322 research outputs found

    Clustering and beamforming for efficient communication in wireless sensor networks

    Get PDF
    Energy efficiency is a critical issue for wireless sensor networks (WSNs) as sensor nodes have limited power availability. In order to address this issue, this paper tries to maximize the power efficiency in WSNs by means of the evaluation of WSN node networks and their performance when both clustering and antenna beamforming techniques are applied. In this work, four different scenarios are defined, each one considering different numbers of sensors: 50, 20, 10, five, and two nodes per scenario, and each scenario is randomly generated thirty times in order to statistically validate the results. For each experiment, two different target directions for transmission are taken into consideration in the optimization process (ɸ = 0º and Ɵ = 45º; ɸ = 45º, and Ɵ = 45º). Each scenario is evaluated for two different types of antennas, an ideal isotropic antenna and a conventional dipole one. In this set of experiments two types of WSN are evaluated: in the first one, all of the sensors have the same amount of power for communications purposes; in the second one, each sensor has a different amount of power for its communications purposes. The analyzed cases in this document are focused on 2D surface and 3D space for the node location. To the authors’ knowledge, this is the first time that beamforming and clustering are simultaneously applied to increase the network lifetime in WSNs.Gobierno de Extremadura y Fondos FEDER: Proyecto IB13113peerReviewe

    Redes de sensores seguras y eficientes con beamforming

    Get PDF
    Mejorar la eficiencia energética de las redes de sensores (WSN, por sus siglas en inglés) es uno de sus principales objetivos de diseño. De entre las distintas líneas de trabajo existentes en esta área, el uso del conformado del haz, o beamforming, está en auge en la actualidad, ya que proporciona una forma de transmitir señales de radio muy eficiente hacia un conjunto dado de direcciones destino. En este trabajo, el beamforming se ha utilizado para incrementar, por una parte, el tiempo de vida de las WSNs y, por otro, el nivel de seguridad de la red, evitando establecer comunicaciones en direcciones donde se conoce la existencia de nodos enemigos. El problema se ha formulado agregando dichos objetivos en una única función de fitness, y cuyas soluciones tentativas están compuestas por las amplitudes y fases de las antenas instaladas en los nodos de la WSN. Sobre distintos escenarios sintéticos, los resultados han mostrado que es posible reducir el consumo energético de una WSN y, a la vez, proporcionar comunicaciones seguras ante la presencia de posibles atacantes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Plan Nacional de Investigación del Ministerio de Economía y Competitividad bajo el proyecto TIN2016-75097-P

    Target Tracking in Wireless Sensor Networks

    Get PDF

    Advances in Green Communications and Networking

    Full text link
    Lloret, J.; Sendra, S.; Macias-Lopez, E. (2019). Advances in Green Communications and Networking. Mobile Networks and Applications. 24(2):653-656. https://doi.org/10.1007/s11036-019-01212-yS65365624

    Recent Advances in Joint Wireless Energy and Information Transfer

    Full text link
    In this paper, we provide an overview of the recent advances in microwave-enabled wireless energy transfer (WET) technologies and their applications in wireless communications. Specifically, we divide our discussions into three parts. First, we introduce the state-of-the-art WET technologies and the signal processing techniques to maximize the energy transfer efficiency. Then, we discuss an interesting paradigm named simultaneous wireless information and power transfer (SWIPT), where energy and information are jointly transmitted using the same radio waveform. At last, we review the recent progress in wireless powered communication networks (WPCN), where wireless devices communicate using the power harvested by means of WET. Extensions and future directions are also discussed in each of these areas.Comment: Conference submission accepted by ITW 201

    Optimal Cooperative MIMO Scheme in Wireless Sensor Networks

    Get PDF
    Cooperative Multiple-Input Multiple-Output (MIMO) has been proposed as a transmission strategy to combat the fading problem in Wireless Sensor Networks (WSNs) to reduce the retransmission probability and lower the transmission energy. Among the earliest work on cooperative MIMO in WSNs is the analysis of the Space-Time Block Coding (STBC) scheme to achieve lower Bit Error Rate (BER) and significant energy savings. The work is continued with the implementation of the Low-Energy Adaptive Clustering Hierarchy (LEACH) Medium Access Control (MAC) protocol for clustered-based architectures. The combination of STBC and the LEACH scheme resulted in a significant improvement in transmission energy efficiency compared to the Single-Input Single Output (SISO) scheme. Further study is conducted to compare the performance of STBC and various Spatial Multiplexing (SM) schemes such as Vertical Bell Labs Layered Space-Time (V-BLAST) and Diagonal BLAST. In this study, LEACH MAC was also utilized and lower transmission energy and latency were achieved against the SISO scheme. However, the centralized architecture leads to energy wastage and higher latency compared to a distributed architecture. On the other hand, the implementation of a distributed architecture needs to consider synchronisation issues. Thus a practical cooperative MIMO scheme for distributed asynchronous WSNs is needed. Moreover, a practical MAC that can suit cooperative transmission is required. A combination of a practical MAC protocol and an efficient MIMO scheme for asynchronous cooperative transmission leads to a more energy efficient and lower latency cooperative MIMO system. A combination of a MAC protocol and a cooperative SM scheme for cooperative MIMO transmission has been proposed in previous study where the combined scheme achieves significant energy efficiency and lower latency. Furthermore, a transmit Maximum Ratio Combiner (MRC) scheme is suggested to be more tolerant to the jitter difference than the Alamouti STC scheme in network with imperfect transmitting nodes synchronisation. In this chapter, we expand these studies to two other cooperative MIMO schemes, namely Beamforming (BF) and STBC for both network scenarios: perfect and imperfect transmitting nodes synchronisation. The optimal cooperative MIMO scheme combined with an appropriate MAC protocol should lead to the lowest energy consumption and lowest packet latency
    corecore