139,012 research outputs found

    Network Lasso: Clustering and Optimization in Large Graphs

    Full text link
    Convex optimization is an essential tool for modern data analysis, as it provides a framework to formulate and solve many problems in machine learning and data mining. However, general convex optimization solvers do not scale well, and scalable solvers are often specialized to only work on a narrow class of problems. Therefore, there is a need for simple, scalable algorithms that can solve many common optimization problems. In this paper, we introduce the \emph{network lasso}, a generalization of the group lasso to a network setting that allows for simultaneous clustering and optimization on graphs. We develop an algorithm based on the Alternating Direction Method of Multipliers (ADMM) to solve this problem in a distributed and scalable manner, which allows for guaranteed global convergence even on large graphs. We also examine a non-convex extension of this approach. We then demonstrate that many types of problems can be expressed in our framework. We focus on three in particular - binary classification, predicting housing prices, and event detection in time series data - comparing the network lasso to baseline approaches and showing that it is both a fast and accurate method of solving large optimization problems

    APPLICATION OF GROUP TESTING FOR ANALYZING NOISY NETWORKS

    Get PDF
    My dissertation focuses on developing scalable algorithms for analyzing large complex networks and evaluating how the results alter with changes to the network. Network analysis has become a ubiquitous and very effective tool in big data analysis, particularly for understanding the mechanisms of complex systems that arise in diverse disciplines such as cybersecurity [83], biology [15], sociology [5], and epidemiology [7]. However, data from real-world systems are inherently noisy because they are influenced by fluctuations in experiments, subjective interpretation of data, and limitation of computing resources. Therefore, the corresponding networks are also approximate. This research addresses these issues of obtaining accurate results from large noisy networks efficiently. My dissertation has four main components. The first component consists of developing efficient and scalable algorithms for centrality computations that produce reliable results on noisy networks. Two novel contributions I made in this area are the development of a group testing [16] based algorithm for identification of high centrality vertices which is extremely faster than current methods, and an algorithm for computing the betweenness centrality of a specific vertex. The second component consists of developing quantitative metrics to measure how different noise models affect the analysis results. We implemented a uniform perturbation model based on random addition/ deletion of edges of a network. To quantify the stability of a network we investigated the effect that perturbations have on the top-k ranked vertices and the local structure properties of the top ranked vertices. The third component consists of developing efficient software for network analysis. I have been part of the development of a software package, ESSENS (Extensible, Scalable Software for Evolving NetworkS) [76], that effectively supports our algorithms on large networks. The fourth component is a literature review of the various noise models that researchers have applied to networks and the methods they have used to quantify the stability, sensitivity, robustness, and reliability of networks. These four aspects together will lead to efficient, accurate, and highly scalable algorithms for analyzing noisy networks

    Detecting exploit patterns from network packet streams

    Get PDF
    Network-based Intrusion Detection Systems (NIDS), e.g., Snort, Bro or NSM, try to detect malicious network activity such as Denial of Service (DoS) attacks and port scans by monitoring network traffic. Research from network traffic measurement has identified various patterns that exploits on today\u27s Internet typically exhibit. However, there has not been any significant attempt, so far, to design algorithms with provable guarantees for detecting exploit patterns from network traffic packets. In this work, we develop and apply data streaming algorithms to detect exploit patterns from network packet streams. In network intrusion detection, it is necessary to analyze large volumes of data in an online fashion. Our work addresses scalable analysis of data under the following situations. (1) Attack traffic can be stealthy in nature, which means detecting a few covert attackers might call for checking traffic logs of days or even months, (2) Traffic is multidimensional and correlations between multiple dimensions maybe important, and (3) Sometimes traffic from multiple sources may need to be analyzed in a combined manner. Our algorithms offer provable bounds on resource consumption and approximation error. Our theoretical results are supported by experiments over real network traces and synthetic datasets

    S3G2: a Scalable Structure-correlated Social Graph Generator

    Get PDF
    Benchmarking graph-oriented database workloads and graph-oriented database systems are increasingly becoming relevant in analytical Big Data tasks, such as social network analysis. In graph data, structure is not mainly found inside the nodes, but especially in the way nodes happen to be connected, i.e. structural correlations. Because such structural correlations determine join fan-outs experienced by graph analysis algorithms and graph query executors, they are an essential, yet typically neglected, ingredient of synthetic graph generators. To address this, we present S3G2: a Scalable Structure-correlated Social Graph Generator. This graph generator creates a synthetic social graph, containing non-uniform value distributions and structural correlations, and is intended as a testbed for scalable graph analysis algorithms and graph database systems. We generalize the problem to decompose correlated graph generation in multiple passes that each focus on one so-called "correlation dimension"; each of which can be mapped to a MapReduce task. We show that using S3G2 can generate social graphs that (i) share well-known graph connectivity characteristics typically found in real social graphs (ii) contain certain plausible structural correlations that influence the performance of graph analysis algorithms and queries, and (iii) can be quickly generated at huge sizes on common cluster hardware

    Analysis of Microarray Data using Machine Learning Techniques on Scalable Platforms

    Get PDF
    Microarray-based gene expression profiling has been emerged as an efficient technique for classification, diagnosis, prognosis, and treatment of cancer disease. Frequent changes in the behavior of this disease, generate a huge volume of data. The data retrieved from microarray cover its veracities, and the changes observed as time changes (velocity). Although, it is a type of high-dimensional data which has very large number of features rather than number of samples. Therefore, the analysis of microarray high-dimensional dataset in a short period is very much essential. It often contains huge number of data, only a fraction of which comprises significantly expressed genes. The identification of the precise and interesting genes which are responsible for the cause of cancer is imperative in microarray data analysis. Most of the existing schemes employ a two phase process such as feature selection/extraction followed by classification. Our investigation starts with the analysis of microarray data using kernel based classifiers followed by feature selection using statistical t-test. In this work, various kernel based classifiers like Extreme learning machine (ELM), Relevance vector machine (RVM), and a new proposed method called kernel fuzzy inference system (KFIS) are implemented. The proposed models are investigated using three microarray datasets like Leukemia, Breast and Ovarian cancer. Finally, the performance of these classifiers are measured and compared with Support vector machine (SVM). From the results, it is revealed that the proposed models are able to classify the datasets efficiently and the performance is comparable to the existing kernel based classifiers. As the data size increases, to handle and process these datasets becomes very bottleneck. Hence, a distributed and a scalable cluster like Hadoop is needed for storing (HDFS) and processing (MapReduce as well as Spark) the datasets in an efficient way. The next contribution in this thesis deals with the implementation of feature selection methods, which are able to process the data in a distributed manner. Various statistical tests like ANOVA, Kruskal-Wallis, and Friedman tests are implemented using MapReduce and Spark frameworks which are executed on the top of Hadoop cluster. The performance of these scalable models are measured and compared with the conventional system. From the results, it is observed that the proposed scalable models are very efficient to process data of larger dimensions (GBs, TBs, etc.), as it is not possible to process with the traditional implementation of those algorithms. After selecting the relevant features, the next contribution of this thesis is the scalable viii implementation of the proximal support vector machine classifier, which is an efficient variant of SVM. The proposed classifier is implemented on the two scalable frameworks like MapReduce and Spark and executed on the Hadoop cluster. The obtained results are compared with the results obtained using conventional system. From the results, it is observed that the scalable cluster is well suited for the Big data. Furthermore, it is concluded that Spark is more efficient than MapReduce due to its an intelligent way of handling the datasets through Resilient distributed dataset (RDD) as well as in-memory processing and conventional system to analyze the Big datasets. Therefore, the next contribution of the thesis is the implementation of various scalable classifiers base on Spark. In this work various classifiers like, Logistic regression (LR), Support vector machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Radial basis function network (RBFN) with two variants hybrid and gradient descent learning algorithms are proposed and implemented using Spark framework. The proposed scalable models are executed on Hadoop cluster as well as conventional system and the results are investigated. From the obtained results, it is observed that the execution of the scalable algorithms are very efficient than conventional system for processing the Big datasets. The efficacy of the proposed scalable algorithms to handle Big datasets are investigated and compared with the conventional system (where data are not distributed, kept on standalone machine and processed in a traditional manner). The comparative analysis shows that the scalable algorithms are very efficient to process Big datasets on Hadoop cluster rather than the conventional system

    S3G2: a Scalable Structure-correlated Social Graph Generator

    Get PDF
    Benchmarking graph-oriented database workloads and graph-oriented database systems are increasingly becoming relevant in analytical Big Data tasks, such as social network analysis. In graph data, structure is not mainly found inside the nodes, but especially in the way nodes happen to be connected, i.e. structural correlations. Because such structural correlations determine join fan-outs experienced by graph analysis algorithms and graph query executors, they are an essential, yet typically neglected, ingredient of synthetic graph generators. To address this, we present S3G2: a Scalable Structure-correlated Social Graph Generator. This graph generator creates a synthetic social graph, containing non-uniform value distributions and structural correlations, and is intended as a testbed for scalable graph analysis algorithms and graph database systems. We generalize the problem to decompose correlated graph generation in multiple passes that each focus on one so-called "correlation dimension"; each of which can be mapped to a MapReduce task. We show that using S3G2 can generate social graphs that (i) share well-known graph connectivity characteristics typically found in real social graphs (ii) contain certain plausible structural correlations that influence the performance of graph analysis algorithms and queries, and (iii) can be quickly generated at huge sizes on common cluster hardware

    Recent Advances in Modularity Optimization and Their Application in Retailing

    Get PDF
    In this contribution we report on three recent advances in modularity optimization, namely: 1. The randomized greedy (RG) family of modularity optimization algorithms are state-of-the-art graph clustering algorithms which are near optimal, fast, and scalable. 2. The extension of the RG family to multi-level clustering. 3. A new entropy based cluster index which allows the detection of the proper clustering levels and of stable core clusters at each level. Last, but not least, several marketing applications of these algorithms for customer enablement and empowerment are discussed: e.g. the detection of low-level cluster structures from retail purchase data, the analysis of the co-usage structure of scientific documents for detecting multilevel category structures for scientific libraries, and the analysis of social groups from the friend relation of social network sites

    Frequent Itemsets Mining for Big Data: A Comparative Analysis

    Get PDF
    Itemset mining is a well-known exploratory data mining technique used to discover interesting correlations hidden in a data collection. Since it supports different targeted analyses, it is profitably exploited in a wide range of different domains, ranging from network traffic data to medical records. With the increasing amount of generated data, different scalable algorithms have been developed, exploiting the advantages of distributed computing frameworks, such as Apache Hadoop and Spark. This paper reviews Hadoop- and Spark-based scalable algorithms addressing the frequent itemset mining problem in the Big Data domain through both theoretical and experimental comparative analyses. Since the itemset mining task is computationally expensive, its distribution and parallelization strategies heavily affect memory usage, load balancing, and communication costs. A detailed discussion of the algorithmic choices of the distributed methods for frequent itemset mining is followed by an experimental analysis comparing the performance of state-of-the-art distributed implementations on both synthetic and real datasets. The strengths and weaknesses of the algorithms are thoroughly discussed with respect to the dataset features (e.g., data distribution, average transaction length, number of records), and specific parameter settings. Finally, based on theoretical and experimental analyses, open research directions for the parallelization of the itemset mining problem are presented

    A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

    Get PDF
    The Single Source Shortest Path (SSSP) problem is a classic graph theory problem that arises frequently in various practical scenarios; hence, many parallel algorithms have been developed to solve it. However, these algorithms operate on static graphs, whereas many real-world problems are best modeled as dynamic networks, where the structure of the network changes with time. This gap between the dynamic graph modeling and the assumed static graph model in the conventional SSSP algorithms motivates this work. We present a novel parallel algorithmic framework for updating the SSSP in large-scale dynamic networks and implement it on the shared-memory and GPU platforms. The basic idea is to identify the portion of the network affected by the changes and update the information in a rooted tree data structure that stores the edges of the network that are most relevant to the analysis. Extensive experimental evaluations on real-world and synthetic networks demonstrate that our proposed parallel updating algorithm is scalable and, in most cases, requires significantly less execution time than the state-of-the-art recomputing-from-scratch algorithms
    corecore