26 research outputs found

    Application Protocols enabling Internet of Remote Things via Random Access Satellite Channels

    Full text link
    Nowadays, Machine-to-Machine (M2M) and Internet of Things (IoT) traffic rate is increasing at a fast pace. The use of satellites is expected to play a large role in delivering such a traffic. In this work, we investigate the use of two of the most common M2M/IoT protocols stacks on a satellite Random Access (RA) channel, based on DVB-RCS2 standard. The metric under consideration is the completion time, in order to identify the protocol stack that can provide the best performance level

    Frame Based Precoding in Satellite Communications: A Multicast Approach

    Get PDF
    In the present work, a multibeam satellite that employs aggressive frequency reuse towards increasing the offered throughput is considered. Focusing on the forward link, the goal is to employ multi-antenna signal processing techniques, namely linear precoding, to manage the inter-beam interferences. In this context, fundamental practical limitations, namely the rigid framing structure of satellite communication standards and the on-board per-antenna power constraints, are herein considered. Therefore, the concept of optimal frame based precoding under per-antenna constraints, is discussed. This consists in precoding the transmit signals without changing the underlying framing structure of the communication standard. In the present work, the connection of the frame based precoding problem with the generic signal processing problem of conveying independent sets of common data to distinct groups of users is established. This model is known as physical layer multicasting to multiple co-channel groups. Building on recent results, the weighted fair per-antenna power constrained multigroup multicast precoders are employed for frame based precoding. The throughput performance of these solutions is compared to multicast aware heuristic precoding methods over a realistic multibeam satellite scenario. Consequently, the gains of the proposed approach are quantified via extensive numerical results.Comment: Accepted for presentation at the IEEE ASMS 201

    Designing Joint Precoding and Beamforming in a Multiple Gateway Multibeam Satellite System

    Get PDF
    This paper aims to design joint on-ground precoding and on-board beamforming of a multiple gateway multibeam satellite system in a hybrid space-ground mode where full frequency reuse pattern is considered among the beams. In such an architecture, each gateway serves a cluster of adjacent beams such that the adjacent clusters are served through a set of gateways that are located at different geographical areas. However, such a system brings in two challenges to overcome. First, the inter-beam interference is the bottleneck of the whole system and applying interference mitigation techniques becomes necessary. Second, as the data demand increases, the ground and space segments should employ extensive bandwidth resources in the feeder link accordingly. This entails embedding an extra number of gateways aiming to support a fair balance between the increasing demand and the corresponding required feeder link resources. To solve these problems, this study investigates the impact of employing a joint multiple gateway architecture and on-board beamforming scheme. It is shown that by properly designing the on-board beamforming scheme, the number of gateways can be kept affordable even if the data demand increases. Moreover, Zero Forcing (ZF) precoding technique is considered to cope with the inter-beam interference where each gateway constructs a part of block ZF precoding matrix. The conceived designs are evaluated with a close-to-real beam pattern and the latest broadband communication standard for satellite communications

    DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    Get PDF
    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201

    5G embraces satellites for 6G ubiquitous IoT : basic models for integrated satellite terrestrial networks

    Get PDF
    Terrestrial communication networks mainly focus on users in urban areas but have poor coverage performance in harsh environments, such as mountains, deserts, and oceans. Satellites can be exploited to extend the coverage of terrestrial fifth-generation (5G) networks. However, satellites are restricted by their high latency and relatively low data rate. Consequently, the integration of terrestrial and satellite components has been widely studied, to take advantage of both sides and enable the seamless broadband coverage. Due to the significant differences between satellite communications (SatComs) and terrestrial communications (TerComs) in terms of channel fading, transmission delay, mobility, and coverage performance, the establishment of an efficient hybrid satellite-terrestrial network (HSTN) still faces many challenges. In general, it is difficult to decompose a HSTN into a sum of separate satellite and terrestrial links due to the complicated coupling relationships therein. To uncover the complete picture of HSTNs, we regard the HSTN as a combination of basic cooperative models that contain the main traits of satellite-terrestrial integration but are much simpler and thus more tractable than the large-scale heterogeneous HSTNs. In particular, we present three basic cooperative models, i.e., model X, model L, and model V, and provide a survey of the state-of-the-art technologies for each of them. We discuss future research directions towards establishing a cell-free, hierarchical, decoupled HSTN. We also outline open issues to envision an agile, smart, and secure HSTN for the sixth-generation (6G) ubiquitous Internet of Things (IoT)

    Dual polarized modulation and reception for next generation mobile satellite communications

    Get PDF
    This paper presents the novel application of polarized modulation (PMod) for increasing the throughput in mobile satellite transmissions. One of the major drawbacks in mobile satellite communications is the fact that the power budget is often restrictive, making it unaffordable to improve the spectral efficiency without an increment of transmitted power. By using dual polarized antennas in the transmitter and receiver, the PMod technique achieves an improvement in throughput of up to 100% with respect to existing deployments, with an increase of less than 1 dB at low Eb/N0 regime. Additionally, the proposed scheme implies minimum hardware modifications with respect to the existing dual polarized systems and does not require additional channel state information at the transmitter; thus it can be used in current deployments. Demodulation (i.e., detection and decoding) alternatives, with different processing complexity and performance, are studied. The results are validated in a typical mobile interactive scenario, the newest version of TS 102 744 standard [Broadband Global Area Network (BGAN)], which aims to provide interactive mobile satellite communications.Peer ReviewedPostprint (author's final draft

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore