
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Apr 2022

A Parallel Algorithm Template for Updating Single-Source A Parallel Algorithm Template for Updating Single-Source

Shortest Paths in Large-Scale Dynamic Networks Shortest Paths in Large-Scale Dynamic Networks

Arindam Khanda

Sriram Srinivasan

Sanjukta Bhowmick

Boyana Norris

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/1229

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
A. Khanda et al., "A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale
Dynamic Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 4, pp. 929 - 940,
Institute of Electrical and Electronics Engineers, Apr 2022.
The definitive version is available at https://doi.org/10.1109/TPDS.2021.3084096

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/1229
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1229&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TPDS.2021.3084096
mailto:scholarsmine@mst.edu

A Parallel Algorithm Template for Updating
Single-Source Shortest Paths in
Large-Scale Dynamic Networks

Arindam Khanda , Sriram Srinivasan , Sanjukta Bhowmick,

Boyana Norris , and Sajal K. Das , Fellow, IEEE

Abstract—The Single Source Shortest Path (SSSP) problem is a classic graph theory problem that arises frequently in various

practical scenarios; hence, many parallel algorithms have been developed to solve it. However, these algorithms operate on static

graphs, whereas many real-world problems are best modeled as dynamic networks, where the structure of the network changes with

time. This gap between the dynamic graph modeling and the assumed static graph model in the conventional SSSP algorithms

motivates this work. We present a novel parallel algorithmic framework for updating the SSSP in large-scale dynamic networks and

implement it on the shared-memory and GPU platforms. The basic idea is to identify the portion of the network affected by the changes

and update the information in a rooted tree data structure that stores the edges of the network that are most relevant to the analysis.

Extensive experimental evaluations on real-world and synthetic networks demonstrate that our proposed parallel updating algorithm is

scalable and, in most cases, requires significantly less execution time than the state-of-the-art recomputing-from-scratch algorithms.

Index Terms—Dynamic networks, single source shortest path (SSSP), shared-memory parallel algorithm, GPU implementation

Ç

1 INTRODUCTION

NETWORKS (or graphs) are mathematical models of com-
plex systems of interacting entities arising in diverse

disciplines, e.g., bioinformatics, epidemic networks, social
sciences, communication networks, cyber-physical systems,
and cyber-security. The vertices of the network represent
entities and the edges represent dyadic relations between
pairs of entities. Network analysis involves computing
structural properties, which in turn can provide insights to
the characteristics of the underlying complex systems.

Many networks arising from real-world applications are
extremely large (order of millions of vertices and order of bil-
lions of edges). They are also often dynamic, in that their
structures change with time. Thus, fast analysis of network
properties requires (i) efficient algorithms to quickly update
these properties as the structure changes, and (ii) parallel
implementations of these dynamic algorithms for scalability.

We posit that the design of the parallel algorithm for updat-
ing the network properties should ideally be independent of
the implementation platforms. However, most of the existing
literature compound these two aspects by creating algorithms
that are closely tied to the parallel platform. This lack of flexi-
bility of applying algorithms across platforms becomes even
more critical for exascale computing, which is generally achieved
through a combination of multi-core, many-core machines as
well as accelerators, such as GPUs. This motivated us to dev-
elop a framework for updating Single Source Shortest Path (SSSP)
in large dynamic networks on GPUs and multicore CPUs, which
is an important first step in achieving exascale capability.

The SSSP is a fundamental problem of network analysis
that has applications in transportation networks [1], communi-
cation (wireline, wireless, sensor) [2], social networks [3], and
many others. It is also the building block for computing other
important network analysis properties such as closeness and
betweenness centrality. While numerous algorithms can com-
pute the SSSP in static networks and sequentially update the
SSSP on dynamic networks [4], [5], [6], fewparallel SSSP update
algorithms have been created. Because most of the real-world
networks are large, unstructured and sparse, developing effi-
cient update algorithms becomes extremely challenging.

In this paper, we present a novel parallel algorithmic frame-
work for updating the SSSP in large-scale dynamic networks.
The key idea is to first identify the subgraphs that are affected
by the changes, and then update only these subgraphs. The
first step is trivially parallel. Each changed edge is processed
in parallel to identify the affected subgraphs. The second step
is challenging as it requires synchronization when the SSSP
tree is altered. We propose an iterative method that converges
to the smallest distance, thereby eliminating explicit and
expensive synchronization constructs such as critical sections.

� Arindam Khanda and Sajal K. Das are with the Department of Computer
Science, Missouri University of Science and Technology, Rolla, MO
65409 USA. E-mail: {akkcm, sdas}@mst.edu.

� Sriram Srinivasan is with the Department of Radiation Oncology, Virginia
Commonwealth University, Richmond, VA 23284 USA. E-mail: sriram.
srinivasan@vcuhealth.org.

� Sanjukta Bhowmick is with the Department of Computer Science
and Engineering, University of North Texas, Denton, TX 76201
USA. E-mail: sanjukta.bhowmick@unt.edu.

� Boyana Norris is with the Department of Computer and Information Sci-
ence, University of Oregon, Eugene, OR 97403 USA. E-mail: norris@cs.
uoregon.edu.

Manuscript received 25 Feb. 2021; revised 12 May 2021; accepted 18 May 2021.
Date of publication 26 May 2021; date of current version 15 Oct. 2021.
(Corresponding author: Boyana Norris.)
Recommended for acceptance by S. Alam, L. Curfman McInnes, K. Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3084096

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022 929

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0003-0085-309X
https://orcid.org/0000-0003-0085-309X
https://orcid.org/0000-0003-0085-309X
https://orcid.org/0000-0003-0085-309X
https://orcid.org/0000-0003-0085-309X
https://orcid.org/0000-0001-5811-9731
https://orcid.org/0000-0001-5811-9731
https://orcid.org/0000-0001-5811-9731
https://orcid.org/0000-0001-5811-9731
https://orcid.org/0000-0001-5811-9731
https://orcid.org/0000-0002-9471-0868
https://orcid.org/0000-0002-9471-0868
https://orcid.org/0000-0002-9471-0868
https://orcid.org/0000-0002-9471-0868
https://orcid.org/0000-0002-9471-0868
mailto:akkcm@mst.edu
mailto:sdas@mst.edu
mailto:sriram.srinivasan@vcuhealth.org
mailto:sriram.srinivasan@vcuhealth.org
mailto:sanjukta.bhowmick@unt.edu
mailto:norris@cs.uoregon.edu
mailto:norris@cs.uoregon.edu

In our framework, these two steps can be designed and
implemented independently of the parallel architecture
platforms. We efficiently implement the proposed parallel
SSSP update algorithm on both the GPU platform and the
shared-memory platform (the latter extends our previous
implementation [7] to handle changes in batches).

We experimentally demonstrate the efficacy of our paral-
lel algorithm by comparing our GPU implementation with
state-of-the-art GPU based recomputing-from-scratch SSSP
implementation provided by Gunrock [8]. Experimental
results exhibit that our implementation most often outper-
forms Gunrock, achieving up to 5.6x speedup. We also com-
pare our shared-memory implementation with state-of-the-
art shared memory based recomputing-from-scratch SSSP
algorithm implementation provided by Galois. Our shared
memory implementation shows up to 5.X speed up when
compared to Galois.

Our Contributions. The main contributions of this paper
are as follows:

� We propose a common framework for efficiently up-
dating SSSP that can be implemented for both CPU
and GPU architectures. Our novel framework lever-
ages a rooted tree based data structure to address chal-
lenges in load balancing and synchronization

� We implement our parallel algorithmon two platforms
–NVIDIAGPUs and sharedmemory. The latter imple-
mentation significantly extends our previous version
[9] by handling changes in batches, thus allowing to
run up to 100M changes (i.e., 10 timesmore than in [9]).

� For the GPU implementation, we introduce a novel
functional block based approach that breaks a com-
plex function into several simple similar blocks and
reduces the redundant computation.

2 BACKGROUND

This section discusses preliminaries on SSSP and sequential
algorithms for computing and updating SSSPs.

Graphs and SSSP. A graph is denoted as GðV;EÞ, where V
represents the set of vertices (nodes) and E the set of edges.
In this paper, we assume the graphs have non-negative
edge weights.

A path between two vertices u and v is called a shortest
path, if the sum of the weights of edges between these two
vertices is the smallest. The Single Source Shortest Path
(SSSP) problem is to compute shortest paths from a source
vertex s to all other vertices in the graph. The output is a
spanning tree, called the SSSP tree. We store the SSSP as a
rooted tree by maintaining the distance from the root to
every vertex and maintaining a parent-child relationship to
capture the tree structure. If there exists an edge between u
and v in the SSSP tree and the distance of u from the root is
lower than that of v, then u is called the parent of vertex v.

Computing SSSP. The most well known sequential algo-
rithms to compute SSSP is due to Dijkstra [10]. It creates the
SSSP tree with the source vertex as its root. For a given graph
GðV;EÞ, where all edge weights are non-negative, this algo-
rithm maintains two sets of vertices, Set1 and Set2 ¼ V�
fSet1g, where Set1 contains all the vertices, whose shortest
pathweight from the source have already been calculated. The
algorithm selects the vertex from Set2 having the minimum

shortest-path estimate, and adds it to Set1 and relaxes all out-
going edges of the selected vertex. This is repeated until Set2
becomes empty.

Relaxing an edge eðu; vÞ involves checking if the esti-
mated path distance of v from the source can be decreased
by going through vertex u. The implementation of Dijkstra’s
algorithm using a min-priority queue with a Fibonacci heap
requires O ðjEj þ jV jlog jV jÞ time. There also exist a plethora
of sequential SSSP algorithms (including Bellman-Ford) and
their variants [10].

2.1 Sequential Algorithms for Updating SSSP

The structural changes in a dynamic network can be in the
form of edge or vertex insertion and deletion as well as chang-
ing edge weights. In this paper, we only apply changes in the
form of edge addition or deletion, since vertex insertion/dele-
tion can be represented as changes to edges, given that the
upper bound on the number of vertices that can be added is
known. For a single-edge insertion or deletion scenario, the
first step is to identify the affected vertices in the graph, and
enter them to a priority queue. In the next phase, using state-
of-the-art implementation of Dijkstra’s algorithm the distance
of the vertices in the queue are updated. This continues until
the queue is empty or all the affected nodes and their neigh-
bors from the source have the shortest paths. The sequential
approach involves redundant computation as the same set of
vertices can be updated multiple times and therefore cannot
scale to large networks. Algorithm 1 presents how to update
SSSP given an input undirected graphG, initial SSSP tree and
a changed edge DE ¼ eðu; vÞ. (An algorithm to update the
SSSP tree in a similar sequentialmanner is proposed in [4].)

Algorithm 1. Updating SSSP for a Single Change

Input:Weighted Graph GðV;EÞ, SSSP Tree T , Changed
edge DE ¼ eðu; vÞ

Output: Updated the SSSP Tree Tu

1: Function SingleChange (DE, G, T):

// Find the affected vertex, x

2:
3: ifDistu½u� > Distu½v� then
4: x u, y v
5: else
6: x v, y u

// Initialize Priority Queue PQ and

updateDistu½x�
7: PQ x
8: if E is inserted then
9: Distu½x� Distu½y� þWðu; vÞ
10: if E is deleted then
11: Distu½x� infinity

// Update the subgraph affected by x

12: while (PQ not empty) do
13: Updated False
14: z PQ:topðÞ
15: PQ:dequeueðÞ
16: Updated SSSP (z, G, T)

// Calculate the shortest distance from

source vertex to the z
17: if Updated ¼ True then
18: for n where n is the neighbor of z do
19: PQ:enqueueðnÞ

930 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

Over the last 30 years, many sequential implementations
of updating or incremental algorithms for dynamic net-
works have been developed. The authors in [5] developed
complexity models for the sequential update of dynamic
networks. The algorithms in [6] suggest techniques to
update the SSSP tree. An implementation to update SSSP in
batches is propsoed in [11]. The dynamic SSSP algorithm
due to [12] is one of the most recent sequential update algo-
rithms, aiming to reduce the complexity of updates.

3 RELATED WORK

This section highlights related work on parallel implemen-
tations for computing SSSP on static and dynamic networks.

3.1 GPU-Based Implementation

Gunrock [8] is a high-performance graph library that provides
a data-centric abstraction of a set of vertices or edges and
develops a three-step architecture (advance, filter, and com-
pute) to compute SSSP on GPU. The authors in [13] proposed
an efficient implementation of the Bellman-Ford algorithm
using two queues on the Kepler GPU. Although this algo-
rithm exploits dynamic parallelism, a feature of modern Kep-
ler GPUs, it also uses atomic operation that makes part of the
code serial.

In [14], a detailed study is proposed on the performance of
various graph algorithms, including SSSP on temporal graphs,
on different multicore architectures and GPU accelerator. In
[15], a dynamic incremental and decremental SSSP algorithm
in JavaScript is implemented. This is the only GPU implemen-
tation we found for updating dynamic networks in GPU.
Results show the algorithm performs well, only if the number
of changed edges is less than 10 percent.

3.2 CPU-Based Implementation

In [7] we developed the first shared-memory algorithm for
updating SSSP on dynamic networks, and implemented it
using OpenMP. To the best of our knowledge, this is the only
shared-memory parallel implementation for updating SSSP on
dynamic networks. The ones mentioned below operate on
static networks or are sequential implementations on dynamic
networks. For example, a Spark-based implementation to
update SSSP on dynamic networks is reported in [16], while
[17] implemented the Bellman-Ford algorithm using parallel
hypergraph algorithms and [18] provided two implementa-
tions of D–stepping algorithm on static graph in shared mem-
orymulticore architecture.

Galois [19] is a shared-memory based amorphous data-
parallelism programmingmodel for graph algorithms. It sup-
ports priority scheduling and processes on active elements
comprised of a subset of vertices. Galois provides a shared-
memory parallel implementation of Dijkstra’s algorithm.
Havoqgt [20] is a software to compute SSSP on a distributed
platform; it only allows re-computation from scratch, with no
support for dynamic networks. Approximations for stream-
ing graphs are proposed in [21].

4 OUR PARALLEL DYNAMIC SSSP ALGORITHM

In this section, we propose a novel framework for updating
SSSP in parallel for dynamic networks. We maintain the SSSP

values as a tree,which is rootedat the starting vertex.Our algo-
rithm involves efficiently traversing and updating the weights
or the structure of the tree. A sketch of the framework is given
in Fig. 1.

Problem Description. Let GkðVk; EkÞ denotes the graph at
time step k. Since SSSP results are non-unique, several SSSP
trees are possible. Let Tk be one such SSSP tree of Gk.

Let DEk be the set of edges changed from the time step
k� 1 to time step k. This set consists of two subsets; the set
of inserted edges Insk and the set of deleted edges Delk.
Thus, Ek ¼ ðEk�1 [InskÞnDelk.

Our goal is to compute the SSSP tree Tk at time step k,
based on the structure and edge weights of the tree Tk�1at
time step k� 1 and the changed edge set DEk.

4.1 A Parallel Framework for Updating SSSP

Our framework for updating SSSP consists of two steps;
Step 1: Identify the subgraph (a set of vertices) affected by
changes (Algorithm 2); and Step 2: Update this subgraph to
create a new SSSP tree (Algorithm 3).

Data Structures. We store the SSSP tree as an adjacent list.
Since the number of edges in a tree is one less than the number
of vertices, thus thememorywould be of order V . Each vertex,
except the root, is associated with four variables; Parent– its
parent in the tree, Dist– its shortest distance from the root ,
Affected_Del–whether the vertex has been affected due to dele-
tion, andAffected– whether the vertex has been affected by any
changed edge. Each of these variables are stored as arrays of
length V , with the each index associated with the correspond-
ing vertex.

Fig. 1. A Parallel framework to update SSSP in dynamic networks.

KHANDA ETAL.: PARALLEL ALGORITHM TEMPLATE FOR UPDATING SINGLE-SOURCE SHORTEST PATHS IN LARGE-SCALE DYNAMIC... 931

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

Step 1: Identifying Subgraphs Affected by the Changed Edge.
In this step we process each edge in parallel and identify
the vertices affected by these changes. Note that a vertex
can be affected due to multiple changes. However, this step
determines whether a vertex is affected by at least one
changed edge. Due to this criterion, no synchronization is
required and each changed edge can be potentially be proc-
essed in parallel.

In practice, however, the computation is expedited if part
of the new SSSP tree is formed in Step 1. This includes remov-
ing deleted edges (that can result in some subtrees being dis-
connected) and changing the parent of affected vertices
whose distance to the root is lowered due to insertions.

Edge Deletion. Given two vertices u and v, let the edge
between them be eðu; vÞ. In the case of deletion, we first
check whether this edge was part of the SSSP tree (Algo-
rithm 2, line 5). If it is not, then it does not affect any vertex,
and no further processing is needed.

For the case where the edge eðu; vÞ is part of the SSSP
tree, let us assume that u is the parent of v. Thus only the
shortest distance of v is affected. We change Dist½v� to infin-
ity and Parent½v� to null, to indicate that vertex v is now dis-
connected from the parent tree. We further change
Affected Del½v� and Affected½v� to true to indicate that this
vertex is affected by deletion (Algorithm 2; lines 7, 8).

Edge Insertion. Let the weight of an inserted edge eðu; vÞ
be Wðu; vÞ. The edge will affect the SSSP tree only if
Dist½u� þWðu; vÞ is less thanDist½v�.

If this condition holds, then we set Dist½v� to Dist½u� þ
W ðu; vÞ, update the parent of v, Parent½v� to u, and mark
Affected½v� to true to mark that vertex v has been affected
(Algorithm 2, lines 15-18).

Algorithm 2. Identify Affected Vertices

1: Function ProcessCE (G, T , DE, Parent,Dist):
2: Initialize Boolean arrays Affected Del and Affected to

false
3: Gu G
4: for each edge eðu; vÞ 2 Delk in parallel do
5: if eðu; vÞ 2 T then
6: y argmaxx2fu;vgðDist½x�Þ
7: ChangeDist½y� to infinity
8: Affected Del½y� True

Affected½y� True

9: Mark eðu; vÞ as deleted
10: for each edge eðu; vÞ 2 Insk in parallel do
11: ifDist½u� > Dist½v� then
12: x v, y u
13: else
14: x u, y v
15: ifDist½y� > Dist½x� þWðx; yÞ then
16: Dist½y� Dist½x� þWðx; yÞ
17: Parent½y� x
18: Affected½y� True
19: Add eðu; vÞ to Gu

Step 2: Updating the Affected Subgraph.Note that when a ver-
tex gets disconnected from the SSSP tree due to edge deletion,
then its descendants would also get disconnected. Thus their
distance from the root would be infinity. In the first part of
Step 2, we update these distances by traversing through the

subtree rooted at the vertices affected by deletion. The distan-
ces of all the vertices in these disconnected subtrees are set to
infinity. We set theAffected variable for each of these vertices
as true. Since the subtrees can be of different sizes, we use a
dynamic scheduler for balancing the workload. The pseudo
code in given inAlgorithm 3, lines 2-8.

In the second part, we update the distances of the affected
vertices. For each vertex marked as Affected and its neigh-
bors, we checkwhether the distance is reduced. If the distance
of a neighbor,n is reducedbypassing through an affected ver-
tex v, then the distance of n,Dist½n�, is updated and Parent½n�
is set to v. On the other hand if the distance of v is reduced by
passing through a neighbor, n, then Dist½v� is updated and
Parent½v� is updated to n. This process is continued iteratively
until there is no vertex whose distance can be updated. Since
the vertices are always moving towards lower distance, the
iterationswill converge.

At the end of Step 2, we obtain an SSSP tree with updated
distances for every vertex from the root at time tk. Fig. 2
shows an example of SSSP tree update, where Dist values
of the vertices are shown in red color and the affected verti-
ces at each step are shown in green color. Figs. 2c, 2d, 2e, 2f,
and 2g show the step and the sub-steps of the algorithm.

Algorithm 3. Update Affected Vertices

1: Function UpdateAffectedVertices (Gu, T ,Dist,
Parent Affected Del and Affected):

2: while Affected Del has true values do
3: for each vertex v 2 V such that Affected Del½v� ¼ true

in parallel do
4: Affected Del½v� false
5: for all vertex c, where c is child of v in the SSSP tree T do
6: SetDist½c� as infinity
7: Affected Del½c� True
8: Affected½c� True
9: while Affected has true values do
10: for each vertex v 2 V such that Affected½v� ¼ true in paral-

lel do
11: Affected½v� False
12: for vertex n, where n 2 V and n is neighbor of v do
13: ifDist½n� > Dist½v� þWðv; nÞ then
14: Dist½n� Dist½v� þWðv; nÞ
15: Parent½n� v
16: Affected½n� True
17: else ifDist½v� > Dist½n� þWðn; vÞ then
18: Dist½v� Dist½n� þWðn; vÞ
19: Parent½v� n
20: Affected½v� True

4.2 Challenges in Achieving Scalability

We discuss the challenges that arise in making the code scal-
able and how we address these challenges;

Load Balancing. In Step 2 of our algorithm, the number of
operations depends on the size of the subgraph rooted at the
affected vertices. Since the subgraphs can be of different sizes,
thework done by each processing unit can be imbalanced.

While several complicated load balancing techniques can
be applied, such as knowing the size of the subtrees apriori
and then distributing the vertices according to the size of
the subtrees, our experiments show that by simple using

932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

dynamic scheduling provide good scalability with much
lower overhead.

Synchronization. Sincemultiple processors are updating the
affected vertices, thus race conditions can occur where these
vertices may not be updated to their minimum distance from
the root. The traditional method to resolve this problem is by
using locking constructs. However using these constructs
reduces the scalability of the implementation.

In our algorithm, instead of using locking constructs, we
iteratively update the distances of the vertices to a lower
value. Over the iterations the vertices thus converge to their
minimum distance from the source node or root of the tree.
Although multiple iterations add to the computation time,
the overhead is much lower than using locking constructs.

Avoiding Cycle Formation. Our updating algorithm is
based on the assumption that the underlying data structure
is a tree. However, when multiple edges are inserted in par-
allel, cycles can be formed.

Consider an edge eðu; vÞ which is deleted, and v is the
affected vertex. Then as per Step 1, the parent of vertex v is
set to null to indicate it is disconnected from the main tree.

Let a be a descendant of vertex v, that is it is a node in the
disconnected subtree rooted at v. At the end of step 1, the
distance of a is not yet updated to infinity. Now if there is
an inserted edge eða; vÞ from a to v, then the distance of v
will be lower after passing through a. Thus a will be set as
the parent of v creating a cycle. Fig. 3 illustrates the forma-
tion of this kind of cycle.

To avoid this cycle formation, in Step 2, we first process
the subtrees of the vertices affected by deletion to mark their
distances as infinity. Then the edge between two discon-
nected vertices in the tree are not processed.

4.3 Algorithm Analysis

We now prove that our algorithm indeed forms a correct
SSSP tree for the graph at time step k, and also computes
the analytical scalability of our method. These results are
reproduced from our earlier paper [7].

Lemma 1. The parent-child relation between vertices assigned by
our parallel updating algorithm produces tree(s).

Proof. To prove this, we first create a directed graph where
the parent vertices point to their children. Now consider a
path in this graph between any two vertices a and b. The
path goes from vertex a to vertex b. This means that a is an
ancestor of b. As per our parallel updating algorithm, a ver-
tex v is assigned as a parent of vertex u only if Dist½v� <
Dist½u�, therefore transitively the distance of an ancestor
vertex will be less than its descendants. Thus, Dist½a� < Dist½b�.

Since G has non-zero edge weights, it is not possible
that Dist½b� < Dist½a�. Thus, there can be no path from b
to a. Hence, all connected components are DAGs, and
thus trees. tu

Lemma 2. The tree obtained by our parallel algorithm will be a
valid SSSP tree for Gk.

Proof. Let Tk be a known SSSP tree of Gk and let Talg be the
tree obtained by our algorithm. If Talg is not a valid SSSP
tree, then there should be at least one vertex a for which

Fig. 2. Illustration of updating SSSP tree.

Fig. 3. Type 2 cycle formation.

KHANDA ETAL.: PARALLEL ALGORITHM TEMPLATE FOR UPDATING SINGLE-SOURCE SHORTEST PATHS IN LARGE-SCALE DYNAMIC... 933

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

the distance of a from the source in Talg is greater than the
distance of a from the source vertex in Tk.

Consider a subset of vertices, S, such that all vertices in
S have the same distance in Tk and Talg. This means that
8v 2 S, DistTk ½v� ¼ DistTalg ½v�. Clearly, such a set S can be
trivially constructed by including only the source vertex.

Now consider a vertex a for which DistTk ½v� <
DistTalg ½v� and the parent of a is connected to a vertex in
S. Let the parent of a in Tk (Talg) be b (c).

Consider the case where b=c. We know that the
DistTk ½b� ¼ DistTalg ½b�. Also, the distance of a child node is
the distance of its parent plus the weight of the connecting
edge. Therefore,DistTalg ½a� ¼ DistTalg ½b� þWða; bÞ ¼ DistTk
½b� þWða; bÞ ¼ DistTk ½a�.

Now consider when b 6¼ c. Since the edge ðb; aÞ exists in
Tk, it also exists inGk. SinceDistTk ½v� 6¼ DistTalg ½v�, the dis-
tance of a was updated either in Tk or in Talg, or in both,
from the original SSSP tree. Any of these cases imply that a
was part of an affected subgraph. Therefore, at some itera-
tion(s) in Step 2, awasmarked as an affected vertex.

Because the edge ðb; aÞ exists in Gk and a is an affected
vertex, in Step 2, the current distance of a would have
been compared with DistTalg ½b� þW ða; bÞ. Since this is the
lowest distance of a according to the known SSSP tree Tk,
either the current distance would have been updated to
the value of DistTalg ½b� þWða; bÞ or its was already equal
to the value. Therefore,DistTk ½a� ¼ DistTalg ½a�. tu
Scalability of the Algorithm. Assume that we have p proc-

essing units, and m changed edges to process. For Step 1,
each changed edge can be processed in parallel, requiring
time Oðm=pÞ.

For Step 2, the parallelism depends on the number of
affected vertices, and the size of the subgraph that they
alter. At each iteration, an affected vertex goes through its
neighbors, so the work is proportional to its degree.

Assuming that x vertices are affected, x � m, and the
average degree is a vertex is d, then the time per iterations is
Oðxd=pÞ. The maximum number of iteration required would
be the diameter of the graph D. Thus an upper bound time
complexity for Step 2 isD �Oðxd=pÞ.

Taken together, the complexity of the complete updating
algorithm is Oðmp Þ+OðDxd

p Þ. The term Dxd represents the
number of edges processed. Let this be equal to Ex. The
number of edges processed in the recomputing method
would be E þm. Therefore for the updating method to be
effective, we require Ex < ðE þmÞ.

5 IMPLEMENTATION DETAILS

In this Section we discuss how we implemented the updat-
ing algorithm in shared memory architectures and in GPUs.

5.1 Shared-Memory Implementation

We implemented the proposed algorithm on the shared mem-
ory platform where the input consists of a graph GðV;EÞ,
changed edgesDEðDelk; InskÞ, source vertex s, and SSSP treeT .

We use pragma omp parallel for directive to leverage the
shared memory parallelism. The implementation processes
the set of Delk in parallel before processing the set of Insk in
parallel. In case of deletion, Delk is first validated by

searching if the edge is available in key edges stored in T ; if
it belongs to the key edges it is processed further, otherwise
it is ignored. If the changed edge eðu; vÞ is marked for inser-
tion, the next step is to check if the addition of this edge
helps to reduce the distance of vertex v from the source; if it
does, then the edge is marked for update.

Algorithm 4. Asynchronous Update of SSSP

Input: GðV;EÞ, T ,Dist; Parent, source vertex s,
DEðDelk; InskÞ
Output: Updated SSSP Tree Tk

1: Function AsynchronousUpdating (DE, G, T):
2: Set Level of Asynchrony to A.
3: Change True
4: while Change do
5: Change False
6: pragma omp parallel schedule (dynamic)
7: for v 2 V do
8: if Affected Del½v� ¼ True then
9: Initialize a queue Q
10: Push v to Q
11: Level 0
12: while Q is not empty do
13: Pop x from top of Q
14: for c where c is child of x in T do
15: Mark c as affected and change distance to

infinite
16: Change True
17: Level Levelþ 1
18: if Level � A then
19: Push c to Q
20: Change True
21: while Change do
22: Change False
23: pragma omp parallel schedule (dynamic)
24: for v 2 V do
25: if Affected½v� ¼¼ True then
26: Affected½v� false
27: Initialize a queue Q
28: Push v to Q
29: Level 0
30: while Q is not empty do
31: Pop x from top of Q
32: for n where n is neighbor of x in G do
33: Level Levelþ 1
34: ifDist½x� > Dist½n�+Wðx; nÞ then
35: Change True
36: Dist½x� =Dist½n�+Wðx; nÞ
37: Parent½x� = n
38: Affected½x� True
39: if Level � A then
40: Push x to Q
41: ifDist½n� > Dist½x�+Wðn; xÞ then
42: Change True
43: Dist½n�=Dist½n�+Wðn; xÞ
44: Parent½n� = x
45: Affected½n� True
46: if Level � A then
47: Push n to Q

In this implementation, each vertex has a Boolean Affected
flag which is true when it is identified that the SSSP of the

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

vertex needs to be recalculated. Now for all the affected verti-
ces, SSSP is computed using the unaffected adjacent vertices
and their distances as mentioned in the last part of Algorithm
3. The computation of affected vertices is done in parallel and
this process continues until there is no vertex left with the
Affected flag set to true. Since a vertex can be set to affected
multiple times, this process incurs some redundancy of com-
putation. However, the alternate process of using locking con-
structs to synchronize lead to reduced scalability. We
therefore allow for some redundancy in the operations. The
shared memory implementation uses C++ and OpenMP
library.

Asynchronous Updates. In Step 2 of our updating algo-
rithm, the threads synchronize at the while loop. This syn-
chronization occurs after each vertex accesses its neighbors.
However the synchronization can be made less frequent if
the vertices access their distance d neighbors for a given
value of d. Increasing this level of asynchrony can lead to
more redundant computations and increased iterations, but
reduced number of synchronizations. In the experimental
study (see Section 6), we discuss how changing the levels of
synchronization affects performance. The pseudocode in
Algorithm 4 demonstrates how asynchronous updates can
be implemented for Step 2 of our algorithm.

Processing Batches of Changes. The original implementation
discussed in [7] processes all changed edges together. In order
to improve the load balancing and avoid havingmemory hot-
spot we processed the changed edges in batches. We experi-
mented with different batch sizes to study the performance.
Section 6 shows how processing in batches of different size
gives a boost in the performance.

5.2 GPU Implementation

To leverage the Single InstructionMultiple Threads (SIMT)
execution model of modern NVIDIA GPU, in our imple-
mentation we create an array of operands where a single
CUDA (Compute Unified Device Architecture) thread is
assigned to a single element of the operand array to exe-
cute some user defined function. In this architecture a large
number of threads (divided into thread, block and grid at
the programming level) are executed simultaneously to
achieve data-parallelism. Commonly, Grid-Stride Loops
are used to cover the whole operand array when the size
of the array is larger than the number of CUDA threads
available.

Compressed sparse row (CSR) and its variants like Dyna-
mic CSR-based (DCSR) data structure [22] or Packed Com-
pressed Sparse Row (PCSR) [23] are potentially suitable for
storing input graphs depending on the application. Here, we
consider simple CSR format to store the graph. To store the
SSSP tree structure and its properties, we define a data struc-
tureT , which is an array of size jV j, where the element at index
i denotes the properties of vertex i in the SSSP tree. Each ele-
ment of T contains three variables: Parent (stores the parent of
the vertex), Dist (stores the distance of the vertex from the
source), and Flag (a Boolean variable to denote the affected
vertex).

5.2.1 Functional Block

When numerous threads are operating on shared variables
and attempting to write concurrently, it may lead to race

condition or erroneous update. To avoid this situation, CUDA
atomic operations are used.However, the use of atomic opera-
tion makes the computation serial and increases the overall
execution time. Therefore, we define a functional block, which
minimizes the use of atomic operation while maintaining the
correctness of the algorithm.

Our functional block, called the Vertex-Marking Functional
Block (VMFB), is created solely for graph-related operations. It
can accept an operand array Arrayoperand, a function Fx, an
array (Flags) of size jV j to store flags for each vertex of a graph
GðV;EÞ and a predicate P as input. The VMFB has threemain
functional steps, as described below.

Vertex Marking. The VMFB allocates parallel CUDA
thread for each element of Arrayoperand, while each thread
performs Fx and alters the flag values in the shared array,
Flags. It is considered that Fx is capable of doing other com-
putations along with changing the flag values (primary
function). Here, all the CUDA threads operate without any
guaranteed synchronization (no control over synchroniza-
tion at this stage) without using any atomic operation. They
update Flagswith a constant value (e.g., updating to 1) only
when some specified condition mentioned in Fx is satisfied.

Although, in this step multiple threads can asynchro-
nously update the same element of the array Flags, the cor-
rectness is preserved as all threads update a flag with a
single constant value. More specifically, the process is
one-directional and a vertex can be marked in the process,
but cannot be unmarked.

Synchronization. This step puts a global barrier for all the
threads, and the code execution halts here for all threads to
complete their execution before going further.

Filter. This step stores the index value from the array
Flags using CUDA ballot sync when the predicate P is
true. In general, the predicate simply states comparison
between flag value and a given constant. The filter step
identifies and stores all marked vertices in an array without
duplication. Moreover, this operation reduces the redun-
dant computation due to overlapping affected subgraphs.

Fig. 4 depicts the VMFB, in which only the filter opera-
tion uses the CUDA atomicAdd operation while maintain-
ing the dimension of the list of marked vertices.

Fig. 4. Vertex-marking functional block (VMFB).

KHANDA ETAL.: PARALLEL ALGORITHM TEMPLATE FOR UPDATING SINGLE-SOURCE SHORTEST PATHS IN LARGE-SCALE DYNAMIC... 935

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

5.2.2 SSSP Update Using Vertex Marking Functional

Block

The idea of implementing a graph algorithm using VMFB is
simple. We write a function which takes a single vertex or a
single edge and operates on it and marks some vertices in
the flag array depending on user defined clauses. Let our
function can work on a vertex, then we pass an array of ver-
tices(as operand array), the function we have written and
an associated flag array to a VMFB. VMFB executes the user
defined function on every element of the operand array in
parallel and generates an array of marked vertices. There-
fore, to implement SSSP update we first write four functions
named ProcessIns, ProcessDel, DisconnectC and ChkNbr.
The functionality of these are given in Table 1.

Algorithm 5. GPU Implementation

Input: GðV;EÞ, T ðDist; ParentÞ, DEðDelk; InskÞ
Output: Updated SSSP Tree Tu

1: Function GPUimplementation (G, T , DE):
2: Initialize a flag array of size jV j named Flagswith all val

ues 0
/* ProcessDelk in parallel */

3: Affdel VMFBðDelk; ProcessDelðG; T Þ; Flags; P Þ
/* Process Insk in parallel */

4: ResetðFlagsÞ
5: Affins VMFBðInsk; ProcessInsðG;T Þ; Flags; P Þ

/* Mark all vertices in deletion affected

sub-tree */

6: AffAlldel Affdel
7: while Affdel is not empty do
8: ResetðFlagsÞ
9: Affdel VMFBðAffdel; DisconnectCðT Þ; Flags; P Þ
10: AffAlldel AffAlldel [Affdel

/* Connect disconnected vertices and update

neighbor distance */

11: AffAll AffAlldel [Affins
12: while AffAll is not empty do
13: ResetðFlagsÞ
14: AffAll VMFBðAffAll; ChkNbrðG; T Þ; Flags; P Þ

Algorithm 5 presents the pseudocode for GPU imple-
mentation using VMFB blocks and the notations used in the
pseudocode are listed in Table 1.

Step 1.We implement the first step of the SSSP update algo-
rithm using two VMFBs. The first VMFB (Line 3 in Algo-
rithm 5) accepts the array of deleted edges as the operand
array and marks the first-level affected vertices due to edge
deletion. As additional function, it disconnects the first-level
deletion affected vertices from their parent vertices in the SSSP
tree. This blockmainly implements lines 5–9 inAlgorithm 2.

The second block takes the array of inserted edges as
Arrayoperand and identifies the first-level insertion affected
vertices by processing them using ProcIns function, which
is actually the implementation of lines 11–19 in Algorithm 2.

As in VMFB, the parallel threads are distributed across
the operand array, every changed edge is processed by dif-
ferent CUDA thread in Step 1.

Step 2. The second step of the SSSP update algorithm has
two main parts. The first part iteratively disconnects the sub-
trees under every first-level deletion-affected vertex (using the
DisconnectC function) by passing the function and affected
vertices to a VMFB. Specifically, the DisconnectC function
implements lines 4–8 in Algorithm 3. The VMFB here uses the
output of the first VMFB (an array of first level deletion-
affected vertices) as input Arrayoperand and marks all the chil-
dren of the first-level deletion-affected vertices in the SSSP tree
and then disconnects them. In the next iteration, the newly
affected vertices are used as the operand array for the same
VMFB, and all the deletion-affected vertices are marked and
disconnected iteratively (Algorithm 5, lines 7-10).

The last part of the implementation, connects the discon-
nected vertices andupdates the distance of all affected vertices.
The set of all deletion affected vertices and first-level insertion
affected vertices are combined (via set union operation) to
form an array of all affected vertices (both deletion and inser-
tion affected) and is used as initial input operand array for the
last VMFB (line 14 in Algorithm 5). The last VMFB block con-
nects the disconnected vertices (applicable to deletion affected
vertices) and updates the Dist value of neighbors (applicable
to both deletion and insertion affected vertices) using ChkNbr
function (implementation of lines 11–20 in Algorithm 3). Verti-
ces are marked as affected whenever their Dist values are
changed and the filter operation in the block gathers all
affected vertices in an iteration as an output array of marked
vertices. In the next iterations, the output of the last iteration is
provided as input into the VMFB. This process ends when the
updatedDist is computed for all affected vertices and there is
nomarked vertex left for further processing.

6 EXPERIMENTAL RESULTS

For the experiments, we choose five large graphs from
the network-repository collection [24]; and one synthetic

TABLE 1
Notation Used for GPU Implementation

Used Notation Detail

VMFB Vertex Marking Functional Block

ProcessIns() Operate on an edge being inserted and finds
1st level insertion affected vertices

ProcessDel() Operate on an edge being deleted and finds
1st level deletion affected vertices

DisconnectC() Operate on a deletion affected vertex and
disconnects child neighbors

ChkNbr() Operate on an affected vertex to connect
disconnected vertices and update neighbors

P Predicate to find if a flag is raised

Reset() Function to reset all values of an array to 0

TABLE 2
Networks in Our Test Suite

Name Num. of Vertices Num. of Edges

BHJ2015-M87101049(BHJ-1) 1,827,148 193,540,306
BHJ2015-M87101705(BHJ-2) 1,827,168 202,250,875
soc-Orkut 2,997,166 106,349,209
LiveJournal 12,693,249 161,021,950
graph500-scale23-ef16 4,606,315 258,503,995
RMAT24_G 16,777,215 134,511,383

BHJ: bn-human-Jung.

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

R-MAT graph generated with probability (a = 0.45, b = 0.15,
c = 0.15, d = 0.25), labeled as G, which is a random network
with scale-free degree distribution. Table 2 lists the names,
the number of vertices and edges of our graph datasets.

All GPU experiments have been conducted on a NVIDIA
Tesla V100 GPU with 32GB memory. The host processor
was dual 32 core AMD EPYC 7452. For the shared memory
experiments we used Intel(R) Xeon(R) Gold 6148 CPU with
384GB memory.

6.1 GPU Implementation Results

Fig. 5 shows the execution time of CUDA implementation of
our SSSP update algorithm. We present the time for updating
the shortest path following a 50-million and 100-million edge
updates. The edge updates consist of different mixes of edge
deletions and insertions. Specifically, edge insertion percent-
age means that if the dataset contains p% insertions then there
is ð100� pÞ% edge deletion. For all of our experiments, only
the execution time is used instead of TEPS (Traversed Edges
per Second). This is because, for dynamic networks update,
we typically aim to traverse fewer edges; thus maximizing
TEPS is not the rightmetric.

The execution time mainly depends on the total number of
affected vertices, which in turn depends on the network struc-
ture and location of changes. The changes and network struc-
ture are random in our experiments. Therefore, the affected
subgraph size and its location are also random. In general, for
p ¼ 100% edge insertions (i.e., no edge deletion), the GPU
implementation skips the part of the algorithmwhere all verti-
ces in the deletion affected subgraph get disconnected and
require comparatively less time.We observe that the execution
time increases when the percentage of edge insertions is
decreased from 100 percent, i.e., the percentage of edge dele-
tions is increased. This is because, for edge deletion, the algo-
rithm disconnects all deletion affected vertices at first and then
tries to reconnect them with the actual SSSP tree. However,

when one deletion affected subgraph overlaps with another
deletion affected subgraph, theFilter operation in VMFB com-
bines them to avoid rework. Therefore, in Fig. 5 we notice that
most of the time, the execution time decreases when the per-
centage of insertions is further reduced (i.e., the percentage of
deletions is increased) below 75 percent. Although, an excep-
tion to this trend occurs when the change edges are random
and the affected subgraphs do not overlap.

6.2 GPU Performance Comparison

We compare the GPU implementation of our SSSP update
algorithm with other available GPU implementation for
computing SSSP. The implementation reported in [15] is not
appropriate for comparison because because it is useful
only if the edge updates are less than 10 percent of the total
number of edges. To the best of our knowledge, there is no
other implementation of updating SSSP on dynamic net-
works on GPUs. Therefore, we compare the time taken by
our algorithm to update the SSSP with the time taken to
recompute the SSSP from scratch by using Gunrock [8], a
widely used tool for (static) graph analytics on GPUs. The
Gunrock implementation shows good speedups when com-
pared to other GPU graph analytics packages.

Fig. 6 shows the speedup of the SSSP update algorithm
compared with the Gunrock SSSP implementation on the
networks discussed in Table 2. The changed edges are
added to the original network and used as an input to the
Gunrock software. We only consider the time taken by Gun-
rock to compute SSSP for the modified network, ignoring
the time to create the input network with new changes.
Each comparison experiment was repeated six times; we
took the average and measured the improvement.

Fig. 5. Execution time of proposed GPU implementation for networks in
Table 2 with 50M and 100M changed edges consisting of p = 100, 95,
90, 85, 75, 50, 25, and 0 percent insertions and ð100� pÞ% deletions.

Fig. 6. Comparison of our GPU implementation of the SSSP update
algorithm for dynamic networks with Gunrock implementation computing
SSSP from scratch on static networks. The Y -axis is the speedup; the
X-axis is the graph input. The speedup is measured for all networks with
50M and 100M changed edges for 0, 25, 50, 75, 85, 90, 95 and 100 per-
cent edge insertions (the rest of the edge changes are deletions).

KHANDA ETAL.: PARALLEL ALGORITHM TEMPLATE FOR UPDATING SINGLE-SOURCE SHORTEST PATHS IN LARGE-SCALE DYNAMIC... 937

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 clearly shows that, in most of the cases, our imple-
mentation achieves good speedup (up to 8.5x for 50 million
changed edges and up to 5.6x for 100 million changed edges)
when the percentage of insertion is more than 25 percent.
When the percentage of insertion is below 25 percent (i.e., the
deletion percentage is above 75 percent), it implies 75 percent
or more of the total 50 million (or 100 million) changed edges
are deleted from the original set of edges and the rest of the
edges (which is very small) is supplied to Gunrock as input.
This is why at lower percentage of insertion (i.e., high dele-
tion), Gunrock performs better than our approach.

We observed that if the number of total changed edges is
greater than 50 percent of the network size and the majority
(more than 50 percent) of the changed edges involve edge
deletion, it is better to recompute from scratch rather than
updating. Our proposed implementation works better in
most cases when the majority of the changed edges are
marked for insertion.

6.3 Shared-Memory Implementation Results

We compare our shared-memory implementation with the
state-of-the-art CPU based shared memory recomputation
approach [25] on a dual 40-core Intel(R) Xeon(R) Gold 6148
CPU@2.40GHzwith 384GBDDR4 2666RAM. Fig. 7 provides
a comparison between the proposed shared memory imple-
mentation and Galois [25] for all graphs. We have used 100M
edge changes with different combinations of edge insertion
percentage. For the recomputation based approach wemodify
the network by adding the changes and then re-run the SSSP
from scratch. We ignore the time it takes to add those changes
to the original network.We observe that inmost cases, the pro-
posed shared-memory implementation performs better than
the recomputing approach. We performed this experiment for
all networks three times with three different set of changed
edges generated for each network. The average speed up for
each network for different edge percentage is used for compar-
ison. We didn’t see much difference in the speedup for all 3
runs. We did observe that speed up is not consistent for net-
works such as Graph-500, we noticed that the speedup is less
than 1 when more than 85 percent percentage of total nodes
affected for the given changes. We believe that if the changes
affect more than a certain threshold percentage which varies
for each network than recomputation is recommended than
using the update algorithm. For the networks used in this
paper for scalability experiments in Fig. 8 the threshold ranges
were around 75–85 percent.

Fig. 7. Speedup of our shared-memory update algorithm compared to
the recomputation approach in Galois.

Fig. 8. Shared-memory implementation scalability plot for the four networks: BHJ-2, Orkut, Live Journal, and RMAT-24. Here the X-axis is the num-
ber of threads and the Y -axis is the runtime in log scale. For this experiment, we used 100M changes and different combinations of edge insertion
percentages.

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

Fig. 8 shows the performance of the shared memory
implementation with different combinations of edge inser-
tion percentages. For this experiment, we ran the proposed
implementation on four networks with 100 M changes on dif-
ferent thread counts. As we increase the number of threads,
the time for updating decreases in most cases. We ran the pro-
posed implementation on five different sets of changed edges
(generated for each network) for the four networks and with
different combinations of edge insertion percentage and aver-
aged the time of five runs for each configuration. There are few
cases where time to update doesn’t show significant improve-
ment whenwe increase the thread count. For example the Live
Journal network for 25 and 50 percent edge insertion, Orkut
Network for 0 percent. Our investigations revealed that the
given changes did not affect more than 10–15 percent of the
nodes (for each run) where as for the networks which didn’t
show this trend around 55–60 percent of the nodes were
affected during the multiple runs. We did also notice few
spikes for Live journal and RMAT 24, but when we took aver-
age of five runs, there were only two occasions where we
observed spikes for those networks. We believe this could be
due to load imbalance, however the remaining three times
with the same input network and change edges the time to
update decreased and therewere no spikes.

The proposed implementation is sensitive to changes and
the overall percentage of nodes being affected due to the
changes. If the percentage of nodes affected is above 80, we
do see time to update decreases but the change is not very
significant.

In Fig. 9, we explore how increasing the level of asynchrony
impacts the execution time. The definition of asynchrony is
provided in Section 5.1. We observed that for both 50M and
100M changes on two networks, Orkut and RMAT-24, with
edge insertion percentages of 100 and 75 percent, increasing
the level of asynchrony reduces the execution time in all cases

except for the Orkut network where 75 percent of changed
edges aremarked for insertion.

In Fig. 10, we explore how processing changed edges in
batches can help improve the performance of the proposed
implementation. For this experiment we took 100M changed
edges and we choose one BHJ-1 and graph-500 network and
processed changed edges with (25,50, and 100) percent edge
insertion in batches of different sizes (15, 30, and 50). We
compared this with our original implementation [7], which
doesn’t use any batch processing for the same networks,
change edges, and for 64 and 72 threads. We repeated this
experiment 10 times and then took the average. We observe
that processing changed edges in batches does show perfor-
mance improvement for higher thread counts, such as 64
and 72. For lower thread counts we did not see significant
performance improvement when edges are processed in
parallel.

7 CONCLUSION

In this paper we proposed a novel parallel framework to
update SSSP graph property for dynamic networks. The
framework was implemented on two different HPC envi-
ronments, namely a CPU-based shared memory implemen-
tation and an NVIDIA GPU-based implementation. Our
experiments on real-world and synthetic networks show
that the proposed framework performs well compared to
the re-computation based approaches (e.g., Galois for CPU
and Gunrock for GPU) when the edge insertion percentage
is 50 percent or more of the total changed edges. Our obser-
vation also shows that as the number of deletions increases
beyond 50 percent, the recomputing approach performs
well.

In future we plan to extend our framework with a hybrid
approach where the changes for a given batch can deter-
mine which approach—recomputing or updating—would
provide faster results. Investigation of the performance for
non-random batches is one of our future interests. We also
plan to explore predictive algorithms, where knowing the
changed set apriori can lead to more optimized updates.

ACKNOWLEDGMENTS

This work was supported in part by the NSF OAC under
Grants 1725755, 1725566, and 1725585 for the collaborative
SANDY project and in part by the NSF OAC under Grant
1919789.

Fig. 9. Shared-memory asynchronous implementation for 100M and
50M changes with different levels of asynchrony. The X-axis is the level
or length to be traversed before synchronization, and the Y -axis is the
execution time in log scale. For this experimental setup, we used 8
threads; we tried different thread combinations and the execution with 8
threads gave good performance.

Fig. 10. Shared-memory implementation performance improvement
when edges are processed in batches.

KHANDA ETAL.: PARALLEL ALGORITHM TEMPLATE FOR UPDATING SINGLE-SOURCE SHORTEST PATHS IN LARGE-SCALE DYNAMIC... 939

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. B. Sorbelli, F. Cor�o, S. K. Das, and C. M. Pinotti, “Energy-con-
strained delivery of goods with drones under varying wind
conditions,” IEEE Trans. Intell. Transp. Syst., to be published,
doi: 10.1109/TITS.2020.3044420.

[2] X. Wu, G. Chen, and S. K. Das, “Avoiding energy holes in wireless
sensor networks with nonuniform node distribution,” IEEE Trans.
Parallel Distrib. Syst., vol. 19, no. 5, pp. 710–720, May 2008.

[3] S. Ghariblou, M. Salehi, M. Magnani, and M. Jalili, “Shortest paths
in multiplex networks,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. 2142.

[4] G. Ramalingam and T. Reps, “On the computational complexity of
dynamic graph problems,” Theor. Comput. Sci., vol. 158, no. 1–2,
pp. 233–277, 1996.

[5] L. Roditty and U. Zwick, “On dynamic shortest paths problems,”
Algorithmica, vol. 61, no. 2, pp. 389–401, Oct. 2011.

[6] P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “New dynamic algorithms
for shortest path tree computation,” IEEE/ACM Trans. Netw., vol.
8, no. 6, pp. 734–746, Dec. 2000.

[7] S. Srinivasan, S. Riazi, B. Norris, S. K. Das, and S. Bhowmick, “A
shared-memory parallel algorithm for updating single-source
shortest paths in large dynamic networks,” in Proc. IEEE Int. Conf.
High Perform. Comput., 2018, pp. 245–254.

[8] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
GPU,” in Proc. ACM SIGPLAN Symp. Princ. Pract. Parallel Pro-
gram., 2016, pp. 1–12.

[9] S. Srinivasan, S. Pollard, S. K. Das, B. Norris, and S. Bhowmick, “A
shared-memory algorithm for updating tree-based properties of
large dynamic networks,” IEEE Trans. Big Data, to be published,
doi: 10.1109/TBDATA.2018.2870136.

[10] T. H. Cormen, C. E. Leriserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[11] R. Bauer and D. Wagner, “Batch dynamic single-source shortest-
path algorithms: An experimental study,” in Proc. Int. Symp. Exp.
Algorithms, 2009, pp. 51–62.

[12] M. Alshammari and A. Rezgui, “A single-source shortest path
algorithm for dynamic graphs,” AKCE Int. J. Graphs Combinatorics,
vol. 17, no. 3, pp. 1063–1068, 2020.

[13] F. Busato and N. Bombieri, “An efficient implementation of the bell-
man-ford algorithm for kepler GPU architectures,” IEEE Trans. Paral-
lel Distrib. Syst., vol. 27, no. 8, pp. 2222–2233, Aug. 2016.

[14] A. Rehman, M. Ahmad, and O. Khan, “Exploring accelerator and
parallel graph algorithmic choices for temporal graphs,” in Proc.
Int. Workshop Program. Models Appl. Multicores Manycores, 2020,
pp. 1–10.

[15] A. Ingole and R. Nasre, “Dynamic shortest paths using javascript on
GPUS,” in Proc. IEEE Int. Conf. High-Perform. Comput., 2015, pp. 1–5.

[16] S. Riazi, S. Srinivasan, S. K. Das, S. Bhowmick, and B. Norris,
“Single-source shortest path tree for big dynamic graphs,” in Proc.
IEEE Int. Conf. Big Data, 2018, pp. 4054–4062.

[17] J. Shun, “Practical parallel hypergraph algorithms,” in Proc. ACM
SIGPLAN Symp. Princ. Pract. Parallel Program., 2020, pp. 232–249.

[18] E. Duriakova, D. Ajwani, and N. Hurley, “Engineering a parallel
d-stepping algorithm,” in Proc. IEEE Int. Conf. Big Data, 2019,
pp. 609–616.

[19] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infra-
structure for graph analytics,” in Proc. 24th ACM Symp. Operating
Syst. Princ., 2013, pp. 456–471.

[20] R. Pearce, M. Gokhale, andN.M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in Proc. Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2014, pp. 549–559.

[21] K. Vora, R. Gupta, and G. Xu, “KickStarter: Fast and accurate com-
putations on streaming graphs via trimmed approximations,” in
Proc. 22nd Int. Conf. Archit. Support Program. Lang. Operating Syst.,
2017, pp. 237–251.

[22] J. King, T. Gilray, R. M. Kirby, and M. Might, “Dynamic sparse-
matrix allocation on GPUs,” in Proc. Int. Conf. High Perform. Com-
put., 2016, pp. 61–80.

[23] B. Wheatman and H. Xu, “Packed compressed sparse row: A
dynamic graph representation,” in Proc. IEEE High Perform.
Extreme Comput. Conf., 2018, pp. 1–7.

[24] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proc. 29th AAAI
Conf. Artif. Intell., 2015, pp. 4292–4293.

[25] K. Pingali et al., “The tao of parallelism in algorithms,” in Proc. ACM
SIGPLAN conf. Program. Lang. Des. Implementation, 2011, pp. 12–25.

Arindam Khanda received the BTech degree in
ECE from the Institute of Engineering and Man-
agement in 2015 and the MTech degree in soft-
ware systems from BITS Pilani in 2019. He is
currently working toward the PhD degree with the
Missouri University of Science and Technology.
His research interests include parallel program-
ming models, dynamic graphs, and HPC.

Sriram Srinivasan received the PhD degree from the University of
Nebraska, Omaha. His research focuses on developing parallel scalable
dynamic graph algorithms.

Sanjukta Bhowmick received the PhD degree
from Pennsylvania State University. She is cur-
rently an associate professor with the Computer
Science and Engineering Department, the Uni-
versity of North Texas. She was a joint postdoc
with Columbia University and Argonne National
Lab. Her research interests include understand-
ing change in complex network analysis, with a
focus on developing scalable algorithms for large
dynamic networks and developing uncertainty
quantification metrics for network analysis.

Boyana Norris is currently an associate profes-
sor with the Department of Computer and Infor-
mation Science, University of Oregon. Her
research interests include parallel algorithms, per-
formancemodeling, automated performance opti-
mization (autotuning) of parallel scientific
applications, embedding of domain-specific lan-
guages into legacy codes, adaptive algorithms for
HPC, and component-based software engineer-
ing for HPC.

Sajal K. Das (Fellow, IEEE) is currently a professor
of computer science and Daniel St. Clair endowed
chair of theMissouri University of Science andTech-
nology. His research interests include parallel and
cloud computing, sensor networks, mobile and per-
vasive computing, cyber-physical systems, IoT,
smart environments, cybersecurity, and biological
and social networks. He is currently the editor-in-
chief of the Pervasive and Mobile Computing and
an associate editor for the IEEE Transactions of
Mobile Computing, the IEEE Transactions on

Dependable and Secure Computing, and the ACM Transactions on Sensor
Networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:18:54 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2020.3044420
http://dx.doi.org/10.1109/TBDATA.2018.2870136

	A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks
	Recommended Citation

	A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

