163 research outputs found

    The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics

    Full text link
    We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The Toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus Framework for high-performance computing and the Carpet adaptive mesh refinement driver. It implements spacetime evolution via the BSSN evolution system and general-relativistic hydrodynamics in a finite-volume discretization. The toolkit is under continuous development and contains many new code components that have been publicly released for the first time and are described in this article. We discuss the motivation behind the release of the toolkit, the philosophy underlying its development, and the goals of the project. A summary of the implemented numerical techniques is included, as are results of numerical test covering a variety of sample astrophysical problems.Comment: 62 pages, 20 figure

    Towards Simulations of Binary Neutron Star Mergers and Core-Collapse Supernovae with GenASiS

    Get PDF
    This dissertation describes the current version of GenASiS and reports recent progress in its development. GenASiS is a new computational astrophysics code built for large-scale and multi-dimensional computer simulations of astrophysical phenomena, with primary emphasis on the simulations of neutron star mergers and core-collapse supernovae. Neutron star mergers are of high interest to the astrophysics community because they should be the prodigious source of gravitation waves and the most promising candidates for gravitational wave detection. Neutron star mergers are also thought to be associated with the production of short-duration, hard-spectral gamma-ray bursts, though the mechanism is not well understood. In contrast, core-collapse supernovae with massive progenitors are associated with long-duration, soft-spectral gamma-ray bursts, with the `collapsar\u27 hypothesis as the favored mechanism. Of equal interest is the mechanism of core-collapse supernovae themselves, which has been in the forefront of many research efforts for the better half of a century but remains a partially-solved mystery. In addition supernovae, and possibly neutron star mergers, are thought to be sites for the \emph{r}-process nucleosynthesis responsible for producing many of the heavy elements. Until we have a proper understanding of these events, we will have only a limited understanding of the origin of the elements. These questions provide some of the scientific motivations and guidelines for the development of GenASiS. In this document the equations and numerical scheme for Newtonian and relativistic magnetohydrodynamics are presented. A new FFT-based parallel solver for Poisson\u27s equation in GenASiS are described. Adaptive mesh refinement in GenASiS, and a novel way to solve Poisson\u27s equation on a mesh with refinement based on a multigrid algorithm, are also presented. Following these descriptions, results of simulations of neutron star mergers with GenASiS such as their evolution and the gravitational wave signals and spectra that they generate are shown. In the context of core-collapse supernovae, we explore the capacity of the stationary shock instability to generate magnetic fields starting from a weak, stationary, and radial magnetic field in an initially spherically symmetric fluid configuration that models the stalled shock in the post-bounce supernova environment. Our results show that the magnetic energy can be amplified by almost 4 orders of magnitude. The amplification mechanisms for the magnetic fields are then explained

    Tidal Disruption and Accretion of Planets and Brown Dwarfs Inside Giant Stars

    Get PDF
    A significant fraction of isolated white dwarfs host strong magnetic fields that range from a few to a thousand Megagauss. These high-field magnetic white dwarfs (HFMWDs) comprise ∌10% of all isolated white dwarfs. Remarkably, not a single close and detached binary system that is composed of a white dwarf and a low-mass-main-sequence star contains a HFMWD. If the origin of magnetic fields in white dwarfs were independent of binary interactions, then the observed distribution of isolated white dwarfs should be similar to those in detached binaries, yet they are not. Unless there is a mechanism by which distant companions prevent the formation of a strong magnetic field, a more plausible explanation is that highly magnetized white dwarfs became that way by engulfing (and removing) their companions. When a member of a binary system extends past its Roche-Lobe, mass transfer and tidal torques serve to distribute material in a circumbinary ‘envelope’ enclosing the system. This process causes the orbit to decay as the ambient material dynamically drags on the binary components. This interaction is referred to as common envelope evolution and is thought to be the primary channel for producing short-period binaries in the Universe. Using three-dimensional numerical simulations, we investigate common envelope events between an Asymptotic Giant Branch (AGB) star and low-mass companions that are expected to result in mergers. As a companion approaches the AGB core, it tidally disrupts. The disrupted material forms an accretion disk which may amplify, transport and anchor the magnetic field onto the proto-white dwarf. At the end of the AGB phase, a HFMWD would emerge

    The Astrophysical Multipurpose Software Environment

    Get PDF
    We present the open source Astrophysical Multi-purpose Software Environment (AMUSE, www.amusecode.org), a component library for performing astrophysical simulations involving different physical domains and scales. It couples existing codes within a Python framework based on a communication layer using MPI. The interfaces are standardized for each domain and their implementation based on MPI guarantees that the whole framework is well-suited for distributed computation. It includes facilities for unit handling and data storage. Currently it includes codes for gravitational dynamics, stellar evolution, hydrodynamics and radiative transfer. Within each domain the interfaces to the codes are as similar as possible. We describe the design and implementation of AMUSE, as well as the main components and community codes currently supported and we discuss the code interactions facilitated by the framework. Additionally, we demonstrate how AMUSE can be used to resolve complex astrophysical problems by presenting example applications.Comment: 23 pages, 25 figures, accepted for A&

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Addition of tabulated equation of state and neutrino leakage support to IllinoisGRMHD

    Full text link
    We have added support for realistic, microphysical, finite-temperature equations of state (EOS) and neutrino physics via a leakage scheme to IllinoisGRMHD, an open-source GRMHD code for dynamical spacetimes in the Einstein Toolkit. These new features are provided by two new, NRPy+-based codes: NRPyEOS, which performs highly efficient EOS table lookups and interpolations, and NRPyLeakage, which implements a new, AMR-capable neutrino leakage scheme in the Einstein Toolkit. We have performed a series of strenuous validation tests that demonstrate the robustness of these new codes, particularly on the Cartesian AMR grids provided by Carpet. Furthermore, we show results from fully dynamical GRMHD simulations of single unmagnetized neutron stars, and magnetized binary neutron star mergers. This new version of IllinoisGRMHD, as well as NRPyEOS and NRPyLeakage, is pedagogically documented in Jupyter notebooks and fully open source. The codes will be proposed for inclusion in an upcoming version of the Einstein Toolkit.Comment: 20 pages, 9 figures. v2 matches PRD versio
    • 

    corecore