31 research outputs found

    Object Dexterous Manipulation in Hand Based on Finite State Machine

    Get PDF
    Li Q, Meier M, Haschke R, Ritter H, Bolder B. Object Dexterous Manipulation in Hand Based on Finite State Machine. In: Proc. ICMA2012. 2012: 1185-1190

    Finding antipodal point grasps on irregularly shaped objects

    Get PDF
    Two-finger antipodal point grasping of arbitrarily shaped smooth 2-D and 3-D objects is considered. An object function is introduced that maps a finger contact space to the object surface. Conditions are developed to identify the feasible grasping region, F, in the finger contact space. A “grasping energy function”, E , is introduced which is proportional to the distance between two grasping points. The antipodal points correspond to critical points of E in F. Optimization and/or continuation techniques are used to find these critical points. In particular, global optimization techniques are applied to find the “maximal” or “minimal” grasp. Further, modeling techniques are introduced for representing 2-D and 3-D objects using B-spline curves and spherical product surfaces

    A Developmental Organization for Robot Behavior

    Get PDF
    This paper focuses on exploring how learning and development can be structured in synthetic (robot) systems. We present a developmental assembler for constructing reusable and temporally extended actions in a sequence. The discussion adopts the traditions of dynamic pattern theory in which behavior is an artifact of coupled dynamical systems with a number of controllable degrees of freedom. In our model, the events that delineate control decisions are derived from the pattern of (dis)equilibria on a working subset of sensorimotor policies. We show how this architecture can be used to accomplish sequential knowledge gathering and representation tasks and provide examples of the kind of developmental milestones that this approach has already produced in our lab

    Sampling-based Exploration for Reinforcement Learning of Dexterous Manipulation

    Full text link
    In this paper, we present a novel method for achieving dexterous manipulation of complex objects, while simultaneously securing the object without the use of passive support surfaces. We posit that a key difficulty for training such policies in a Reinforcement Learning framework is the difficulty of exploring the problem state space, as the accessible regions of this space form a complex structure along manifolds of a high-dimensional space. To address this challenge, we use two versions of the non-holonomic Rapidly-Exploring Random Trees algorithm; one version is more general, but requires explicit use of the environment's transition function, while the second version uses manipulation-specific kinematic constraints to attain better sample efficiency. In both cases, we use states found via sampling-based exploration to generate reset distributions that enable training control policies under full dynamic constraints via model-free Reinforcement Learning. We show that these policies are effective at manipulation problems of higher difficulty than previously shown, and also transfer effectively to real robots. Videos of the real-hand demonstrations can be found on the project website: https://sbrl.cs.columbia.edu/Comment: 10 pages, 6 figures, submitted to Robotics Science & Systems 202

    Real-Time Motion Planning for In-Hand Manipulation with a Multi-Fingered Hand

    Full text link
    Dexterous manipulation of objects once held in hand remains a challenge. Such skills are, however, necessary for robotics to move beyond gripper-based manipulation and use all the dexterity offered by anthropomorphic robotic hands. One major challenge when manipulating an object within the hand is that fingers must move around the object while avoiding collision with other fingers or the object. Such collision-free paths must be computed in real-time, as the smallest deviation from the original plan can easily lead to collisions. We present a real-time approach to computing collision-free paths in a high-dimensional space. To guide the exploration, we learn an explicit representation of the free space, retrievable in real-time. We further combine this representation with closed-loop control via dynamical systems and sampling-based motion planning and show that the combination increases performance compared to alternatives, offering efficient search of feasible paths and real-time obstacle avoidance in a multi-fingered robotic hand

    Dexterous manipulation planning using probabilistic roadmaps in continuous grasp subspaces

    Get PDF
    In this paper, we propose a new method for the motion planning problem of rigid object dexterous manipulation with a robotic multi-fingered hand, under quasi-static movement assumption. This method computes both object and finger trajectories as well as the finger relocation sequence. Its specificity is to use a special structuring of the research space that allows to search for paths directly in the particular subspace GSn which is the subspace of all the grasps that can be achieved with n grasping fingers. The solving of the dexterous manipulation planning problem is based upon the exploration of this subspace. The proposed approach captures the connectivity of GSn in a graph structure. The answer of the manipulation planning query is then given by searching a path in the computed graph. Simulation experiments were conducted for different dexterous manipulation task examples to validate the proposed method

    Proceedings of the NASA Conference on Space Telerobotics, volume 1

    Get PDF
    The theme of the Conference was man-machine collaboration in space. Topics addressed include: redundant manipulators; man-machine systems; telerobot architecture; remote sensing and planning; navigation; neural networks; fundamental AI research; and reasoning under uncertainty
    corecore