6 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Satellite radio interface and radio resource management strategy for the delivery of multicast/broadcast services via an integrated satellite-terrestrial system

    No full text
    A variety of hybrid systems combining third-generation mobile communication networks with broadcast systems have been proposed for the delivery of multimedia broadcast multicast services (MBMS) to mobile users. The article discusses one of these alternatives, which involves the use of a geostationary satellite component for MBMS delivery. In particular, it proposes a radio access scheme for the satellite component of the system that features maximum commonalties with the standardized T-UMTS WCDMA-based interface. The ultimate advantage of this approach is more efficient delivery of MBMS as far as the mobile network operator is concerned. The required adaptations at the interface layers are described, and the radio resource management strategy that fulfills the particular requirements of the satellite system is presented. © 2004 IEEE
    corecore