library framework, which promises to provide several nice 

features such as a large variety of high performance linear and nonlinear solvers, a high 

level view of communication, interfaces to multiple programming languages, etc.

•  If the integrated library based solver is going to be accepted in the scientific computing com

munity, it must be superior to the legacy code in execution time and memory consumption. 

This requires case-specific performance tuning at the implementation and algorithmic level.

Outline

The rest of this document is organized as follows. We provide a review of the algorithms em

ployed in this work in Chapter II. We illustrate the intelligent reuse of existing software in Chap

ter III by presenting the details of porting a legacy sequential (FUN3D from NASA Langley) code 

into an object oriented library (PETSc from Argonne National Laboratory). In the subsequent
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chapters, we discuss three factors in parallel performance: per-processor performance, scalable 

parallel implementation, and scalable algorithms. In Chapter IV. we demonstrate significant per

formance gains arising from some data layout and reordering techniques (like interlacing of field 

variables, cache and register blocking etc.). We provide simple performance models to gain quan

titative understanding of the effect of these techniques on the architectural resource requirements 

(like memory bandwidth, instruction scheduling). We also document the experimental evidence 

of their effectiveness in terms of TLB and data cache miss rates, using hardware counters. In 

Chapter V. we discuss the bottlenecks to implementation scalability in terms of architectural pa

rameters. Specifically we identify the computational phases that tend to take an increasingly large 

fraction of wall clock time as we grow the number of processors (to several thousands). In the 

same chapter, we also describe the performance gains coming from the use of a hybrid (mixed 

distributed/shared) programming model, which is natural on clusters with more than one proces

sor per node. We point out that this performance gain comes primarily from better algorithmic 

convergence rates as compared to the pure message passing case, since the former can work with 

smaller number of subdomains.
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CHAPTER n  
ALGORITHMIC CONTEXT

To understand the algorithms used in this dissertation, let us consider the following system of 

partial differential equations (PDEs)

V ^ + : F ( u )  = 0 ,  (I)

where u is a vector of functions depending upon spatial variables x and time t and T  is a vector of 

spatial differential operators acting on u. In finite element methods, V  is called mass matrix and 

has diagonal and off-diagonal entries. In finite volume methods (such as the one employed in this 

work), it has only nonnegative diagonal entries. The advantage o f this formulation is that it allows 

an arbitrary combination of PDEs with or without a temporal term (with zero diagonal entries in 

V  for some equations).

Semidiscretizing in space to approximate _F(u) with f(u), and in time with implicit Euler, we 

get the algebraic system:

=  (2)

Here we have used only first order discretization for the temporal term for simplicity. For steady 

state problems. A & —> ocas i  —► oc. This discretization is termed as implicit since f(u) is 

evaluated at the current time step (in contrast to an explicit scheme where it is evaluated using u

at the previous time step). We prefer to use implicit schemes since they offer numerical stability

for stiff time-dependent PDEs and allow much larger time steps (as compared to explicit schemes) 

for steady-state PDE formulations solved in a pseudo-transient manner.

II. I THE NEWTON-KRYLOV-SCHWARZ FAMILY OF ALGORITHMS

The implicit PDE solution algorithm employed in this work is based on Jacobian-free Newton- 

Krylov methodology, using overlapping domain decomposition (Schwarz) method as precondi
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tioner. The primary benefits of this class of algorithms are ease of parallelization with good scala

bility and their optimal convergence rate (when used with a coarse grid). In this section, we discuss 

different components of the Newton-Krylov-Schwarz (NKS) algorithm without the temporal term 

of Equation I. To improve the robustness of NKS, we employ a pseudo-transient continuation 

technique, which is discussed in Section II.2.

Newton Methods

In the case of a nonlinear PDE, a linearization step is first performed and then the resulting linear 

system is solved. For example, to solve F(u) =  0. where,

• F: 3 ►  ft".

•  There exists u '  € ft" such that F (u ‘ ) =  0.

•  F is continuously differentiable within a neighborhood of u*.

•  F^u*) is nonsingular.

the Newton iterative method is as follows [21].

1. k i—  1.

2. Solve F  (u*-1 )<iu* =  -F (u * ~ l ).

3. Set u* =  u*-1 +  A*5u*, where A* is a trust region based step length control [6] and u° is 

the initial guess.

4. If converged, stop.

Otherwise, k  <—  k  -t- 1 and goto step (2).
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When the linear system in step (2) of the Newton process is solved only approximately or 

F '(u fc~ l ) is not evaluated as the true Jacobian of the right hand side vector F (u fc_l), this algorithm 

becomes an “inexact Newton Method”. The primary reason for using an inexact Newton method is 

to save execution dme though it may take more iterations (than true Newton method) to converge. 

There can be many choices for the inexact Jacobian [38]:

1. use an implicitly defined operator whose action on a vector can be approximated with mul

tivariate Taylor series expansions;

2. use automatic differentiation software such as AD IFOR [8] or ADIC [9];

3. use a matrix that is constructed from finite differences of F;

4. use a matrix that is derived from a discretization different from but related to that used for 

F; or

5. use a matrix that was evaluated during some previous iteration (based on some previous 

state vector; this matrix is also called “lagged” Jacobian).

The first method is useful for Krylov methods where matrix elements themselves are never 

needed but the action of the matrix on any arbitrary Krylov vector (v ) is represented as F '(u )v  % 

£[F(u-I-/iv) — F(u)]. This method requires one extra function evaluation (more for higher orders) 

but saves large amount of memory (since Jacobian is not explicitly formed). The parameter h is 

chosen based on approximation error and floating point cancellation error (encountered while 

subtracting two close floating point numbers) [28]. This approach is termed as “matrix-free” or 

“Jacobian-free” Newton-Krylov method. The second method (using automatic differentiation) 

can also be employed to carry out the Jacobian matrix vector product simultaneously with F  at 

a cost roughly 2.5 times the cost of F  itself. In the method (3) above, the Jacobian matrix is
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constructed explicitly element-by-element through a sequence of finite differences. For example. 

[F'(u)]i, =  fjjJ-(u) «  £[F ,(u  +  hej)  — Fj(u)], where h is a differencing parameter and ej is 

the j th unit vector. The last two methods are used to derive useful preconditioners for the iterative 

linear solvers.

Newton-Krylov Methods

In step (2) of the Newton process, a Krylov method can be used to solve the linear equation. 

This combination is called a Newton-Krylov (NK) method. Krylov subspace methotls make up 

a wide class of iterative methods with members that may be specialized to various classes of 

linear systems. A popular method for nonsymmetric systems is the generalized minimum residual 

(GMRES [45]) method, which has been used in this work as well. GMRES has the property of 

minimizing the norm of residual vector over a Krylov subspace at every step.

To solve .-hr =  6, GMRES forms a well conditioned basis Vm =  {ui. .... um} (n m)

from the result of a Gram-Schmidt process on the Krylov space {ro,.4ro .4m-1ro}. It then

chooses the solution from the column space of Vm that minimizes the residual || b— A x  ||. GMRES 

uses the matrix A  to do the matrix-vector multiplications only. Therefore, the individual elements 

of A are never needed if we have some means (such as the matrix-free method described above) 

of doing the matrix-vector products. When the matrix A represents the Jacobian of a discretized 

system, each of these matrix-products is equivalent to one stencil update of an explicit scheme in 

terms of computational and communication cost.

Full GMRES has a nonincreasing residual and cannot break down shore of delivering the exact 

solution or running out of memory. For a n  x n problem GMRES terminates in at most n steps. 

Usually, due to memory limitations we set the size of Krylov space to nr and GMRES is restarted 

if convergence is not attained after nr steps.
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Newton-Krylov-Schwarz Methods

When a Newton-Krylov method uses a Krylov-Schwarz KS method (such as restricted additive 

Schwarz [14]) to solve the linear system, the resulting algorithm is termed "Newton-Krylov- 

Schwarz” [27], Schwarz methods [13, 20, 48] are divide-and-conquer methods for solving PDE 

problem £ u  =  /  in fi, through solving a sequence of problems £ \u i =  /■ in subdomains f2, 

covering and iteratively combining the partial solutions ut to form u. Thus, Schwarz methods 

partition a solution space into multiple subspaces (possibty overlapping) and form an approximate 

inverse of the operator in each subspace.

In KS methods, the linear system is preconditioned with domain-decomposed additive Schwarz 

method [48]. The original system Ax =  6 is converted to an equivalent form B ~ l Ax  =  B ~ lb 

through the action of a preconditioner B.  It is presumed that B ~ l is cheaper to calculate than 

A-1 . In KS methods, B ~ l is constructed on a subdomain-by-subdomain basis through suitable 

approximations to a local Jacobian.

In this work, we have primarily used a block Jacobi preconditioner, which is a degenerate 

kind of Schwarz-style domain decomposition method. The block Jacobi preconditioner can be ex

pressed as B ~ l = R T j - ^ R o  +  t R [ R t where J tui is the local Jacobian for subdomain 

i, subscript "0” corresponding to a possible coarse grid, ul is the vector of local grid values, R, 

is a restriction operator for subdomain i. and R f  is an extension operator. All subdomains can 

be computed simultaneously with this method due to the lack of coupling among them. When an 

overlapping Schwarz scheme is used instead of a non-overlapping, there exists a certain degree of 

coupling among subdomains, but the computations on each are still potentially concurrent. This 

scheme will increase communication costs but improve convergence (see Section VS).

A Schwarz preconditioner can be used with a matrix-free method provided some local repre

sentation of the operator exists for preconditioning. Left preconditioning of the Jacobian J  with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1 0

an operator B ~ l can be obtained through

B ~ 1J{u1)vl ~  ^ [ B ~ 1F(vl1 + htu) -  B ~ lF ( u %  
hi

and right preconditioning via

J{ul)B~lu. ~  ^ [ F ( u ' -F htB ~ lu) -  F(u*)].
hi

where hi is a suitably chosen small scalar.

It can be shown that the two-level Schwarz method (with good overlap of subdomains) has a 

convergence rate that is independent of the number of subdomains and fineness of the discretiza

tion. like a traditional multilevel iterative method [11, 12, 29,52]. However, the two-level method 

shares with multilevel methods a nonscaiable cost-per-iteration from the necessity of solving a 

coarse-grid system of size 0{P) .  where P is the number of subdomains. Unlike recursive mul

tilevel methods, a two-level Schwarz method may have a rather fine coarse grid, for example, 

H  =  0 ( h l/2), which makes it less scalable overall. Parallelizing the coarse grid solve is neces

sary. Neither extreme of a fully distributed or a fully redundant coarse solve is optimal, but rather 

something in between. When reuse is possible, storing a parallel inverse can be cost-effective [53].

The convergence rates and overall parallel efficiencies (see Section V. 1) of single-level additive 

Schwarz methods are dependent upon the number and shape of the subdomains. The number of 

iterations to convergence and the communication overhead per iteration generally increase with 

increasing numbers of subdomains, problem size being held constant.

In practical large-scale applications, however, the convergence rate degradation of fine-grain 

single-level additive Schwarz is often not as serious as the scalar, linear elliptic theory would sug

gest [33]. Its effects are mitigated by several factors, including an outer context of nonlinearity and 

pseudo-transient continuation, and strong intercomponent coupling that can be captured exactly in 

a point-block ILU preconditioner. Another “forgiveness factor^ for additive Schwarz, in practice.
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is the convenience with which Schwarz-based preconditioners can be made to play to the cache in 

modem microprocessors. This is discussed further in Section V.5

LI.2 PSEUDO-TRANSIENT NEWTON-KRYLOV-SCHWARZ ALGORITHM

For time-accurate solutions of Equation 2, Newton’s method normally converges rapidly since 

the initial guess is not too far from the actual solution on each timestep. However, for steady- 

state nonlinear problems (f(u) =  0), Newton’s method may not converge for an arbitrary initial 

guess. To improve the robustness of Newton’s method for steady-state problems, an unsteady 

form of the original boundary value problem (BVP) is solved like an initial value problem (IVP). 

This is called pseudo-transient continuation [35]. Initially, when time step A t  is small, we get a 

better conditioned linear system (as compared to the one obtained just with the steady-state form). 

As the solution evolves (and approaches the ball of convergence for the Newton method). At  

grows to very large values and we obtain the steady-state solution asymptotically. When pseudo

transient continuation is employed in conjunction with a NKS method, we obtain the pseudo

transient Newton-Krylov-Schwarz ('i'NKS) algorithm [34,37] as shown in Figure I.

A time-stepping scheme is required to complete the algorithm. One choice is successive 

evolution-relaxation (SER) [43], which lets the time step grow in inverse proportion to residual 

norm progress:

=  A fo H/(“ °)H (3)
i i / (^ - i)ir

where £ is the current time step number and ||/(u*~l )|| is the 2-norm of the residual vector at the 

previous time step (£ — 1). This is the scheme employed in this work (see Section V.5 for further 

details).

Alternatively, a temporal truncation error strategy bounds the maximum temporal truncation 

error in each individual component, based on a local estimate for the leading term of the error.
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do 1 = 1, n_time 

SELECT TIME-STEP 

do k = 1, n_Newton

compute nonlinear residual and Jacobian 

do j = 1, n_Krylov 

do i = 1, n_Precon

solve subdomain problems concurrently 

enddo

perform Jacobian-vector product 

ENFORCE KRYLOV BASIS CONDITIONS 

update optimal coefficients 
CHECK LINEAR CONVERGENCE 

enddo

perform vector update 

CHECK NONLINEAR CONVERGENCE 

enddo 

enddo

Figure I: Pseudo-transient Newton-Krylov-Schwarz algorithm. The operations written in upper

case customarily involve global synchronizations, about which we comment in Chapter V.
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Here step size is controlled through its relation to the truncation error. Another way is to set an 

upper limit for change in each component of the state vector and adjust the time step so as to bring 

the measured change to the target. Typically, the time step is not allowed to more than double in 

a favorably converging situation, or to be reduced by more than a factor of ten in an unfavorable 

one, unless feasibility is at stake, in which case the time step may be drastically cut [35, 38].

To use 'I'NKS in PDEs effectively, we may need to tune several parameters, such as the initial 

time step size, scaling of the differencing parameter in the matrix-free application of the Jacobian, 

the convergence tolerance of the inner Krylov iterations, etc. We explain the parameter tuning 

process in detail for #NKS algorithm as employed in this work (in the context of a large scale 

CFD problem) in Section V.5.
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CHAPTER UI 

PETSC-FUN3D CODE

This chapter discusses the details of the PETSc-FUN3D code, which has been used to carry out 

the performance studies described in Chapters rv  and V. First some features of the original (se

quential) NASA FUN3D code are discussed. Next we highlight our approach to parallelize an 

unstructured implicit solver using the “Portable, Extensible Toolkit for Scientific Computing” 

(PETSc) [5, 7, 6 ] library. We also characterize the different computadonal phases based on the 

architectural parameters they stress.

m .1 NASA CODE FUN3D

The legacy code, FUN3D, is a tetrahedral vertex-centered unstructured mesh code originally de

veloped by W. K. Anderson of the NASA Langley Research Center for compressible and incom

pressible Euler and Navier-Stokes equations [1, 3]. FUN3D uses a control volume discretiza

tion with variable-order Roe schemes for approximating the convective fluxes and a Galerkin 

discretization for the viscous terms. FUN3D is being used for design optimization of airplanes, 

automobiles, and submarines, with irregular meshes comprising several million mesh points. The 

optimization loop involves many analysis cycles. Thus, reaching the steady-state solution in each 

analysis cycle in a reasonable amount of time is crucial to conducting the design optimization. 

From the beginning, our effort has been focused on minimizing the time to convergence without 

compromising scalability, by means of appropriate algorithms and architecturally efficient data 

structures.

Thus far, our large-scale parallel experience with PETSc-FUN3D is with the compressible or 

incompressible Euler subset, but nothing in the solution algorithms or software changes with ad

ditional physical phenomenology. Of course, the convergence rate will vary with conditioning.
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as determined by Mach and Reynolds numbers and the correspondingly induced mesh adaptiv- 

ity. Furthermore, robustness becomes more of an issue in problems admitting shocks or using 

turbulence models. The lack of nonlinear robustness is a fact of life that is largely outside of the 

domain of parallel scalability. In fact, when nonlinear robustness is restored in the usual manner, 

through pseudo-transient continuation, the conditioning of the linear inner iterations is enhanced, 

and parallel scalability may be improved. In some sense, the Euler code, with its smaller number 

of flops per point per iteration, and its aggressive pseudo transient buildup toward the steady-state 

limit, may be a more, not less, severe test of parallel performance.

III.2 PARALLELIZATION METHODOLOGY

The parallelization of unstructured mesh codes is complicated by the fact that no two interpro

cessor data dependency patterns are alike. Further, the user-provided global ordering may be 

incompatible with the subdomain-contiguous ordering required for high performance and conve

nient single program multiple data (SPMD) coding.

In addition, loss of regularity in unstructured grid solvers makes them more memory and 

integer operation intensive; nevertheless, a library-based solver should be competitive in serial 

with a legacy solver in terms of memory and execution time. These were our challenges in porting 

FUN3D into PETSc.

The key points of our SPMD implementation are as follows:

•  We follow the “owner computes” rule under the dual constraints of minimizing the number 

of messages and overlapping communication with computation.

•  Each processor “ghosts” its stencil dependencies on its nearest neighbors, in our case with 

a one-level halo. Because of the second-order convective scheme, two levels of halo of 

the primitive variables are needed in some directions, but one two-level halo exchange may
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be replaced with two sequential one-level halo exchanges — one on the primitive variables 

followed by one on their gradients. We have experimented with a two-level halo but memory 

requirements become prohibitive at high granularity.

•  We enforce a local ordering on the locally-owned nodes; ghost nodes are ordered after 

contiguous owned nodes. This strategy saves CPU cycles, since it avoids searches while 

deciding if a node is local or not, and the memory flag that would otherwise be required to 

distinguish a local or ghost node. Figure 2 shows different orderings that arise as a result of 

2-way partitioning for a simple 2D grid.

•  Scatter/gather operations are created between local sequential vectors and global distributed 

vectors, based on runtime connectivity patterns.

•  Newton-Krylov-Schwarz matrix-vector and flux evaluation operations are translated into 

local tasks and communication tasks, nonblocking for overlap where the hardware supports 

it.

1IIJ PARALLEL IMPLEMENTATION USING PETSC

To implement 'I'NKS methods on distributed memory parallel computers, we employ the PETSc 

library that attempts to handle, through a uniform interface and in a highly efficient way, the low- 

level details of the distributed memory hierarchy. Examples of such details include striking the 

right balance between buffering messages and minimizing buffer copies, overlapping communi

cation and computation, organizing node code for strong cache locality, preallocating memory in 

sizable chunks rather than incrementally, and separating tasks into one-time and every-time sub

tasks using the inspector/executor paradigm. The benefits to be gained from these and from other 

numerically neutral but architecturally sensitive techniques are so significant that it is efficient in
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Application Ordering PETSc Ordering

Local Ordering on Processor 1 Local Ordering on Processor 2

Figure 2: Illustration of three different orderings (user endowed, global library endowed, and local 

library endowed) for the two-way partitioning of a simple mesh. Note that within each partitioning 

halo vertices are ordered last and that orderings are contiguous within a partition.
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both the programmer-time and execution-time senses to express them in general purpose code.

PETSc is a large and versatile package integrating distributed vectors, distributed matrices in 

several sparse storage formats, Krylov subspace methods, preconditioners, and Newton-like non

linear methods with built-in trust region or line search strategies and continuation for robustness. 

It has been designed to provide the numerical infrastructure for application codes involving the 

implicit numerical solution of PDEs, and it sits atop MPI for portability to most parallel machines. 

The PETSc library is written in C, but may be accessed from user codes written in C. FORTRAN, 

and C++. PETSc has many features relevant to PDE analysis, including matrix-free Krylov meth

ods, blocked forms of parallel preconditioners, and various types of time-stepping.

A diagram of the calling tree of a typical NKS application appears in Figure 3. The arrows 

represent calls that cross the boundary between application-specific code and PETSc library code; 

all internal details of both are suppressed. The top-level user routine performs I/O related to 

initialization, restart, and post-processing and calls PETSc subroutines to create data structures 

for vectors and matrices and to initiate the nonlinear solver. PETSc calls user routines for function 

evaluations f(u) and (approximate) Jacobian evaluations f '(u ) at given vectors u representing 

the discrete state of the flow. Auxiliary information required for the evaluation of f  and f'(u) 

that is not carried as part of u  is communicated through PETSc via a user-defined “context” that 

encapsulates application-specific data. (Such information typically includes dimensioning data, 

grid data, physical parameters, and quantities that could be derived from the state u, but are most 

conveniently stored instead of recalculated, such as constitutive quantities.)

When well tuned, large-scale PDE codes spend almost all of their time in two phases: flux 

computations to evaluate conservation law residuals, called “function evaluations” in Figure 3, 

where one aims to have such codes spent almost all their time, and sparse linear algebraic kernels, 

which are a fact of life in implicit methods. Altogether, four basic groups of tasks can be identified
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Main Routine

fj Nonlinear Solver (SNES) Matnx p| Vector §1 K

Linear Solver (SLES)

m .-  ..1* ;

Function
Evaluation

Jacobian
Evaluation

Application
Initialization

Post-
Processing

Figure 3: Coarsened calling tree of the PETSc-FUN3D code, showing the user-supplied main 

program and callback routines for providing the initial nonlinear iterate, computing the nonlinear 

residual vector at a PETSc-requested state, and evaluating the Jacobian (preconditioner) matrix.

based on the criteria of arithmetic concurrency, communication patterns, and the ratio of operation 

complexity to data size within the task. These four distinct phases, present in most implicit codes, 

are vertex-based loops, edge-based loops, recurrences, and global reductions. Each of these groups 

of tasks stresses a different subsystem of contemporary high-performance computers. Analysis of 

our demonstration code shows that, after tuning, the linear algebraic kernels run at close to the 

aggregate memory-bandwidth limit on performance, the flux computations are bounded either 

by memory bandwidth or instruction scheduling (depending upon the ratio of load/store units 

to floating-point units in the CPU), and parallel efficiency is bounded primarily by slight load 

imbalances at synchronization points.
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IH.4 COMPLEXITY ANALYSIS OF PETSC-FUN3D

As mentioned above, there are four groups of tasks in a typical PDE solvef PETSc FUN3D), 

each with a distinct proportion of work to datasize to communication requirements. In the lan

guage of a vertex-centered code, in which the data is stored at cell vert*ces» these tasks are as 

follows:

• Vertex-based loops

— state vector and auxiliary vector updates

•  Edge-based “stencil op” loops

— residual evaluation, Jacobian evaluation

— Jacobian-vector product (often replaced with matrix-free form, involving residual eval 

uation)

— interpolation between grid levels

• Sparse, narrow-band recurrences

— (approx im ate) factorization , back  sub stitu tio n . re Iaxa tion /sm o°thm g

•  vector inner products and norms

— orthogonalization/conjugation

— convergence progress checks and stability heuristics

Vertex-based loops are characterized by work closely proportional to datasize, pointwise con 

currency, and no communication.
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Edge-based ‘"stencil op” loops have a large ratio of work to datasize. since each vertex is used 

in many discrete stencil operations, and each degree of freedom at a point (momenta, energy, den

sity, species concentration) generally interacts with all others in the conservation laws—through 

constitutive and state relationships or directly. There is concurrency at the level of the number 

of edges between vertices (or, at worst, the number of edges of a given "color” when write con

sistency needs to be protected through mesh coloring). There is local communication between 

processors sharing ownership of the vertices in a stencil.

Sparse, narrow-band recurrences involve work closely proportional to data size, the matrix 

being the largest data object and each of its elements typically being used once. Concurrency is 

at the level of the number of fronts in the recurrence, which may vary with the level of exactness 

of the recurrence. In a preconditioned iterative method, the recurrences are typically broken to 

deliver a prescribed process concurrency; only the quality of the preconditioning is thereby af

fected. not the final result. Depending upon whether one uses a pure decomposed Schwarz-type 

preconditioner, a truncated incomplete solve, or an exact solve, there may be no, local only, or 

global communication in this task.

Vector inner products and norms involve work closely proportional to data size, mostly point- 

wise concurrency, and global communication. Unfortunately, inner products and norms occur 

rather frequently in stable, robust linear and nonlinear methods.

Based on these characteristics, one anticipates that vertex-based loops, recurrences, and in

ner products will be memory bandwidth limited, whereas edge-based loops are likely to be only 

load/store limited. However, edge-based loops are vulnerable to intemode bandwidth if the latter 

does not scale. Inner products are vulnerable to intemode latency and network diameter. Recur

rences can resemble some combination of edge-based loops and inner products in their commu

nication characteristics if preconditioning fancier than simple Schwarz is employed. For instance.
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if incomplete factorization is employed globally or a coarse grid is used in a multilevel precondi

tioner, global recurrences ensue.

IIL5 TEST PROBLEMS

We test the code on the ON ERA M6  wing, a standard three-dimensional test case, for which 

extensive experimental data is given in [46]. Figure 4 shows the surface mesh of computational 

domain around ONERA M6 wing. We have used the following three tetrahedral meshes in this 

work.

• Very large mesh (called GridA) with about 2.8 million vertices and 19 million edges

• Large mesh (called GridB) with about 357,900 vertices and 2.4 million edges

• Medium size mesh (called GridC) with 22,700 vertices and 146,384 edges

The sequential performance studies (Chapter IV) have used the GridC mesh while the parallel 

cases (Chapter V) use primarily GridA (and sometimes GridB).

A frequently studied parameter combination combines a freestream Mach number of 0.84 with 

an angle of attack of 3.06°. This transonic case gives rise to a characteristic A-shock (Figure 5). 

We have used this case with the compressible version of the code.

Algorithmic setting

We employ backward Euler to do the time integration while advancing the time step using the 

SER heuristic of Van Leer and Mulder [43] (see Chapter V). Within each time step, the nonlin

ear problem is solved using an inexact Newton method (by only doing one Newton iteration per 

step). The linear problem is solved using restarted GMRES. We primarily use block Jacobi pre

conditioner (zero overlap) where a subdomain is mapped to a single processor (or process in the
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Figure 4: Surface visualization of the ONERA M6  Wing.

Figure 5: Mach contours on the ONERA M6 Wing at freestream Mach number = 0.839.
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hybrid programming case). We use incomplete factorization (ILU) with in each domain. These 

algorithms require tuning of several parameters for optimal performance. The tuning process is 

described in detail in Chapter V.

III.6 HISTORY OF THE PETSC-FUN3D PROJECT

This project was started in October, 1996 in collaboration with NASA and Argonne National Lab

oratory. The main goal was two-fold: first, to demonstrate the viability of a library-based approach 

to implicit parallel PDE simulation and second, to create a paradigm for integrating (reusing) ex

isting legacy scientific computing codes with modem (object-oriented) software technology. The 

library-based approach has several advantages, such as the availability of a large number of pa- 

rameterizable linear and nonlinear solvers and preconditioners with well optimized distributed 

data structures and communication. Object-oriented technology promises encapsulation to hide 

the details of implementation from the logical interface, and extensibility to easily incorporate the 

future developments into the code.

Inasmuch as FUN3D was originally written for vector machines, many data layout transfor

mations [33] had to be carried out to make it efficient on cache based processors. Fortunately, 

FUN3D had been written without reliance on global COMMON arrays. Removal of Fortran’s direct 

memory association in the form of COMMON arrays is the first (and often most time-consuming) 

part of the distributed memory parallelization process for most Fortran legacy codes. Approxi

mately 3,300 of 14,400 F77 lines of FUN3D have been retained (primarily as “node code” for flux 

and Jacobian evaluations); PETSc solver routines replaced the rest.
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CHAPTER IV 

SINGLE PROCESSOR PERFORMANCE STUDIES

Traditionally, numerical analysts have evaluated the performance of algorithms by counting the 

number of floating-point operations. It is well known that this is not a good estimate of perfor

mance on modem computers; for example, the performance advantage of the level-2 and level-3 

BLAS over the level-1 BLAS for operations that involve the same number of floating-point opera

tions is due to better use of memory, particularly the reuse of fast memory [18, 19]. Paradoxically, 

however, the success of the level-2 and level-3 BLAS at reaching near-peak levels of performance 

has obscured the difficulties faced by many other numerical algorithms. On the algorithmic side, 

tremendous strides have been made; many algorithms now require only a handful of floadng-point 

operations per mesh point. On the hardware side, however, memory system performance is im

proving at a rate that is much slower than that of processor performance [30.41]. The result is a 

mismatch in capabilities; algorithm design has minimized the work per data item, but hardware 

design predicated upon on executing an increasingly large number of operations per data item.

The importance of memory bandwidth to the overall performance is suggested by the per

formance results shown in Figure 6 . These show the single-processor performance for our code. 

PETSc-FUN3D [23, 33]. The performance of PETSc-FUN3D is compared with the peak perfor

mance and the results of the STREAM benchmark [41], which measures achievable performance 

for memory-bandwidth limited computations. The figure shows that the STREAM results are 

a much better indicator of performance than are the peak numbers. To illustrate the performance 

limitations caused by insufficient available memory bandwidth, we discuss in Section IV. 1 a sparse 

matrix-vector multiply algorithm, a critical operation in many iterative methods used in implicit 

CFD codes.

Even for computations that are not memory intensive, computational rates often fall far short
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■ Peak Mflops/s ■  STREAM Triad Mflops/s
□  Observed Mflops/s
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Figure 6 : Sequential performance of PETSc-FUN3D for a small grid of 22.677 vertices (with 4 

unknowns per vertex) run on a 120 MHz IBM SP, a 250 MHz SGI Origin2000, and a 450 MHz 

Cray T3E.

of peak performance. This is true for the flux computation in our code, even when the code 

has been well tuned for cache-based architectures [34], We show in Section IV.3 that instruction 

scheduling is a major source of the performance shortfall in the flux computation step.

This chapter focuses on the per-processor performance of compute nodes used in parallel com

puters. Our experiments have shown that PETSc-FUN3D has good scalability [23, 2, 39] How

ever, since good per-processor performance reduces the fraction of time spent in computation as 

opposed to communication, achieving the best per-processor performance is a critical prerequisite 

to demonstrating uninflated parallel performance [4].

rV.l PERFORMANCE ANALYSIS OF SPARSE MATRIX-VECTOR PRODUCT

The sparse matrix-vector product is an important part of many iterative solvers used in scientific 

computing. While a detailed performance modeling of this operation can be complex, particularly
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when data reference patterns are included [50, 51, 54], a simplified analysis can still yield upper 

bounds on the achievable performance of this operation. To illustrate the effect of memory system 

performance, we consider a generalized sparse matrix-vector multiply that multiplies a m  x n 

matrix by iV vectors, each with n elements. This code, along with operation counts, is shown in 

Figure 7.

Estimating the Memory Bandwidth Bound

To estimate the memory bandwidth required by this code, we make some simplifying assumptions. 

We assume that there are no conflict misses, meaning that each matrix and vector element is loaded 

into cache only once. We also assume that the processor never waits on a memory reference, that 

is, any number of loads and stores are satisfied in a single cycle.

For the algorithm presented in Figure 7. the matrix is stored in compressed row storage format 

(similar to PETSc’s AU format [7]). For each iteration of the inner loop in Figure 7, we transfer 

one integer ( j a  array) and N  +■ 1 doubles (one matrix element and N  vector elements), and we 

do iV floating-point multiply-add (fm add) operations or 2N  flops. Finally, we store the N  output 

vector elements. We get the following estimate of the data volume:

Total Bytes Transferred =  m *  sizeofJnt +  2 * m *  N  * sizeof-double

-HiVn- * (sizeofJnt -l- sizeof_double)

=  4 * (m +- Nnz) +  8 * (2 *m*iV-f-  Nnz).

where we have assumed that the matrix is square of dimension m. This equation provides an 

estimate of the bandwidth required by the processor to do 2N n: N  flops at the peak speed:

Alternatively, given the memory performance, we can predict the maximum achievable perfor-

Bytes Transferred/fmadd = m  12
iV„, + i\r
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for (i = 0, i < m; i++) { / /  I ood o v e r  rows

jrow = ia(i) 

ncol = ia(i+l) - ia(i)

Initialize, suml, sumN

for (j = 0; j < ncol; j++) {

fetch ja(jrow), a(jrow),

x l (j a (jrow)), ..., xN(ja(jrow)) // L Of, N+2 AT, N+2 Ld

do N fmadd (floating multiply add)

// 1 Of, AT, Ld, lop 

// N Ld 

// 1 Ld

j row++

Store suml, ..., sumN in

yl(i), ..., yN(i)

// 2N Fop

// I lop, 1 Br

// 1 Of, N AT, N St 

// 1 lop, 1 Br

Figure 7: General form of sparse matrix-vector product algorithm. The storage format is AU or 

compressed row storage. The matrix has m  rows and N nz non-zero elements and gets multiplied 

with N  vectors. The comments at the end of each line show the assembly level instructions 

the current statement generates, where AT is address translation. Br is branch, lop is integer 

operation. Fop is floating-point operation. Of is offset calculation, LD is load, and S t is store.
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Number of Bandwidth (MB/s) Mflops/s

Format vectors Bytes/fmadd Required Achieved Ideal Achieved

AU 1 12.36 3090 276 58 45

AH 4 3.31 827 221 216 120

BAH I 9.31 2327 297 84 66

BAH 4 2.54 635 229 305 175

Table I: Effect of memory bandwidth on the performance of sparse matrix-vector product on the 

SGI 0rigin2000 (250 MHz R 10000 processor). The STREAM benchmark memory bandwidth 

[41 j is 358 MB/s; this value is used to calculate the ideal Mflops/s. The achieved values of 

memory bandwidth and Mflops/s are measured by using hardware counters on this machine. Our 

experiments show that we can multiply four vectors in 1.5 times the time needed to multiply one 

vector.

mance, as follows:

*  B W - “ >

where M b w  *s measured in Mflops/sec and B W  stands for the available memory bandwidth in 

Mbytes/s, as measured by the STREAM [41 ] benchmark. (The raw bandwidth based on memory 

bus frequency and width is not a suitable choice because it cannot be sustained in any application.)

In Table I, we show the memory bandwidth required for peak performance and the achievable 

performance for a matrix in A LI format with 90.708 rows and 5.047,120 non-zero entries on an 

SGI Origin2000 (unless otherwise mentioned, this matrix is used in all subsequent computations). 

The matrix is a typical Jacobian from a PETSc-FUN3D application (incompressible version) with 

four unknowns per vertex. The same table also shows the memory bandwidth requirement for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

the block storage format (BALT) for this matrix with a block size of four; in this format, the j a  

array is smaller by a factor of the block size. We observe that the blocking helps significantly by 

cutting down on the memory bandwidth requirement. Having more than one vector also requires 

less memory bandwidth and boosts the performance; we can multiply four vectors in about 1.5 

times the time needed to multiply one vector.

Estimating the Operation Issue Limitation

To analyze this performance bound, we assume that all the data items are in primary cache (equiv

alent to assuming infinite memory bandwidth). Referring to the sparse matrix-vector algorithm in 

Figure 7, we obtain the following composition of the workload for each iteration of the inner loop:

• :V +  5 integer operations

• 2 * iV floating-point operations (N  fmadd instructions)

• iV -i- 2 loads and stores

Most contemporary processors can issue only a single load or store in one cycle. Since the 

number of floating-point instructions is less than the number of memory references, the code must 

take at least as many cycles as the number of loads and stores. The performance bound is as 

follows:

2 N n- 'V
M[S =  , . .  ~ ,----  x Clock Frequency. (2)iVn-(iV +  2 ) -f- m

where M rs is in Mfiops/sec and Clock Frequency is measured in MHz.

Estimating the Fraction of Floating Point Instructions

In order to estimate the limitation on floating point performance due to the high fraction of integer 

instructions in simulations using unstructured meshes, we need to study the assembly level code.
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Figure 7 shows the matrix-vector algorithm along with the number and kind of instructions each 

statement will generate.

Total number of instructions =  m * ( 3 * i V - F 8 )  +  N nz * (4 * iV +  9) (3)

On machines (such as the SGI 0rigin2000, IBM SP. etc.) with an fmadd instruction (where 

a floating point multiply-add is done with one instruction), we get the following estimate of the 

fraction of the floating point instructions.

^  . .  2 * N * N n.Fraction of floaung point mstrucuons = ------------—----- ------—— -----—-----   (4)
6 ^  rn * (3 * N  + 8) +  Nnz * (4 * N  +  9)

This fraction of floating point work will be twice the above value on the machines without 

fmadd instruction (like SUN Ultra II, Pentium II etc.). For the matrix that we have been consider

ing, this fraction tums out be 18% for the AU case and 34% for the BAU case.

Because of the prevalence of superscalar processors (which can issue several instructions in 

one cycle), the number of floating point instructions alone does not tell us much about the perfor

mance we can expect. Nevertheless, it is a rough indicator of how much floating point work is 

there for the processor. It also suggests that it may be necessary to reduce the non-floating part of 

the workload to push the performance beyond a certain level. This point is explored further in the 

next section.

Performance Comparison

In Figure 8, we compare three performance bounds: the peak performance based on the clock 

frequency and the maximum number of floating-point operations per cycle, the performance pre

dicted from the memory bandwidth limitation in Equation I. and the performance based on opera

tion issue limitation in Equation 2. For the sparse matrix-vector multiply, the memory-bandwidth
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■  Theoretical Peak ■  Mem BW  Peak 
□  Oper. Issue Peak □  Observed

Origin Pent! am Ultra II

Figure 8 : Three performance bounds for sparse matrix-vector product. The bounds based on 

memory bandwidth and instruction scheduling are much closer to the observed performance than 

the theoretical peak of the processor. Only one vector (iV =  1) is considered here. The matrix 

size has m = 90,708 rows and Nnz = 5,047,120 nonzero entries. The processors are a 120 MHz 

IBM SP (P2SC “thin”, 128 KB LI ), a 250 MHzOrigin2000 (R10000,32 KB LI. and 4 MB L2), a 

450 MHz T3E (DEC Alpha 21164, 8 KB LI, 96 KB unified L2), a 400 MHz Pentium II (running 

Windows NT 4.0, 16 KB LI, and 512 KB L2), and a 360 MHz SUN Ultra II (4 MB external 

cache); memory bandwidth values are taken from the STREAM benchmark Web site.

limit on performance clearly is a good approximation. The greatest differences between the perfor

mance observed and predicted by memory bandwidth are on the systems with the smallest caches 

(IBM SP and T3E), where our assumption that there are no conflict misses is likely to be invalid.

IV.2 CACHE MISS ANALYSIS OF THE MATRIX VECTOR PRODUCT

In this section, we discuss the different types of cache misses encountered in the sparse matrix 

vector algorithm. For simplicity, let us model the cache misses only for the level nearest to the
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main memory since these are very expensive (the cache lines are loaded from memory). In the 

case of a single level cache processor, this model will directly apply to the primary cache.

Compulsory (or cold) Misses

For the matrix, most of the misses are compulsory misses. If we include both a and ja  arrays 

(with the assumption that size of integer is half of size of double), then

1 5 Y „ 7i
Number of Compulsory Misses for Matrix =  n: +   -----. (5)wsc 2wsc

where the first term accounts for the data (a) and ja  arrays and the second term arises from ia

array. Similarly, for N  input and N  output vectors of size n, we have

2 N nNumber of Compulsory Misses for Vectors = ------- . (6)

If 2N n  1.5iV„., the compulsory misses for the matrix dominate. For the R10000 processor

with cache line size w3C = 16 double words and total cache size, Csc = 512,000 double words, we 

can estimate the number of compulsory cache misses for the sample PETSc-FUN3D matrix (Nnz 

— 5,047,120, n  = 90,708) with four vectors (N  = 4). The compulsory misses for the matrix and 

vectors are 476,003 and 45,354 respectively.

Conflict (or Interference) Misses

These can be divided into two components :

•  Self Interference: since the matrix is very large and is loaded only once, all the misses 

caused are compulsory. Therefore, even though there is self interference while loading the 

cache lines for the matrix, it is not significant since each cache line is used only once.

For the vectors, these misses may be quite significant. In general, depending on the cache 

size (especially when it can not hold an entire vector), an input (and output) vector may map
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on itself.

•  Cross Interference: These are the misses caused when a vector maps on another vector in 

cache. When cache size is large enough to hold a vector, the cross interference between 

different vectors can be very serious.

Since the vector cache lines have the possibility of reuse, we would like to minimize the 

number of conflict misses. This can be done by suitable storage formats for the vectors (spatial 

locality) and proper scheduling of the instructions (temporal locality). To achieve this goal, let 

us first model the conflict misses for a banded matrix (that can serve as an upper bound on the 

number of conflict misses for the actual matrix with which we have been experimenting).

Modeling the Conflict Misses for a Banded Matrix

Consider a banded matrix with a row and column bandwidth of 0. The memory reference patterns 

for the loop over rows can be visualized as a moving window (of size jj) over the vector array. For 

each new row, a new vector element is referenced and the very first item in the moving window is 

not needed. Thus every w,c rows a new cache line is needed while first cache line can be replaced. 

It should be noted that only those misses are be counted as conflict misses that replace cache lines 

needed again in the future. Here are some important observations regarding the reusability of 

cache lines :

•  Each cache line satisfies & - w3C references or is reused (3 - w3C times provided it is not one 

of the first or last —  cache lines.I w“  I

•  A cache line belonging to the set of first cache lines satisfies i ■ wsc references.
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•  A cache line belonging to the set of last j" ̂  j cache lines satisfies ^ — i +  l)  - wsc

references V* €  ( [ 2 = f ] , [ j - ] )

•  At any time, we need only |" ̂  j  cache lines of a vector to get the optimal performance, 

i.e. the working set size for each vector is ["̂  j cache lines. This fact will be helpful in 

deciding if a cache miss is a real penalty or not.

Now depending on the cache size Csc (in words), there are the following cases of interest:

•  N  - n < Csc (i.e.. when all the input vectors fit in the cache).

•  N  ■ (3 < Csc < N  ■ n (when the working sets of all the input vectors fit in the cache).

• N  ■ d > Csc (when the working sets of some vectors fit in the cache).

Let us assume the following simple cache mapping policy:

Cache Address =  (Block Address) mod (Number of Sets in the Cache). (7)

For the time being, let us assume a direct mapped cache. This assumption is reasonable for 

the two way mapped caches for the matrix-vector product (matvec) example, assuming one block 

in each set is occupied by matrix elements.

Consider two addresses (the term address refers to the block address There will be a conflict 

miss if

a  m od C,c — b mod C ,c or a  =  b m od Csc.

Case 1 when N  ~n < Csc

Here all the input vectors fit in cache. In this case, there will be no conflict misses among the 

vectors. The majority of the cache misses for this case are compulsory.
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The R10000 processor with L2 cache size, Csc = 512,000 (double words) and the GridC matrix 

with n = 90,708 falls into this category. The estimated number of total compulsory cache misses 

in this case (including matrix, input and output vectors), as estimated earlier, is 521,357. The total 

cache misses actually measured (using hardware counters) is 550.551. The difference 29,194 may 

be accounted by the cross interference between the matrix and the input and output vectors.

Case 2 when N  ■ f3 < C ,c < N  ■ n

Here the working set of all the input vectors fit in the cache and ideally, there should be no cache 

misses if we allocate the vectors carefully in the memory. But since the working sets are allocated 

at a distance in memory, these might conflict. We study the following two situations to understand 

this case better.

•  Within a row (j  loop): Assume that the vectors are laid out in the memory one after another. 

Also, without the loss of generality, we assume that the first address in the vector array 

maps to the first cache line. Now consider a memory location j  for the first vector where j  

lies in the moving window — 4 - ‘ +  4 ] for the row i (assuming a structurally symmetric 

matrix). Then there will be a cache miss if

where Cw is the cache size in terms of cache blocks. This relation basically implies that 

there will be a conflict miss when C3C divides all the integral multiples of vector size n. 

Since Csc is in powers of 2, this means that n is some multiple of a power of 2. We should 

avoid having such values for n. If we cannot, then some padding (which is discussed next) 

should be used to get the conflict-free mapping of vector cache lines.

•  Loop over rows: While going through one iteration of the /-loop, the working set of each

V/„ =  1 xV -  1. (8)
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vector is [ " cache lines. Since vectors are allocated one after another in memory, there 

is a danger that the working sets of two or more input vectors might overlap despite the fact 

that we have enough room for the working sets of all the vectors. One way to avoid this is 

to use padding at the end of a vector so that its successor maps beyond its working set in 

cache. To illustrate this, we consider the two vector (iV =  2) case for simplicity. If p is 

the amount of padding in double words, then in order to avoid a conflict miss, the following

should hold Vj e  ^  -  4- ‘ +  4]

/ n  + n+pi ^  _ r n  modC \ > A .
V w » c  I & S C  I )

This simplifies to the following inequality.

(9)

(n -+- p) mod C,c > 0- (10)

We observe that the above relation may lead to wasted (virtual) address space. This also 

suggests that our storage format for the vectors (non-interlaced, one after another) in mem

ory is simple but may cause large number of conflict misses, even when the working set of 

all the vectors fit in the cache. We are investigadng better storage patterns that will elimi

nate (or reduce) the conflict misses. The interlaced storage format is ideal for this case but 

is otherwise cumbersome to manage in the MatMuItVec algorithm where we do not want to 

decide the number of vectors beforehand.

Case 3 when M - 0  > Csc

Let us estimate the conflict misses when we have only one vector (i.e. iV =  1). In order to 

avoid a conflict miss, we need at least ^ j  cache lines. For each row. the number of replaced 

cache lines is | " j . Therefore, the total number of cache misses for the single vector case

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

is n  . Now assume that we do proper variable size padding to reduce the conflict cache

misses (as discussed earlier in Case 2). Then, we can generalize the above expression to the case 

of N  vectors since iV/3 is the minimum space needed in cache to avoid conflict misses.

number of conflict misses we will have for this case. We need to add this extra data traffic while 

estimating the memory bandwidth bound.

The number of cache misses saved by using more than one vector (MatMultVec algorithm in

Figure 7) is iV -  1 times the compulsory cache misses for the matrix i.e. (N  — 1) -

This inequality can be used to determine the appropriate value for the number of vectors that 

should be used to achieve any gain in performance.

IV.3 SEQUENTIAL PERFORMANCE ANALYSIS OF PETSC-FUN3D

A full scale PDE code has several computational phases (mostly expressed as some loop in a sub

routine). Each phase may suffer from memory bandwidth limitation or operation issue limitation 

or both. When a computational phase has very modest memory bandwidth requirement, prefetch

ing should be done to improve the performance. Many of the processors have direct hardware and 

software support for prefetching. If the processor has lot of non-floating point work to do, it will 

suffer from an instruction scheduling limitation.

In this section, we study two important computational phases (responsible for approximately 

75% of the overall execution time) of PETSc-FUN3D and attempt to evaluate the performance 

bounds for both of these.

Therefore, number of conflict misses for the N  vectors is n  ■C,c . This is the minimum

Therefore, the MatMultVec algorithm will be useful for this case only when

( 1 1 )
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Triangular Matrix Solver Phase

In this phase, the problem A x  =  b is solved for a factored matrix (for PETSc-FUN3D it is the 

preconditioner matrix). First, a forward solve is done with the lower triangular factor followed by a 

backward solve with the upper triangular factor. In principle, the backward and forward solves are 

similar to the matrix-vector product kernel discussed in the previous section. The bounds arising 

from available memory bandwidth and instruction scheduling stay the same. As is observed for 

the matrix vector multiplication, it is the memory bandwidth that limits the performance in this 

phase of PETSc-FUN3D.

Flux Calculation

This flux calculation phase is the heart of any unstructured mesh solver and accounts for over 50% 

of the overall execution time in PETSc-FUN3D. Since PETSc-FUN3D is vertex-centered code, 

the flow variables are stored at nodes. While making a pass over an edge, the flow variables from 

the vertex based arrays are read, a large amount of floating point work is done, and Anally, the 

residual values at each vertex of the edge are updated (see Figure 9). A close look at the assembly 

code yields the following mix of the workload for each iteration of the loop over edges:

• 519 total instructions

• 111 integer operations

•  250 floating point instructions doing 305 flops (there are 55 fmadd instructions)

• 155 memory references

This part of the code is unique (relative to the rest) in the sense that it does many floating point 

operations on the data items that are loaded into the cache. Our estimate and measurements using 

hardware counters on the R 10000 processor show that this phase needs a memory bandwidth of
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n2
read variables

nl

> n2

compute

Variables at each node: 
density, 
momentum ( x,y,z), 
energy, 
pressure 

Variables at edge: 
identity of nodes, 
orientation( x ,y ,z )

update variables

Figure 9: Illustration of flux calculation in PETSc-FUN3D. In each iteration of the loop over 

edges, solution variables stored at the vertices are read, large amount of floating point work is 

done, and then residual values are stored back at the vertices.
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only 57 MB/s (which is a very modest requirement as compared to what is available on most 

modem processors). Hence this phase does not suffer from memory bandwidth limitation.

In order to evaluate the instruction scheduling limitation, we need to schedule these instruc

tions in the best possible way on modem superscalar pipelined processors. This is not an easy 

task, especially when we need to fill out the slots for high latency instructions (like sqrt. div etc.) 

and observe various other constraints (e.g. [47, 42]). Fortunately, many compilers provide this 

information as comments in the assembly code. For example, on SGI 0rigin2000, when we com

pile the code with cache optimizations turned off (consistent with our assumption of data items 

being available in primary cache for the purpose of estimating this bound), the compiler estimates 

that the above work can be done in about 325 cycles. This leads to a performance bound of 235 

Mflops/s (47% of the peak on 250 MHz processor). We actually measure 209 Mflops/s using 

hardware counters. This shows that the performance in this phase of the computation is actually 

restricted by the instruction scheduling limitation.

IV.4 PERFORMANCE TUNING FOR PETSC-FUN3D

In this section, we describe the details of the performance tuning process. Our approach is largely 

experimental, guided in part by the performance models that we have developed in [22]. We 

present the data layouts that can reduce the number of cache misses, tend to use low memory 

bandwidth, and show better scalability, especially when the number of subdomains becomes large.

Reducing the Cache Misses

Since the gap between memory and CPU speeds is ever widening [30], it is crucial to utilize 

the data brought into the levels of memory hierarchy that are close to the CPU. To achieve this 

goal, the data structure storage patterns for primary (e.g., momenta and pressure) and auxiliary
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(e.g., geometry and constitutive parameter) fields should adapt to hierarchical memory. Three 

simple techniques (discussed below) have proved very useful in improving the performance of the 

FUN3D code, which was originally tuned for vector machines.

Interlacing

Interlacing creates the spatial locality for the data items needed successively in time. This is 

achieved by choosing the ordering

u l, i/l, u /l.p l. u2, t/2. u/2,p2,. . .

in place of

u l. u2 ul, t/2,. . . .  u/1. w2 p l .p 2 ,. . .

for a calculation that uses u. u. w. p together. We denote the first ordering “interlaced” and the 

second “noninterlaced.” The noninterlaced storage pattern is good for vector machines. For cache- 

based architectures, the interlaced storage pattern has many advantages: (1) it provides high reuse 

of data brought into the cache, (2) it makes the memory references closely spaced, which in turn 

reduces the translation look-aside buffer (TLB — a small cache that translates virtual address into 

the physical address of the pages in memory) misses [30], and (3) it decreases the size of the 

working set of the data cache(s), which reduces the number of conflict misses.

We illustrate these benefits for the sparse matrix-vector product (discussed earlier in this Chap

ter). We assume that the matrix of N  rows is stored in CSR or compressed sparse row format. Al

though the matrix is sparse, the vector it multiplies is dense. We analyze only the data cache that is 

closest to the main memory (e.g., secondary or L2 cache, in case of a two-level cache hierarchy).

In the noninterlaced case, the resulting matrix is of very wide bandwidth close to N . This 

makes the working set of the matrix-vector product operation in the cache close to M /W ,c, where
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Wsc is the cache block size in double words. If Csc is the cache capacity in double words, then 

the number of conflict cache misses is bounded by

\ N  -  Cscl
I |N  1 | (12)

when N  > Cic.

In the interlaced case, the unknowns at a grid point are stored together. With a good node 

reordering strategy, the matrix resulting out of some discretization of a PDE can be made to have 

a narrow bandwidth, 8- which is much smaller than N . This results in the fewer conflict misses, 

bounded by the following expression:

'8 -  c *
Wte (13)

when 8 > C3C.

We can derive similar expressions for the bounds (12 and 13) on TLB misses where C ,c will 

be replaced by the number of page table entries (PTE). Ct l b  and Wsc by the memory page size. 

Wmem- Since the interlaced storage works on the data items closely spaced in memory, it causes 

fewer TLB misses as compared to those in the noninterlaced case.

Structural Blocking

Once the field data is interlaced, it is natural to use a block storage format for the Jacobian matrix 

of a multicomponent system of PDEs. The block size is the number of components (unknowns) 

per mesh point. As shown for the sparse matrix-vector multiplication case earlier (also see [22]), 

the structural blocking signiflcandy reduces the number of integer loads and enhances the reuse 

of the data items in registers (see Figures 11 and 12; especially notice the effect of blocking on 

the graduated loads and stores per floating point operation). This, in turn, reduces the required 

memory bandwidth for optimal performance.
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Edge Coloring

/"

Edge Reordering

Figure 10: Illustration of edge coloring (top) and reordering (bottom). Each box, after edge 

coloring, represents a color.

Edge and Node Reorderings

In the original FUN3D code, the edges are colored (see Figure 10) for good vector performance. 

No pair of nodes in the same discretization stencil shares a color. This results in a very low cache 

line reuse. In addition, since consecutive memory references may be far apart, the TLB misses are 

a grave concern. About 70% of the execution time (of the original code) is spent servicing TLB 

misses. As shown in Figure 11, this problem is effectively addressed by reordering the edges.

The edge reordering we have used is obtained by sorting the edges in increasing order by the 

node number at the one end of each edge. In effect, this converts an edge-based loop into a vertex-
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based loop that reuses vertex-based data items in most or ail of the stencils that reference them 

several times before discarding it. And since a loop over edges goes over a node’s neighbors first, 

this (in conjunction with a bandwidth reducing ordering for nodes) results in memory references 

that are closely spaced. Hence, the number of TLB misses is reduced significantly.

For vertex ordering, we have used the Reverse Cuthill McKee (RCM) [16], which is known 

for reducing cache misses by creating more spatial locality. This ordering also results in reduced 

bandwidth of the preconditioner matrix, which in turn decreases the size of working set of the 

sparse matrix vector product operation.

IV.5 SAMPLE SEQUENTIAL PERFORMANCE

Table 2 shows the effectiveness of these techniques (interlacing, blocking, and edge reordering) 

on one processor of the SGI 0rigin2000. The combination of the three effects can enhance overall 

execution time by a factor of 5.7 (a table comparing several architectures is available in [34]). To 

further understand these results, we carried out hardware counter profiling on a R10000 processor. 

Figures 11 and 12 shows that edge reordering reduces the TLB misses by two orders of magnitude, 

while secondary cache misses (which are very expensive) are reduced by a factor of 3.5.
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Enhancements Results

Field

Interlacing

Structural

Blocking

Edge

Reordering

Encompres

Time/Step

isibie

Ratio

Compress

Time/Step

iible

Ratio

83.6s — 140.0s —

X 36.1s 2.31 57.5s 2.44

X X 29.0s 2.88 43.1s 3.25

X 29.2s 2.86 59.1s 2.37

X X 23.4s 3.57 35.7s 3.92

X X X 16.9s 4.96 24.5s 5.71

Table 2: Effect of cache optimization techniques on the sequential performance of PETSc-FUN3D 

code on SGI 0rigin2000. The execution times are for Euler flow over an M6 wing with a grid 

of 22.677 vertices (90,708 DOFs incompressible; 113.385 DOFs compressible). The SGI Ori- 

gin2000 (MIPS R10000) processor has 250 MHz clock and cache sizes of 32 KB data, 32 KB 

instruction, and 4 MB L2. Activation of a layout enhancement is indicated by “x "  in the cor

responding column. Improvement ratios are averages over the entire code; different subroutines 

benefit to different degrees.
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■ A: Base NOER ■ B: Interlacing NOER
■ C: Blocking NOER CUD: Baae
□ E: Interlacing □  F: Blocking

1.00E+O9
TLB Misses

1.00E+08

1.00E+07

l.ME-HW

u
l.OOE+OS

I.OOE+04

2.00 
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ISO 
1.70 
1.60 
1.50 
MO 
1J0  
MO 
MO 
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Figure 11: Measured values of TLB misses and memory references per floating point operation 

on one processor of an SGI 0rigin2000 for a 22,677 vertex mesh using hardware counters. Top: 

TLB misses (log scale). Bottom : Graduated (completed) loads and stores per floating point 

instruction. “NOER” denotes no edge ordering, otherwise edges are reordered by default

Graduated Loads/Stores per Hop
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■ A:BaseNOER ■ B: Interlacing NOER
■ C: Blocking NOER □D:Baae
□ E: Interlacing □ F: Blocking

7.00E+07 

6.00E+07 

5.00E+07 

4.00E+07 

3.00E+07 

2.00E+07 

l.OOE+07

7.00E+08 

6.00 E+08 

5.00E+08 
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3.00E-HM 

2.00E+0S 

l.OOE+OS

Figure 12: Measured values of primary and secondary cache misses floating point operation on one 

processor of an 0rigin2000 for a 22,677 vertex mesh using hardware counters. Top: Secondary 

cache misses. Bottom : Primary cache misses. “NOER” denotes no edge ordering, otherwise 

edges are reordered by default.

Primary Cache Misses

Secondary Cache Misses
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CHAPTER V 

PARALLEL PERFORMANCE STUDIES AND RELATED ISSUES

Achieving high sustained performance, in terms of solutions per second, requires attention to three 

factors. The first is good per-processor performance on contemporary cache-based microproces

sors, which was discussed in Chapter IV. The second is a scalable implementation, in the sense 

that time per iteration is reduced in inverse proportion to the number of processors, or that time 

per iteration is constant as problem size and processor number are scaled proportionally. The 

third is algorithmic scalability, in the sense that the number of iterations to convergence does not 

grow with increased numbers of processors. The third factor arises since the requirement of a 

scalable implementation generally forces parameterized changes in the algorithm as the number 

of processors grows. However, if the convergence is allowed to degrade, the overall execution is 

not scalable, and this must be countered algorithmically. Having devoted Chapter IV to per-node 

performance, we only consider the last two factors in the overall performance in Sections V.4 and 

V.5. respectively.

V.1 DEFINITION OF PARALLEL SCALABILITY

Conflicting definitions of parallel efficiency abound, depending upon two choices:

•  What scaling is to be used as the number of processors is varied [15]?

— problem-constrained scaling (fixed overall problem size)

— memory-constrained scaling (varying size problem with fixed memory per processor)

— time-constrained scaling (varying size problem with fixed work per processor)

•  What form of the algorithm is to be used as number of processor is varied?
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-  reproduce the sequential arithmetic exactly (this assumes that floating point operations 

are associative)

— adjust parameters to perform best on each given number of processors

In this work, we have considered the problem-constrained scaling with the following definition 

of relative parallel efficiency in going from q to p  processors (p >  q)

where T(p) is the overall execution time on p processors (directly measurable). Factoring T(p) 

into /(p), the number of iterations, and C(p), the average cost per iteration, the algorithmic effi

ciency is an indicator of preconditioning quality (directly measurable):

. , * Hq)
=  Ĵ y

Implementation efficiency is the remaining (inferred) factor

/ i v    q-C (q)
n,mPt(p\q) -  p C{p) -

In our implementations of the 'I’NKS algorithm, we always adjust the subdomain blocking 

parameter to match the number of MPI processes, one subdomain per process: this causes the 

number of iterations to vary, especially since our subdomain partitionings are not nested. The 

base case (with q processes) is always chosen when the local problem fits into the main memory 

of each processor. In our experience, the choice of a proper base case often eliminates spurious su- 

perlinear speedups that are often seen in problem-constrained scalability studies on small number 

of processors.

V3. MEASURING THE PARALLEL PERFORMANCE

We use PETSc’s profiling and logging features to measure the parallel performance. PETSc logs 

many different types of events and provides valuable information about time spent, communica
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tions, load balance, and so forth, for each logged event. PETSc uses manual counting of hops, 

which are afterwards aggregated over all the processors for parallel performance statistics. We 

have observed that the flops reported by PETSc are close to (within 10 percent of) the values 

statistically measured by hardware counters on the R 10000 processor.

PETSc uses the best timers available in each processing environment. In our rate computa

tions, we exclude the initialization time devoted to I/O and data partitioning. To suppress timing 

variations caused by paging in the executable horn disk, we preload the code into memory with 

one nonlinear iteration, then flush the data, reload the initial iterate, and begin performance mea

surements.

Since we are solving large flxed-size problems on distributed memory machines, it is not rea

sonable to base parallel scalability on a uniprocessor run, which would thrash the paging system. 

Our base processor number is such that the problem just fits into the local memory. We have em

ployed smaller sequential cases to optimize cached data reuse [33. 34] to minimize the execution 

time. As already stated, we decompose the parallel efficiency into two factors: algorithmic effi

ciency, measuring the effect of increased granularity on the number of iterations to convergence, 

and implementation efficiency, measuring the effect of increased granularity on per-iteration per

formance.

V3 LARGE-SCALE DEMONSTRATION RUNS

A fixed-size problem (with 2.8 million vertices and 11 million degrees of freedom) is run on large 

ASCI Red configurations (about 3200 nodes, each with dual Pentium Pro 333 MHz processors) 

with sample scaling results shown in Figure 13. The implementation efficiency is 91% in going 

from 256 to 3072 nodes. The preconditioner used in these results is block Jacobi with ILU(0) in 

each subdomain. However, we have now discovered that the block Jacobi with ILU( 1) gives better
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execution times (see Table 8). Also the preconditioner matrix was stored in double precision in 

these results. We show in Section V.7 that single precision storage gives better performance.

For the data in Figure 13, we employed the - p r o c s  2 runtime option on ASCI Red. This 

option enables 2-processor-per-node multithreading during threadsafe, communication-free por

tions of the code. We have activated this feature for the floating-point-intensive flux computation 

subroutine alone. On 3072 nodes, the largest run we have been able to make on the unclassified 

side of the machine to date, the resulting Gflop/s rate is 227 when the preconditioner is stored in 

double precision (and 262 when the preconditioner is stored in single precision) . The - p r o c s  

3 option enables one to run two MPI processes on a node (one on each processor) Using these two 

options ( - p r o c  2 a n d  - p r o c s  3, we were able to compare the message passing and hybrid 

programming model that we discuss in Section V.8.

Figure 14 shows aggregate flop/s performance and a log-log plot showing execution time for 

our largest case on the three most capable machines to which we have thus far had access. In 

both plots of this figure, the dashed lines indicate ideal behavior. Note that although the ASCI 

Red flop/s rate scales nearly linearly, a higher fraction of the work is redundant at higher parallel 

granularities, so the execution time does not drop in exact proportion to the increase in flop/s. The 

number of vertices per processor ranges from about 22,000 to fewer than 1,000 over the range 

shown. We point out that for just 1,000 vertices in a three-dimensional domain, about half are on 

the interface (e.g., 488 interface vertices on a 10 x 10 x 10 cube).

Scalability Across Flow Regimes

Trans-Mach convergence comparisons on the GridB mesh problem are given in Tables 3 and 4. 

Here efficiencies are normalized by the number of time steps, to factor convergence degradation 

out of the performance picture and measure implementation factors alone (though convergence
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Figure 13: Average vertices of the mesh owned by each processor and five parallel performance 

metrics for a fixed-size problem on a 2.8 million vertex mesh, run on up to 3072 nodes of ASCI 

Red (each node consisting of two 333 MHz Pentium Pro processors).
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Figure 14: Gigaflop/s ratings and execution times on ASCI Red (up to 3072 dual processor nodes), 

ASCI Pacific Blue (up to 768 processors), and a Cray T3E (up to 1024 processors) for a 2.8M- 

vertex case, along with dashed lines indicating “perfect” scalings.
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degradation with increasing granularity is modest). The number of steps increases dramatically 

with the nonlinearity of the flow, as the Mach number rises; however, the linear work per step 

decreases on average. Reasons for this include; more steps spent in the cheaper, first-order dis

cretization phase of the continuation process, smaller CFL in early steps, and the increased hy- 

perbolicity of the flow. The compressible Jacobian is far more complex to evaluate, but it also 

concentrates locality, achieving much higher computational rates than the corresponding incom

pressible Jacobian.

V.4 IMPLEMENTATION SCALABILITY

Domain-decomposed parallelism for PDEs is a natural means of overcoming Amdahl’s law in the 

limit of fixed problem size per processor. Computational work on each evaluation of the con

servation residuals scales as the volume of the (equal-sized) subdomains, whereas communication 

overhead scales only as the surface. This ratio is fixed when problem size and processors are scaled 

in proportion, leaving only global reduction operations over all processors as an impediment to 

perfect performance scaling.

In [37], it is shown that on contemporary tightly coupled parallel architectures in which the 

number of connections between processors grows in proportion to the number of processors, such 

as meshes and tori, aggregate intemode bandwidth is more than sufficient, and limits to scalability 

may be determined by a balance of work per node to synchronization frequency. On the other 

hand, if there is nearest-neighbor communication contention, in which a fixed resource like an 

Ethernet switch is divided among all processors, the number of processors is allowed to grow 

only as the one-fourth power of the problem size (in three dimensions). This is a curse of typical 

Beowulf-type clusters with inexpensive networks; we do not discuss the problem here, although it 

is an important practical limitation in many CFD groups.
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No. Time per Per-Step Impi. FcnEval JacEval

Procs. Steps Step Speedup Eff. Mflop/s Mflop/s

Incompressible ( 4 x 4  blocks)

16 19 41.6s — — 2,630 359

32 19 20.3s 2.05 1.02 5.366 736

48 21 14.1s 2.95 0.98 7,938 1.080

64 21 11.2s 3.71 0.93 10.545 1.398

80 21 10.1s 4.13 0.83 11.661 1.592

Subsonic (Mach 0.30) ( 5 x 5  blocks)

16 17 55.4s — — 2.002 2.698

32 19 29.8s 1.86 0.93 3.921 5.214

48 19 20.5s 2.71 0.90 5.879 7.770

64 20 14.3s 3.88 0.97 8.180 10.743

80 20 12.7s 4.36 0.87 9.452 12.485

Table 3: Parallel scalability across flow regimes -  incompressible and subsonic flow over M6 wing 

on SGI 0rigin2000 with a fixed-size grid of 357.900 vertices (1,431,600 DOFs incompressible, 

1,789,500 DOFs compressible).
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No. Time per Per-Step Impl. FcnEval JacEval

Procs. Steps Step Speedup Eff. Mflop/s Mflop/s

Transonic (Mach 0.84) ( 5 x 5  blocks)

16 55 29.4s — — 2.009 2.736

32 56 15.4s 1.91 0.95 4.145 5.437

48 56 11.0s 2.66 0.89 5,942 7.961

64 57 8.7s 3.39 0.85 8,103 10.531

80 57 7.4s 3.99 0.80 9,856 12.774

Supersonic (Mach 1.20) ( 5 x 5  blocks)

16 80 19.2s — — 2.025 2.679

32 81 10.6s 1.81 0.90 3.906 5.275

48 81 7.1s 2.72 0.91 6.140 7.961

64 82 5.8s 331 0.83 7.957 10.398

80 80 4.6s 4.20 0.84 9.940 12.889

Table 4: Parallel scalability across flow regimes -  transonic and supersonic flow over M6 wing on 

SGI 0rigin2000 with a fixed-size grid of 357.900 vertices and 1,789,500 DOFs.
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If we assume that the load is perfectly balanced and the network is scalable, then the optimal 

number of processors is related to the network diameter. For logarithmic networks, like a hyper

cube, the optimal number of processors, P , grows directly in proportion to the problem size, N . 

For a d-dimensional torus network, P  oc N dld+l. The proportionality constant is a ratio of work 

per subdomain to the product of synchronization frequency and intemode communication latency.

Scalability Bottlenecks

In Table 5, we present a closer look at the relative cost of computation for PETSc-FUN3D for 

a fixed-size problem of 2.8 million vertices on the ASCI Red machine, from 128 to 3072 nodes 

(only one processor from each node is used for these results). The intent here is to identify the fac

tors that retard scalability. The overall parallel efficiency (denoted by Tj^erau) is broken into two 

components: //a/g measures the degradation in the parallel efficiency due to the increased iteration 

count (Section V.5) of this (non-coarse-grid-enhanced) NKS algorithm as the number of subdo

mains increases, while r/jmp< measures the degradation coming from all other nonscalable factors 

such as global reductions, load imbalance (implicit synchronizations), and hardware limitations.

From Table 5, we observe that the buffer-to-buffer time for global reductions for these runs 

is relatively small and does not grow on ASCI Red’s excellent network. The primary factors 

responsible for the increased overhead of communication are the implicit synchronizations and 

the ghost point updates (interprocessor data scatters).

Interestingly, the increase in the percentage of time (3% to 10%) for the scatters results more 

from algorithmic issues than from hardware/software limitations. With an increase in the num

ber of subdomains, the percentage of grid point data that must be communicated also rises. For 

example, the total amount of nearest neighbor data that must be communicated per iteration for 

128 subdomains is 3.6 gigabytes, while for 3072 subdomains it is 14.2 gigabytes. Although more
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Number of Efficiency

Processors Its Time Speedup ^overall Haig T)impi

128 22 2,039s 1.00 1.00 1.00 1.00

256 24 1.144s 1.78 0.89 0.92 0.97

512 26 638s 3.20 0.80 0.85 0.94

1024 29 362s 5.63 0.70 0.76 0.93

2048 32 208s 9.78 0.61 0.69 0.89

3072 34 159s 12.81 0.53 0.65 0.82

Percent Times for Scatter Scalability

Total Data Application

Global Implicit Ghost Sent per Level Effective

Number of Reduc Synchro Point Iteration Bandwidth per

Processors tions nizations Scatters (GB) Node (MB/s)

128 5 4 3 3.6 6.9

256 3 6 4 5.0 7.5

512 3 7 5 7.1 6.0

1024 3 10 6 9.4 7.5

2048 3 11 8 11.7 5.7

3072 5 14 10 14.2 4.6

Table 5: Scalability bottlenecks for large scale runs on ASCI Red. The mesh employed here has 

2.8 million vertices and 19 million edges. The preconditioner used in these results is block Jacobi 

with ILU( 1) in each subdomain. We observe that the principal nonscaling factor is the implicit 

synchronization.
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network wires are available when more processors are employed, scatter time increases. If prob

lem size and processor count are scaled together, we would expect scatter times to occupy a fixed 

percentage of the total and load imbalance to be reduced at high granularity.

The final column in Table 5 shows the scalability of the “application level effective band

width” that is computed by dividing the total amount of data transferred by the time spent in 

scatter operation. It includes the message packing and unpacking times plus any contention in 

the communication. That is why it is far lower than the achievable bandwidth (as measured by 

the “Ping-Pong" test from the message passing performance (MPP) [25] tests) of the networking 

hardware. The Ping-Pong test measures the point to point unidirectional bandwidth between any 

two processors in a communicator group. It is clear that the Ping-Pong test results in Table 6 are 

not representative of the actual communication pattern encountered in the scatter operation. To 

better understand this issue, we have carried out the “Halo” test (from the MPP test suite) on 64 

nodes of the ASCI Red machine. In this test, a processor exchanges messages with a fixed num

ber of neighbors, moving data from/to contiguous memory buffers. For the Halo test results in 

Table 6, each node communicated with 8 other nodes (which is a good estimate of the neighbors 

a processor in PETSc-FUN3D will need to communicate). The message lengths for both these 

tests (Ping-Pong and Halo) have been varied between 2KB to 32 KB since the average length of a 

message in the runs for Table 5 decreases from 23 KB to 3 KB as the number of processor goes 

up from 128 to 3072. We observe that the bandwidth obtained in the Halo test is significantly 

less than that obtained in the Ping-Pong test. This loss in performance perhaps can be attributed 

to the fact that a processor communicates with more than one neighbor at the same time in the 

Halo test. In addition, as stated earlier, the scatter operation involves the overhead of packing and 

unpacking of messages at the rate limited by the achievable memory bandwidth (about 145 MB/s 

as measured by the STREAM benchmark [41]).
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Message 

Length, KB

Bandwidth, MB/s

Ping-Pong Halo

2 93 70

4 145 94

8 183 92

16 235 106

32 274 114

Table 6: MPP test results on 64 nodes of ASCI Red. The Ping-Pong results measure the uni

directional bandwidth. The Halo test results (measuring the bidirectional bandwidth) are more 

representative of the communication pattern encountered in the scatter operation.

V.5 CONVERGENCE SCALABILITY

The convergence rates and, therefore, the overall parallel efficiencies of additive Schwarz methods 

are often dependent on subdomain granularity (see Table 7). Except when effective coarse-grid 

operators and intergrid transfer operators are known, so that optimal multilevel preconditioners 

can be constructed, the number of iterations to convergence tends to increase with granularity 

for eiliptically controlled problems, for either fixed or memory-scaled problem sizes. In prac

tical large-scale applications, however, the convergence rate degradation of single-level additive 

Schwarz is sometimes not as serious as the scalar. linear elliptic theory would suggest. Its effects 

are mitigated by several factors, including pseudo-transient nonlinear continuation and dominant 

intercomponent coupling. The former parabolizes the operator, endowing diagonal dominance. 

The latter renders the off-diagonal coupling less critical and. therefore. less painful to sever by 

domain decomposition. The block diagonal coupling can be captured fully in a point-block ILU
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preconditioner.

Convergence of Schwarz Methods

For a general exposition of Schwarz methods for linear problems, see [48]. Assume a <f-dimensionaI 

isotropic problem. Consider a unit aspect ratio domain with quasi-uniform mesh parameter h 

and quasi-uniform subdomain diameter H. Then problem size iV =  h~d, and, under the one- 

subdomain-per-processor assumption, processor number P  =  H~d. Consider four precondition

ers: point Jacobi, subdomain Jacobi, 1-level additive Schwarz (subdomain Jacobi with overlapped 

subdomains), and 2-level additive Schwarz (overlapped subdomains with a global coarse problem 

with approximately one degree of freedom per subdomain). The first two can be thought of as 

degenerate Schwarz methods (with zero overlap, and possibly point-sized subdomains). Consider 

acceleration of the Schwarz method by a Krylov method such as conjugate gradients or one of its 

many generalizations to nonsymmetric problems (e.g., GMRES). Krylov-Schwarz iterative meth

ods typically converge in a number of iterations that scales as the square-root of the condition 

number of the Schwarz-preconditioned system. Table 7 lists the expected number of iterations 

to achieve a given reduction ratio in the residual norm. The first line of this table pertains to 

diagonally scaled CG, a common default parallel implicit method, but one that is not very algo

rithmically scalable, since the iteration count degrades with a power of N . The results in this table 

were first derived for symmetric definite operators with exact solves on each subdomain, but they 

have been extended to operators with nonsymmetric and indefinite components and inexact solves 

on each subdomain.

The intuition behind this table is the following: errors propagate from the interior to the bound

ary in steps that are proportional to the largest implicit aggregate in the preconditioner, whether 

pointwise (in iV) or subdomainwise (in P). The use of overlap avoids the introduction of high-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Preconditioning

Iteration Count

in 2D in 3D

Point Jacobi 0(:Vl/3)

Subdomain Jacobi 0 ((N P )1'*) Of(iVP)1/8)

1-level Additive Schwarz 0 (P 1/-) 0 ( p l /3 )

2-level Additive Schwarz 0(1) 0(1)

Table 7: Iteration count scaling of Schwarz-preconditioned Krylov methods, translated from the 

theory into problem size N  and processor number P, assuming quasi-uniform grid, quasi-unit 

aspect ratio grid and decomposition, and quasi-isotropic operator.

energy-norm solution near discontinuities at subdomain boundaries. The 2-level method projects 

out Iow-wavenumber errors at the price of solving a global problem.

Only the 2-level method scales perfectly in convergence rate (constant, independent of ,V and 

P), like a traditional multilevel iterative method. However, the 2-level method shares with multi

level methods a nonscalable cost-per-iteration from the necessity of solving a coarse-grid system 

of size 0 {P ). Unlike recursive multilevel methods, a 2-level Schwarz method may have a rather 

fine coarse grid, for example, H  =  0 ( h 1̂ 2), which makes it less scalable overall. Parallelizing the 

coarse grid solve is necessary. Neither extreme of a fully distributed or a fully redundant coarse 

solve is optimal, but rather something in between.

Algorithmic Timing for #NKS Solver

The following is an incomplete list of parameters that need to be tuned in various phases of a 

pseudo-transient Newton-Krylov-Schwarz algorithm.

•  Nonlinear robustness continuation parameters: discretization order, initial timestep, expo-
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nent of timestep evolution law

• Newton parameters: convergence tolerance on each time step, globalization strategy (line 

search or trust region parameters), refresh frequency for Jacobian preconditioner

• Krylov parameters: convergence tolerance for each Newton correction, restart dimension of 

Krylov subspace, overall Krylov iteration limit, orthogonalization mechanism

• Schwarz parameters: subdomain number, quality of subdomain solver (fill level, number of 

sweeps), amount of subdomain overlap, coarse grid usage

• Subproblem parameters: fill level, number of sweeps 

Parameters for Pseudo-transient Continuation

Although asymptotically superlinear. solution strategies based on Newton’s method must often be 

approached through pseudo-timestepping. For robustness, pseudo-timestepping is often initiated 

with very small timesteps and accelerated subsequently. However, this conventional approach can 

lead to long ’’induction” periods that may be bypassed by a more aggressive strategy, especially 

for the smooth flow fields.

The timestep is advanced toward infinity by a power-law variation of the switched evolu

tion/relaxation (SER) heuristic of Van Leer and Mulder [43]. To be specific, within each residual 

reduction phase of computation, we adjust the timestep according to

where £ is the current time step number, ||/ (ue~1) || is 2-norm of the residual vector at the previous 

time step (£ — 1), and p is a tunable exponent close to unity. Figure 15 shows the effect of initial 

CFL number (the Courant-Friedrich-Levy number, a dimension!ess measure of the timestep size).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

N qFL, on the convergence rate. In general, the best choice of initial CFL number is dependent 

on the grid size and Mach number. A small CFL adds nonlinear stability far from the solution but 

retards the approach to the domain of superlinear convergence of the steady state. For flows with 

near discontinuities, it is safer to start with small CFL numbers.

In flows with shocks, high-order (second or higher) discretization for the convection terms 

should be activated only after the shock position has settled down. We begin such simulations 

with a first-order upwind scheme and switch to second-order after a certain residual reduction. The 

exponent (p) in the power law above is damped to 0.75 for robustness when shocks are expected 

to appear in second-order discretizations. For first-order discretizations, this exponent may be as 

large as 1.5. A reasonable switchover point of the residual norm between first-order and second- 

order discretization phases has been determined empirically. In shock-free simulations we use 

second-order accuracy throughout. Otherwise, we normally reduce the first two to four orders 

of residual norm with the first-order discretization, then switch to second order. This order of 

accuracy applies to the flux calculation; the preconditioner matrix is always built out of a first- 

order analytical Jacobian matrix.

Parameters for Krylov Solver

We use an inexact Newton method on each timestep [17]; that is, the linear system within each 

Newton iteration is solved only approximately. Especially in the beginning of the solution process, 

this saves a significant amount of execution time. We have considered the following three param

eters in this phase of computation: convergence tolerance, the number of simultaneously storable 

Krylov vectors, and the total number of Krylov iterations. The typical range of variation for the 

inner convergence tolerance is 0.001-0.01. We have experimented with progressively tighter tol

erances near convergence, and saved Newton iterations thereby, but did not save time relative to
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Figure 15: Residual norm versus iteration count for a 2.8M-vertex case, showing the effect of 

initial CFL number on convergence rate. The convergence tuning of nonlinear problems is notori

ously case specific.

cases with loose and constant tolerance. The Krylov subspace dimension depends largely on the 

problem size and the available memory. We have used values in the range of 10-30 for most of the 

problems. The total number of linear iterations (within each nonlinear solve) has been varied from 

10 for the smallest problem to 80 for the largest one. Several thousand fine-grid flux evaluations 

are typically required to achieve 10“ 10 residual reduction on a million-vertex Euler problem.

Additive Schwarz Preconditioner

Table 8 explores two quality parameters for the additive Schwarz preconditioner: subdomain over

lap and quality of the subdomain solve using incomplete factorization. We exhibit execution time 

and iteration count data from runs of PETSc-FUN3D on the ASCI Red machine for a fixed-size
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problem with 357,900 grid points and 1,789,500 degrees of freedom. These calculations were 

performed using GMRES(20), one subdomain per processor (without overlap for block Jacobi 

and with overlap for ASM), and ILU(k) where k varies from 0 to 2, and with the natural ordering 

in each subdomain block. The use of ILU(O) with natural ordering on the first-order Jacobian, 

while applying a second-order operator, allows the factorizauon to be done in place, with or with

out overlap. However, the overlap case does require forming an addiuonal data structure on each 

processor to store matrix elements corresponding to the overlapped regions.

From Table 8 we see that the larger overlap and more fill helps in reducing the total number of 

linear iteradons as the number of processors increases, as theory and intuidon predict. However, 

both increases consume more memory and result in more work per iteradon. ulumately driving 

up execuuon dmes in spite of faster convergence. Best execudon dmes are obtained for any given 

number of processors for ILU( I ). as the number of processors becomes large (subdomain size 

small), for zero overlap.

The addiuonal computadon/communicauon costs for addiuve Schwarz (as compared with 

block Jacobi) are the following:

1. Calculauon of the matrix couplings among processors. For block Jacobi, these need not be 

calculated.

2. Communicauon of the “overlapped” matrix elements to the relevant processors.

3. Factorizauon of the larger local submatrices.

4. Communicauon of the ghost points in the applicauon of the ASM precondiuoner. We use 

restricted addiuve Schwarz method (RASM) [14], which communicates only when setdng 

up the overlapped subdomain problems and ignores the updates coming from the overlapped 

regions. This saves a factor of two in local communicauon relauve to standard ASM.
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5. Inversion of larger triangular factors in each iteration.

The execution times reported in Table 8 are highly dependent on the machine used, since each 

of the additional computation/communication costs listed above may shift the computation past a 

knee in the performance curve for memory bandwidth, communication network, and so on.

Other Algorithmic Timing Parameters

In [24] we highlight some additional tunings that have yielded good results in our context. Some 

subsets of these parameters are not orthogonal but interact strongly with each other. In addition, 

optimal values of some of these parameters depend on the grid resolution. We are currently using 

derivative-free asynchronous parallel direct search algorithms [31] to more systematically explore 

this large parameter space.

We emphasize that the discussion in this section does not pertain to discretization parameters, 

which constitute another area of investigation — one that ultimately impacts performance at a 

higher level. The algorithmic parameters discussed in this section do not affect the accuracy of the 

discrete solution, but only the rate at which the solution is attained. In all of our experiments, the 

goal has been to minimize the overall execution time, not to maximize the floating-point operations 

per second or the parallel efficiency. There are many tradeoffs that enhance Mflop/s rates or 

efficiency but retard execution completion.

V.6 EFFECT OF PARTITIONING STRATEGY

Mesh partitioning has a dominant effect on parallel scalability for problems characterized by (al

most) constant work per point. As shown above, poor load balance causes idleness at synchro

nization points, which are frequent in implicit methods (e.g., at every conjugation step in a Krylov 

solver). With NKS methods, then, it is natural to strive for a very well balanced load. The p-
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ILU(O) in Each Subdomain

Number Overlap

of 0 1 2

Processors Time Linear Its Time Linear Its Time Linear Its

32 688s 930 661s 816 696s 813

64 371s 993 374s 876 418s 887

128 210s 1052 230s 988 222s 872

ILU(l) in Each Subdomain

Number

of

Processors

Overlap

0 I 2

Time Linear Its Time Linear Its Time Linear Its

32 598s 674 564s 549 617s 532

64 334s 746 335s 617 359s 551

128 177s 807 178s 630 200s 555

ILU(2) in Each Subdomain

Number

of

Processors

Overlap

0 I 2

time Linear Its Time Linear Its Time Linear Its

32 688s 527 786s 441 — —

64 386s 608 441s 488 53 Is 448

128 I93s 631 272s 540 313s 472

Table 8: Execution times and linear iteration counts on the 333 MHz Pentium Pro ASCI Red 

machine for a 357,900-vertex case, showing the effect of subdomain overlap and incomplete fac

torization fill level in the additive Schwarz preconditioner. The best execution times for each ILU 

fill level and number of processors are in boldface italics in each row.
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MeTiS algorithm in the MeTiS package [32], for example, provides almost perfect balancing of 

the number of mesh points per processor. However, balancing work alone is not sufficient. Com

munication must be balanced as well, and these objectives are not entirely compatible. Figure 16 

shows the effect of data partitioning using p-MeHS, which tries to balance the number of nodes 

and edges on each partition, and k-MeTiS, which tries to reduce the number of noncontiguous sub- 

domains and connectivity of the subdomains. Better overall scalability is observed with k-MeTiS, 

despite the better load balance for the p-MeTiS partitions. This is due to the slightly poorer nu

merical convergence rate of the iterative NKS algorithm with the p-MeTiS partitions. The poorer 

convergence rate can be explained by the fact that the p-MeTiS partitioner generates disconnected 

pieces within a single "subdomain," effectively increasing the number of blocks in the block Ja

cobi or additive Schwarz algorithm and increasing the size of the interface. The convergence rates 

for block iterative methods degrade with increasing number of blocks, as discussed in Section V.5.

V.7 REDUCING THE REQUIRED MEMORY BANDWIDTH

The CFD application spends almost all of its time in two phases: flux computations, to evaluate 

conservation law residuals, and sparse linear algebraic kernels, to solve the Newton equations for 

an iterative correction to the solution. The linear algebraic kernels run at close to the aggregate 

memory-bandwidth limit on performance (as determined by the STREAM benchmarks [41]), and 

the flux computations are bounded by instruction scheduling, that is. the number of basic opera

tions that can be performed in a single clock cycle (see the analysis in [22]).

To improve the performance of the sparse triangular matrix solution phase (and of other simi

lar phases where memory bandwidth is a bottleneck), we store elements of the preconditioner for 

the Jacobian matrix in single precision. In our "matrix-free" implementation, the Jacobian itself 

is never explicitly needed; see [28]. All computation with the preconditioner is still done in full
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Figure 16: Parallel speedup relative to 128 processors on a 600 MHz Cray T3E for a 2.8M vertex 

case, showing the effect of partitioning algorithms k-MeTiS. and p-MeTiS.

(double) precision. The performance advantages are shown in Table 9. where the single precision 

storage version runs at almost twice the rate of the double precision storage version, clearly iden

tifying memory bandwidth as the bottleneck. The percentage of overall time in the linear solver 

ranges from 29.9% to 25.4% for the double precision storage version to 20.7% to 15.1% for the 

single. The number of time steps needed to converge is not affected, since the preconditioner is 

already very approximate by design.

V.8 DOMAIN-BASED AND/OR INSTRUCTION-LEVEL PARALLELISM

The performance results above are based on subdomain parallelism using the Message Passing 

Interface (MPI) [26]. With the availability of large-scale SMP clusters, the different software 

models for parallel programming require a fresh assessment. For physically distributed memory
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Number Computational Phase

of Linear Solve Overall

Processors Double Single Double Single

16 223s 136s 746s 657s

32 117s 67s 373s 33 Is

64 60s 34s 205s 18 Is

120 31s 16s 122s 106s

Table 9: Execution times on a 250 MHz Origin 2000 for 357,900 vertex case with single or double 

precision storage of the preconditioner matrix. The results suggest that the linear solver time is 

bottlenecked by memory bandwidth. This conclusion is supported by analytical estimates in [22].

machines, the message passing interface (MPI) has been a natural and very successful software 

model. For another category of machines with distributed shared memory and nonuniform mem

ory access, both MPI and OpenMP have been used with respectable parallel scalability. However, 

for clusters with two or more SMPs on a single node, the hybrid programming model with threads 

within a node (OpenMP being a special case of threads because of the potential for highly efficient 

handling of the threads and memory by the compiler) and MPI among the nodes seems natural. 

Several researchers (e.g., [10,40]) have used this mixed model with reasonable success.

Two extremes of execution on hybrid architectures are often employed, due to their program

ming simplicity. At one extreme is the scenario in which the user explicitly manages the memory 

updates among different processes; this is typically done by using MPI. but can also be imple

mented with OpenMP. The advantage of this approach is good performance and excellent scalabil

ity since network transactions can be performed at large granularity. Even when the user explicitly
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manages the memory updates, OpenMP can potentially offer the benefit of lower communication 

latencies by avoiding some extraneous copies and synchronizations. The other extreme is the 

case in which the system manages updates among different threads (or processes), e.g., the shared 

memory model with OpenMP. Here the term “system” refers to the hardware or the operating sys

tem, but most commonly a combination of the two. The advantages are the ease of programming, 

possibly lower communication overhead, and no unnecessary copies. However, performance and 

scalability are open issues. For example, the user may need to employ a technique such as coloring 

to create nonoverlapping units of work to get reasonable performance. In the hybrid programming 

model, some updates are managed by the user (e.g.. via MPI or OpenMP) and the rest by the 

system (e.g., via OpenMP).

In this section, we evaluate the hybrid programming model using memory performance as a 

metric. The performance of many scientific computing codes is dependent on the performance of 

the memory subsystem, including the available memory bandwidth, memory latency, number and 

sizes of caches, etc. In addition, scheduling of memory transactions can also play a large role in the 

performance of a code. Ideally, the load/store instructions should be issued as early as possible. 

However, because of hardware (number of load/store units) or software (poor quality assembly 

code) limitations, these instructions may be issued significantly late, when it is not possible to 

cover their high latency, resulting in poor overall performance. OpenMP has the potential of 

better memory subsystem performance since it can schedule the threads for better cache locality 

or hide the latency of a cache miss. However, if memory bandwidth is the critical resource, extra 

threads only compete with each other, actually degrading performance relative to one thread (see 

Figure 17).
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Figure 17: Memory bandwidth (MBytes/sec) as measured by STREAM benchmark [41] on one 

node of IBM Power 4 (32 processors per node each running at 13 GHz clock). Top: Total 

bandwidth. Bottom: Bandwidth per processor.
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Implementation Issues

While implementing the hybrid model, the following issues should be considered.

•  False sharing: this happens when two (or more) threads running on different processors 

work on different words in the same cache line. If thread 1 writes a word (thus invalidating 

the cache line), an additional cache miss occurs on the other processor (running thread 2) 

even if it does not need the word written by thread 1 [15].

• Cache locality: a thread should be able to reuse a cache line multiple times before it gets 

invalidated or replaced by another cache line.

•  Work division among threads: work can be divided by compiler or manually (as is done 

for pure message passing case); also this division can be static or dynamic.

• Updates Management: there are many possibilities for managing the updates

-  Private data — initialization and reductions are memory bandwidth limited

-  Shared data — updates need to be synchronized

-  Data decomposition — a shared array is divided into different pieces; a thread is as

signed to one or more pieces with exclusive write permission (other threads can only 

read those pieces).

Hybrid Model in PETSc-FUN3D

We investigate the mixed model by employing OpenMP in the flux calculation phase only (Fig

ure 9 in Chapter IV). This phase takes over 60% of the execution time on ASCI Red and is an ideal 

candidate for shared-memory parallelism because it does not suffer from the memory bandwidth 

bottleneck (see Section IV.3). Three different implementations of the hybrid model are considered:
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• Edge Coloring: see left side in Figure 10 for an illustration of edge coloring; all the threads 

can work simultaneously in the same color. The work among threads is divided by compiler 

(using OpenMP directives). We observe that this arrangement leads to poor cache locality 

but updates are independent.

•  Edge Reordering with redundant work: see right side in Figure 10 for an example of 

edge reordering. Here updates to the shared data are managed through private work arrays 

for each thread. Each thread writes to its private work arrays that are gathered into the 

shared arrays during a sequential reduction phase (which introduces some redundant work). 

Again work is divided by compiler (using OpenMP directives). This case has excellent 

cache locality but updates are sequential.

•  MeTiS divided work for each thread: here each MPI process calls MeTiS to further sub

divide the work among threads; the boundary data is replicated for each thread. We apply 

the “Owner computes” rule for every thread to resolve the updates (similar to pure message 

passing case). This case has reasonable cache locality (which can be enhanced by suitable 

vertex and edge reorderings).

In Table 10, we compare the performance of flux evaluation and replication of “ghostpoint” 

data (VecScatter) phases when the work is divided by using two OpenMP threads per node with 

the performance when the work is divided using two independent MPI processes per node. There 

is no communication in the flux evaluation phase.

The hybrid MPI/OpenMP programming model appears to be a more efficient way to employ 

shared memory than are the heavyweight subdomain-based processes (MPI alone), especially 

when the number of nodes is large. The MPI model works with larger number of subdomains 

(equal to the number of MPI processors), resulting in slower rate of convergence. The hybrid
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model works with fewer but chunkier subdomains (equal to the number of nodes) that result in 

faster convergence rate and shorter execution time, despite the fact that there is some redundant 

work when the data from the two threads is combined due to the lack of a vector-reduce operation 

in the OpenMP standard (version I) itself. Specifically, some redundant work arrays must be al

located that are not present in the MPI code. The subsequent gather operations (which tend to be 

memory bandwidth bound) can easily offset the advantages accruing from the low latency shared 

memory communication. One way to get around this problem is to use some coloring strategies to 

create the disjoint work sets, but this takes away the ease and simplicity of the parallelization step 

promised by the OpenMP model.
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Flux Evaluation Time in seconds

MPI Processes per Node MPI/OpenMP with 2 Threads per Node

Nodes 1 2 Edge Coloring Edge Reordering MeTiS Division

256 451 258 352 255 231

512 249 153 172 137 127

1024 148 88 89 83 76

2048 85 48 47 45 44

3072 61 40 33 32 33

Vector Scatter Time in seconds

MPI Processes per Node MPI/OpenMP with 2 Threads per Node

Nodes . 1i Edge Coloring Edge Reordering MeTiS Division

256 59 74 71 59 62

512 38 58 48 38 39

1024 35 48 41 33 33

2048 37 51 38 39 38

3072 32 51 30 30 30

Table 10: Execution time on the 333 MHz Pentium Pro ASCI Red machine for function evalua

tions only for a 2.8M-vertex case, comparing the performance of the hybrid (MPI/OpenMP) and 

the distributed memory (MPI alone) programming models.
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CHAPTER VI 

CONCLUSIONS

This work demonstrates software reuse of a legacy PDE code through the integration of the NASA 

code FUN3D into the PETSc framework. This new code (PETSc-FUN3D) achieves high levels of 

performance on many large-scale machines (ASCI Red. Cray T3E. SGI Origin, etc.). We employ 

the pseudo-transient continuation Newton-Krylov-Schwarz ('PNKS) algorithm to solve the Euler 

(compressible and incompressible) equations of fluid flow in parallel. We analyze the performance 

of this code with a nontraditional emphasis on memory references, in addition to the traditional 

focus on minimizing the floating point work. We take the view that the floating point work is 

almost free because it gets overlapped with cycles spent while fetching operands from memory 

on modem superscalar architectures. On the other hand, because of large scale, we must employ 

algorithms whose convergence rate is nearly optimal.

To understand why many PDE based codes achieve only a small fraction of peak performance, 

we pay attention to the memory hierarchy of a processor. Using PETSc-FUN3D as an example, we 

demonstrate that interlacing and blocking of held variables and edge reordering are very effective 

in dealing with the limitations arising from memory bandwidth and instruction scheduling. Inter

lacing reduces the size of the working set at any level of cache by making the memory references 

closely spaced. Blocking reduces the memory bandwidth requirement by cutting the number of 

loads. Our experimental results on SGI Origin 2000 show that blocking graduates more loads and 

stores per floating point instruction. Edge reordering creates more temporal locality in memory 

references and cuts down significantly the TLB misses and data cache misses.

The impact of these data reorganizing strategies is further supported by providing simple per

formance models for a critical kernel of scientific computing, the sparse matrix-vector (MATVEC) 

product operation. The cache conflict analysis for banded matrix vector product case helps us to
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understand how to minimize the cache misses by using appropriate vector size and padding values. 

While carrying out performance optimizations, it is important to know what is the "achievable” 

performance for a particular algorithm on a given architecture. The performance models developed 

for the sparse MATVEC case help us to judge the performance of two important computational 

phases of PETSc-FUN3D. The triangular solution phase runs close to the memory bandwidth 

limit while the flux evaluation (which has high floating point work to do per memory reference) is 

bounded by the instruction scheduling limit.

We identify scalability bottlenecks for a fixed-size problem when the number of processors 

grows to several thousand. The implicit synchronizations and vector scatter/gather operations 

turn out to be the primary nonscaling phases. The implicit synchronizations get worse primarily 

because of the slight load imbalances that arise as the problem size per processor gets smaller. 

The mesh partitioning strategy that tries to minimize this load imbalance gives better scalability 

at large granularity. The vector/gather operation involves message packing before sending and 

message unpacking after receiving. Both of these steps are memory bandwidth bound, since the 

message is extracted from a large global vector (touching many noncontiguous cache lines) during 

the packing stage and then put back into another large vector during the unpacking stage.

The algorithmic efficiency of the Schwarz preconditioner depends on the number of sub- 

domains, amount of overlap among the subdomains, and the allowed fill level (k ) in the each 

subdomain-based incomplete factorization (ILU(A:)). For PETSc-FUN3D on the ASCI Red ma

chine, we find that the block Jacobi (additive Schwarz with zero overlap) and ILU( 1) give the best 

execution time, especially when the number of subdomains is large.

The hybrid (mixed message passing and shared memory) programming model achieves better 

performance than the corresponding pure message passing case, primarily because it allows each 

subdomain to be chunkier (with better computation to communication ratio), relative to further
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subdivision. In addition, we need to pay attention to the work division among threads, cache 

locality, and update management. We recommend using this model only in the computational 

phases that are not memory bandwidth limited (otherwise, threads will compete for the available 

memory bandwidth, involving more synchronizations at the hardware level). In addition, better 

load balancing can be achieved by dynamic thread scheduling.

In summary, this work highlights many important performance issues relevant to the PDE- 

based scalable solvers. The critical directions for future research are: (I) less synchronous al

gorithms, (2) memory latency tolerant algorithms, and (3) hybrid programming model for large 

number of threads per node. More detailed performance models are also needed, since knowing 

the “achievable” performance levels for different kernels can aid in identifying the optimizations 

that can be done at compile and run times.

The critical nature of this research is reflected in the research agenda of the U.S. Depart

ment of Energy through two of the multiyear multi-institution Scientific Discovery through Ad

vanced Computing (SciDAC) projects: Terascale Optimal PDE Simulation (TOPS) and Perfor

mance Evaluation Research Center (PERC). The developments described in this dissertation have 

influenced the direction of these projects. Though architectures continue to evolve in their hard

ware details, our work addresses the trends that are becoming more pronounced as we follow 

the technology roadmap—the increasing gap between processor and memory performance and 

increased concurrency. As we anticipate machines capable of hundreds of teraflops, consisting 

of tens of thousands of processors with memory latencies of hundreds of cycles within the next 

three years, we are ready with analyses, algorithms, and software to engage them for PDE-based 

simulations.
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