
Dexterous Manipulation Planning Using Probabilistic Roadmaps in
Continuous Grasp Subspaces

Jean-Philippe Saut, Anis Sahbani, Sahar El-Khoury and Véronique Perdereau
Université Pierre et Marie Curie-Paris6, LISIF-EA 2385,

3 rue Galilée, Ivry-sur-Seine, 94200 France
jean-philippe.saut@lisif.jussieu.fr

Abstract— In this paper, we propose a new method for the
motion planning problem of rigid object dexterous manipu-
lation with a robotic multi-fingered hand, under quasi-static
movement assumption. This method computes both object and
finger trajectories as well as the finger relocation sequence.
Its specificity is to use a special structuring of the research
space that allows to search for paths directly in the particular
subspace GSn which is the subspace of all the grasps that
can be achieved with n grasping fingers. The solving of the
dexterous manipulation planning problem is based upon the
exploration of this subspace. The proposed approach captures
the connectivity of GSn in a graph structure. The answer of
the manipulation planning query is then given by searching
a path in the computed graph. Simulation experiments were
conducted for different dexterous manipulation task examples
to validate the proposed method.

I. INTRODUCTION

A. Dexterous Manipulation

The robotic dexterous manipulation is the kind of ma-
nipulation executed with the help of a robotic hand, using
small fingertip movements and contact relocations. Unlike
for the arm manipulation, only a small workspace is required
to manipulate an object and there is no need for pick and
place operations in order to change the grasp configuration.
Dexterous manipulation implies many research topics such
as mechanics, instrumentation, control and planning. This
paper addresses the latter. In order to manipulate an object,
it is necessary to compute both object and finger feasible
trajectories. These trajectories will then be used as the input
of the control system of the hand. Computing them is the
goal of dexterous manipulation planning (DMP). DMP is a
difficult issue because it involves a system which has many
degrees of freedom (DOF). Indeed, hands with dexterous
manipulation capabilities generally have at least four fingers
with at least three DOFs each while the object itself has six
DOFs. The exploration of the configuration space of such a
system can be consequently very computationally extensive.
Another difficulty of DMP is that it implies both continuous
(object and finger motion) and discrete (contact relocation)
events. A DMP method must therefore integrate schemes
taking into account these two aspects.

B. Related Work

The early works on DMP concerned the problem formu-
lation without introducing any resolution scheme ([1],[2]).
The first method to be presented was the one by Trinkle

and Hunter [3]. The authors proposed to build a graph
whose nodes are qualitative descriptions of grasps. These
descriptions list the contacts between elements of the grasped
object and the hand, such as vertices or edges. The nodes
are linked using a planning method working in joint space
and the dexterous manipulation problem solution is found
when start and goal configurations are linked to the tree.
This work was restricted to a manipulation system with
few degrees of freedom. Han and Trinkle [4] proposed a
framework for the manipulation planning of a sphere with
three fingers. A finger needs to be replaced if it is close
to its workspace boundary or if it can not ensure a force
closure grasp with any of the two others. Rus [5] proposed a
full dynamics algorithm called the finger tracking algorithm.
The main idea of this algorithm is to use two fixed fingers
that do not move (with respect to the world frame) and a
third one that moves to control the reorientation movement.
Cherif and Gupta [6] used the same principle to plan the
re-orientation of a convex object. Three fingertips are fixed
and the motion of a fourth one is used to rotate the object.
More recently, Goodwine [7] and Harmati et al. [8] proposed
methods based upon nonlinear system control theory. They
use motion planning methods for smooth systems that are
extended to deal with the discontinuities of finger gaiting.
The configuration space is divided into strata, each of them
corresponding to a particular grasping finger combination.
In each stratum, the vector fields for the control system
are smooth, allowing the use of motion planning methods
for smooth kinematic non holonomic systems. Yashima et
al. [9] proposed a randomized planning architecture based
on switching of contact modes. The method considers all
possible contact modes (sliding, sliding with rolling, with
spinning, etc.). Based on the RRT method [10], a global
planner builds a random tree to explore the object configu-
ration space and a local planner tries to link the tree nodes.
This local planner builds an object trajectory and randomly
chooses a contact mode. Then, the inverse problem is used
to compute the joint torque trajectories that will lead to the
desired object trajectory while satisfying the manipulation
constraints. Xu and Li [11] proposed to use joint space
representation of the grasps and to describe the problem as
a hybrid automaton, which can be seen as a state machine
that takes into account both discrete (finger relocation) and
continuous (object or finger trajectories) events. They do
not present a full resolution method but this is part of their

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147974667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ongoing works.
To our opinion, the drawbacks of existing methods are

of two kinds. Firstly, many methods compute the object
trajectory first and then the trajectories of the fingers ([4],
[6], [7], [8]). As the object trajectory depends strongly on
the accessibility domains of the fingers, such methods may
not find a solution in many situations (see e.g. example 3
in section III). The other drawback is that some methods
explore the configuration space at a too low level, having
more a control approach than a motion planning approach
([9]). As the configuration space dimension of a dexterous
manipulation system is particularly big, this leads to huge
computation times. Therefore the associate shown examples
are always very simplistic (sphere or egg-shaped object small
reorientation). The method we propose in this paper aims
to solve these weaknesses taking into account the particular
structure of the configuration space.

II. PROPOSED METHOD

A. Problem Formulation and hypothesis

1) Studied System and Configuration Space (CS): The
studied system is composed of an n-fingered hand and of
a rigid object to be manipulated. Each finger is an open
kinematic chain attached to the palm, which is considered
to be motionless. The object configuration, or pose, is
characterized by a position and an orientation. We assume
all contacts to be punctual and the fingertips to be “sharp”
enough to allow us to neglect the effect of rolling. Thus, the
contact on the fingertip surface is supposed to occur only
at a single point. A contact is consequently characterized
only by its position on the object surface. A finger that
participates to the object grasp is called a “grasping finger”
while a finger that does not is called an “independent
finger”. A k finger grasp is defined by a set of k grasping
fingers and their relative contact points. For a given object
pose and a given contact point, the configuration of the
corresponding grasping finger can be determined as long as
the finger inverse geometric model has only one solution.
If it is not the case, it is possible to reduce the number of
solution to one, arbitrarily or using a criterion (e.g. grasp
quality criterion). The admissible configurations of CSfree

are the ones corresponding to object grasping; the other
ones correspond to always unstable situations. Therefore, we
introduce a fundamental subspace called Grasp Subspace k
(GSk), that is the subspace of all the configurations q with
k grasping fingers and (n− k) independent fingers:

GSk =

 q ∈ CSfree/
the object is grasped by any combination

of k (among n) fingers

(1)

The system configuration space is composed by the different
GSk subspaces with k ∈ J0, . . . , nK. An important inclusion
relation is GSk+1 ⊂ GSk,∀k ∈ J0, . . . , n − 1K. The reason
for this inclusion relation is that a (k+1)-fingered grasp is a
particular case of k-fingered grasp (one of the independent
fingers is in a configuration that makes it contact the object

surface). As there can be different possible combinations for
the k grasping fingers, it is useful to introduce the spaces
noted GSi

k, i ∈ J1;Ck
nK, subspaces of GSk:

GSi
k =

 q ∈ CSfree/
the object is grasped by a given combination

of k (among n) fingers

(2)

Each GSk can be seen as the union of Ck
n GSi

k subspaces.
Because of the necessary condition of finger movement
continuity, it is not always possible to link two configurations
belonging to the same GSk, whatever path type is chosen.
For instance, it is not possible when the k grasping fingers
are not the same between these two configurations, i.e. when
the two configurations belong to different GSi

k. It is then
necessary to use a path in GSk+1 or in GSk−1\GSk (GSk−1

without GSk). This is illustrated by figure 1 showing, for a
5-fingered hand, how intermediate configurations in GS5 or
GS3\GS4 are needed to connect two configurations in GS4.
The need for subspace change is equivalent to the need for
finger gaiting (i.e. to perform finger relocations).

Fig. 1. To link two four-fingered grasps (both belonging to GS4),
it might be necessary to use intermediate three or five finger
grasps (belonging to GS3\GS4 and GS5 respectively).

2) Constraints and Elementary Movements: A fundamen-
tal constraint that occurs in dexterous manipulation is the
grasp stability, as the object must be hold safely during
the whole manipulation task. Among all existing stability
criteria, we choose the force closure one that is certainly
the most commonly used. A grasp verifies the force closure
property if an arbitrary force/torque wrench can be exerted on
the grasped object by applying appropriate contact forces. As
we assume object and finger movements to be slow enough
to neglect inertial effects, we consider that verifying the force
closure property at each instant is sufficient to guarantee the
system stability. Force closure property depends only on the
contact positions and models (point contact with friction, soft
contact with elliptic approximation, etc.). Another important
constraint concerns the kinematics of contacts. Indeed, we
assume that the movement of the object is induced by
the movement of the fingers and that the contacts between
the object and the fingertips can not slide on the object
surface. This leads us to introduce two fundamental local
paths, each one corresponding to an elementary manipulation
subtask: grasp reconfiguration (or regrasping) and object
displacement. We call the first one regrasping path and the
second one transfer path. During a regrasping path, the
object is maintained immobile and some fingers move to
change the grasp, while during a transfer path, the object is
moved but the grasp remains unchanged (Fig. 2). The goal
of DMP is then to find a sequence of transfer and regrasping

Fig. 2. Regrasping and transfer path examples for a four-
fingered hand in the plane.

paths that will link two given configurations both belonging
to GSn while ensuring grasp stability (i.e. force closure) all
along.

B. Proposed planning method

1) Main idea of the method: To find a feasible path
linking two configurations in GSn, one needs to explore
the system C-space. Classically, we choose to build a graph
to explore the configuration space. So far, most existing
techniques build a graph by sampling the configuration space
and trying to link the obtained samples with elementary
paths such as “transfer+regrasping” or “regrasping+transfer”
paths. The drawback of such an approach is that it leads
to oversample CSfree and consequently to large computing
times and to an excessive number of grasp reconfigurations.
Indeed, these techniques require subspace change even to
link two configurations of the same GSi

k. We propose
instead a new method, advantageously taking into account
the GSk subspace continuity (and so the grasp continuity)
and allowing to link directly two configurations belonging
to the same GSi

k. The idea is to add virtual DOFs modeling
the continuity of the grasp. These DOFs correspond to
continuous contact placements on the object surface. Each
contact can then be seen as a sliding joint between the
object surface and the fingertip. This representation allows
to choose configurations respecting the closure of kinematic
chains induced by grasping fingers and object as well as to
generate path in a GSi

k. We can thus define a linear path
(Fig. 3) between two GSi

k configurations. Such a path is
obtained by linearly linking the two augmented configuration
vectors (augmented with the parameters representing the
grasp continuity).

Fig. 3. A linear path in GS4 for a 4-fingered hand in the
plane.

The exploration of the different GSi
k can then be done

using paths included in these subspaces. Consequently, it
is possible to directly connect two configurations in GSi

k,
corresponding to both different object poses and different
grasps, without having to use in-between configurations

(needed to compute a transfer-regrasping path). Introducing
intermediate configurations would have led to an oversam-
pling of CS. Of course, paths in GSi

k are almost always
kinematically unfeasible but thanks to the reduction property
stated and proved in [12], they can be decomposed in a finite
transfer-regrasping path sequence, that is feasible, as long as
they are collision free. We explain in the next section, with
a 3D four-fingered hand example, the approach we propose
and use in our planner.

2) Principle of the method: Let us take the example of a
3D four-fingered hand to illustrate the search space structure
described in the previous section. The theory presented in
this paper applies to an arbitrary number of fingers but is
easier to understand on a practical example. If we choose a
point contact with friction model, a grasp must have at least
three contacts to be stable. The only interesting subspaces
are consequently GS4 and GS3\GS4 =

⋃
i∈J1;4K

GSi
3. Figure 4

represents these GSk subspaces. One can see on Fig. 4 one of
the main originality of the proposed DMP technique, which
is to link, if it is possible, configurations in GS4 directly
with linear paths in GS4.

Fig. 4. Linking two configurations qi and qf using a path in
GS4 (straight plain line) compared to using transfer-
regrasping paths (dashed curved lines). As only one
finger can be relocated at a time, at least four
regrasping paths are required.

If GS4 has multiple connected components because of
one or more obstacle (obstacles can be joint limits, grasp
instabilities or collisions between bodies), paths in GS4 are
not enough. One needs to use paths in GS3\GS4 subspace.
These paths are regrasping paths (used with transfer paths).
The principle of our DMP technique is to explore GS4 with
paths inside this subspace, in order to build a graph. If GS4

has multiple connected components, the graph exploring
GS4 will have multiple components too and paths in the
GSi

3, i ∈ J1; 4K will be used to merge them (transfer-
regrasping paths). The obtained graph is the dexterous ma-
nipulation graph. Figure 5 shows an example of such a
graph. Due to obstacle presence, GS4 has two connected
components. It is necessary to pass through configurations in
GS3\GS4 i.e. to change the grasp type. This is done using
transfer-regrasping paths. Next section detail our planning
method to build the dexterous manipulation graph.

3) Dexterous Manipulation Planner: We detail in this
section the use of our DMP technique for a 3D four-fingered

Fig. 5. A dexterous manipulation graph example. Striped
zones represent obstacles. qi and qf are start and
goal configurations. It is necessary to reduce the
number of grasping fingers to bypass the obstacles.
(Dashed arrow is a regrasping path)

hand with point contact with friction model. The choice of a
particular contact model does not modify the way the method
works. It only changes the minimum number of fingers that
is needed to ensure grasp stability. This method uses the
theory described in the previous section. It is based upon
the principle of the well-known probabilistic roadmaps [13],
[14], in a single query manner. Initial and goal configurations
are the first nodes added to the graph. The graph is then
developed, until the initial and goal configurations belong to
a same connected component of the graph. A path between
them is then found in the graph using an A*-like algorithm.
Once the global path is found (composed of paths in GS4

and possible transfer-regrasping paths), the paths in GS4

are converted into a finite number of transfer-regrasping
paths. This transformation is executed using a dichotomic
algorithm. Then, the number of regrasping movements is
minimized and, at last, regrasping and transfer paths are
smoothened using a probabilistic algorithm like the one
presented in [13].
Manipulation Graph Construction
The manipulation graph is built alternating two steps:
• GS4 exploring
• merging its connected components with transfer-

regrasping paths
The graph construction algorithm is presented in 1. qinit

and qgoal are start and goal configurations respectively, GM
is the manipulation graph, CC the set of GM connected
components. l1 and l2 are the first connected components
that have been found by the algorithm, after adding qinit

and qgoal to GM. α ∈]0; 1[is an important parameter. The
choice of its value is discussed further in the paper.

4) Function explore(): The goal of this function is to build
a graph in GS4 in order to capture this subspace topology.
Exploring GS4 in such a way is a motion planning problem
for a system containing several closed kinematic loops. One
needs to generate configurations verifying chain closures.
To solve this problem, we use RLG algorithm [15]. Each
chain is divided into an active part (the object) and a passive
one (the fingers). The active part configuration is randomly
chosen in the accessibility domain of the passive part. The

GM = {qinit, qgoal},1

CC = {l1 = {qinit}, l2 = {qgoal}}, α ∈]0; 1[
if l1 ≡ l2 then2

end of the algorithm3

else4

while l1 6= l2 do5

randomly choose x ∈]0; 1[6

if x < α then7

explore(qinit,qgoal,GM,CC)8

else9

connect components(GM,CC)10

end11

end12

end13
Algorithm 1: Manipulation graph construction algorithm

passive part is calculated using inverse geometric models.
The grasp stability (force closure property) is checked for
every generated configuration along a path. The function
tries to link the nodes of the graph (configurations in GS4)
with linear paths in GS4. It is thus necessary to be able
to connect two configurations in this subspace. Paths inside
GS4 require a specific algorithm. Along such paths, the
object moves while the fingers are “sliding” on the surface
of the object, in the same time. To keep the generality of
the approach, it is crucial to use a grasp parameterization
allowing continuous changes. Since grasp description needs
the contact positions on the object surface, it is necessary
to have a parameterization of this surface to be able to
compute paths in GS4. So far, we have only implemented
star-shaped objects that can be easily parameterized if their
surface is approximated by a polyhedron. In a more general
case, the parameterization problem can be bypassed because
actually one just needs to randomly choose points on the
object surface and to compute continuous shortest paths on
this surface, linking two of these points. A solution is to
approximate the surface by a polyhedron. This approximation
can be done with an arbitrarily chosen precision. A geodesic
computation algorithm is used to find the shortest path be-
tween two given object surface points. The path is computed
as a set of successive segments. The choice of a random
contact point is done by first randomly choosing a facet of
the polyhedron using a bias on its area, then by choosing a
position on this facet.

5) Function connect components(): The function con-
nect components() tries to merge two different connected
components of the manipulation graph using transfer-
regrasping paths. The transfer path goal is to bring the object
configuration from its initial to its goal configuration. The
goal of the regrasping path is then to bring the hand to its
final configuration.

• transfer path computation
The movement of the object during a transfer path is a
linear trajectory between the two object configurations.

• regrasping path computation

To compute the regrasping paths in a GSi
3, a collision

free trajectory for the free finger has to be planned. This
is simply done using the RRT method [10].

Remark on the choice of α:
The choice of α parameter (algorithm 1) is crucial because it
influences greatly the algorithm convergence. Having α close
to 0 encourages the sampling of GS4 because configurations
are added for each transfer-regrasping connection. However,
if GS4 has numerous connected components, it will improve
the convergence speed. A good trade-off is to initialize α
with a value close to 1 (to favor GS4 exploration) and
decrease it as the node number of the graph increases (to
favor GS4 connected component merging).
Remark on the number of fingers:
So far, we have chosen a four-fingered hand to illustrate the
proposed method. What is changed if the hand has more
fingers? For a four-fingered hand with point contacts, the
only interesting subspaces were GS4 and GS3 for stability
reasons. This would not be the case for a different contact
model (for instance soft finger contact model) or for a
greater number of fingers. In that case, the method remains
unchanged: GSn is explored using paths inside this subspace
and the algorithm tries to link its different connected com-
ponents using transfer paths and regrasping paths in GSn−1.
In that case, only GSn and GSn−1 are explored. Solutions
requiring that more than one finger relocate at a time can
consequently be missed. However such cases seem to be rare.
A solution could be then to use regrasping paths in GSk with
k < n − 1 i.e. to relocate more than one finger at a time.
For simplicity reasons, we have so far only implemented our
method for a four-fingered hand but plan to do it for more
general cases to find the most appropriate approach.

III. SIMULATION RESULTS

This section presents results obtained from computer sim-
ulations, for three different DMP problems. We developed
a planner written in C++ that uses the PQP library [16]
for collision detection. The simulated hand has four 3-DOF
fingers. The contact model used for force closure test is the
PCWF one (point contact with friction model) and the chosen
friction coefficient is 0.8. We give the computation times that
were obtained running the program on a PC equipped with
an Intel Core2Duo processor (two 2.16GHz processors) with
2GB RAM. Actually, only one of the processor was used as
the planning program uses only one thread.

The first example is very simple and used as a comparison
with other existing methods as it is the most common in
literature. It concerns the reorientation of a sphere (Fig. 6)
and is solved within a few seconds. To confirm that exploring
GS4 via paths in this particular space is advantageous, we
also solved this example using only “transfer+regrasping”
and “regrasping+transfer” paths. We call the associated
method “classic method”. The classic method is just a PRM
method whose local method is a single transfer-regrasping or
regrasping-transfer sequence (both types are tested for each
node connection try). Table I shows some information on
the obtained results for 200 tests. The number of generated

Fig. 6. Start and goal configurations for the sphere reorien-
tation problem. (π rotation around a horizontal axis).

nodes is the number of valid configurations that have been
generated in order to be added to the graph. The given
computation times only concern the graph construction and
research of the solution path inside the graph (equivalent to
learning and research phase in PRM method). Decomposition
of the paths inside GS4 and smoothing phase take typically
a few seconds, that is marginal compared to the others
steps. The difference between the computing time of the

method proposed method classic method
min mean max min mean max

resolution time (s) 0.4 5 21 53 580 2141
number of

generated nodes 1 41 186 90 858 2733

TABLE I
RESULTS FOR THE SPHERE REORIENTATION EXAMPLE FOR BOTH

PROPOSED AND “CLASSIC” METHODS, CONDUCTED ON 200 TESTS.

two methods is particularly marked. The exploration of GS4

allows to considerably reduce the number of samples that is
necessary to solve the problem. Far less connections have
to be tested and the computation of a connection in GS4 is
faster than for a connection like “transfer+regrasping” or “re-
grasping+transfer” because the dimension of the associated
search space is smaller.

The next example purpose was to study the planner
performance for an object whose shape is not smooth as it is
for the sphere. It implies the reorientation of a box-shaped
object. Results are still compared with the ones obtained
with the classic method (table II). Figure 7 shows some steps
of a solution obtained for this task. Here GS4 has several

method proposed method classic method
min mean max min mean max

resolution time (s) 1.2 57 204 54 763 5702
number

of generated nodes 14 155 433 138 1165 5703

TABLE II
RESULTS FOR THE BOX REORIENTATION EXAMPLE FOR BOTH PROPOSED

AND “CLASSIC” METHODS, CONDUCTED ON 200 TESTS.

connected components, unlike for the previous example. The
problem takes consequently more time to be solved but
the exploration of GS4 remains interesting compared to the
classic method.

Fig. 7. Some steps of a solution obtained for the box reori-
entation problem.

The last problem interest comes from that it can not be
solved by a method that computes first the trajectory of
the object alone. Such a method would certainly compute a
simple rotation movement whereas the object has also to be
translated to remain always reachable by the fingers. Figure 8
shows some steps of a solution found by our planner (you
can also watch the attached video). Table III gives some

Fig. 8. Some steps of a solution obtained for the pencil
inverting problem.

information of the planner performance for this example.
Tests were not conducted with the classic method as it takes
too many time (up to several hours).

method proposed method
min mean max

resolution time (s) 87 699 2423
number of generated nodes 381 1896 6731

TABLE III
RESULTS FOR THE PENCIL INVERTING EXAMPLE FOR THE PROPOSED

METHOD, CONDUCTED ON 200 TESTS.

IV. CONCLUSION

We have presented a new method for the dexterous ma-
nipulation planning problem with an n-fingered hand. It is
based upon a new search space structuring. This structuring
relies on the definition of the grasp subspaces GSk, that are

the subspaces of all the configurations corresponding to a k
finger grasp. The proposed resolution method builds a graph
whose nodes are chosen in the GSn. The main originality
of our method is to explore mainly GSn via paths included
in this subspace, that leads to greatly reduce the dimension
of the search space and the number of samples necessary to
solve a problem. Dexterous manipulation tasks have been
simulated and have confirmed the validity of the method
and very low computing times. Improvements are planned
concerning the optimization of computed paths. We also plan
to study the influence of the only tuning parameter (α) of the
method. Another future work concerns the characterization
of cases that can not be solved exploring only GSn i.e. case
when more than one finger must relocate at a time.

REFERENCES

[1] Z. Li, J. Canny, and S. Sastry, “On motion planning for dexterous
manipulation, part i: The problem formulation,” Proceedings of the
IEEE Conference on Robotics and Automation (ICRA), pp. 775–780,
1989.

[2] D. Montana, “The kinematics of multi-fingered manipulation,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 4, pp. 491–503,
Aug. 1995.

[3] J. Trinkle and J. Hunter, “A framework for planning dexterous ma-
nipulation,” Proceedings of the IEEE Conference on Robotics and
Automation (ICRA), pp. 775–780, Apr. 1991.

[4] L. Han and J. Trinkle, “Dextrous manipulation by rolling and fin-
ger gaiting,” Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 730–735, May 1998.

[5] D. Rus, “In-hand dexterous manipulation of 3d piecewise-smooth
objects,” International Journal of Robotics Research, 1997.

[6] M. Cherif and K. Gupta, “Planning quasi-static fingertip manipula-
tions for reconfiguring objects,” IEEE Transactions on Robotics and
Automation, vol. 15, no. 5, pp. 837–848, Oct. 1999.

[7] B. Goodwine and J. Burdick, “Motion planning for kinematic stratified
systems with application to quasi-static legged locomotion and finger
gaiting,” IEEE Transactions on Automatic Control, vol. 18, no. 2, pp.
209–222, 2002.

[8] I. Harmati, B. Lantos, and S. Payandeh, “On fitted stratified and semi-
stratified geometric manipulation planning with fingertip relocations,”
The International Journal of Robotics Research, vol. 21, no. 5-6, pp.
489–510, Jun. 2002.

[9] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized manipulation
planning for a multi-fingered hand by switching contact modes,”
Proceedings of the 2003 IEEE International Conference on Robotics
and Automation (ICRA), Sep. 2003.

[10] S. LaValle, “Rapidly-exploring random trees: a new tool for path
planning,” Computer Science Dept., Iowa State University, Tech. Rep.
98-11, octobre 1998.

[11] J. Xu and Z. Li, “Kinematic modelling of multifingered hand’s finger
gaits as hybrid automaton,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3252–3257,
Aug. 2005.

[12] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning
algorithms,” Algorithmic Foundations of Robotics WAFR94, 1994.

[13] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of con-
figuration space for fast path planning,” Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pp.
2138–2139, 1994.

[14] M. Overmars and P. Svestka, “A probabilistic learning approach to
motion planning,” In Algorithmic Foundations of Robotics (WAFR94),
1994.

[15] J. Cortés, T. Siméon, and J.-P. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using prm methods,”
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pp. 2141–2146, May 2002.

[16] S. Gottschalk, M. Lin, and D. Manocha, “Obbtree:
A hierarchical structure for rapid interference detection,”
Proceedings of ACM Siggraph’96, 1996. [Online]. Available:
http://www.cs.unc.edu/˜geom/OBB/OBBT.html

