2 research outputs found

    Sampling-based reactive motion planning with temporal logic constraints and imperfect state information

    Get PDF
    © 2017, Springer International Publishing AG. This paper presents a method that allows mobile systems with uncertainty in motion and sensing to react to unknown environments while high-level specifications are satisfied. Although previous works have addressed the problem of synthesising controllers under uncertainty constraints and temporal logic specifications, reaction to dynamic environments has not been considered under this scenario. The method uses feedback-based information roadmaps (FIRMs) to break the curse of history associated with partially observable systems. A transition system is incrementally constructed based on the idea of FIRMs by adding nodes on the belief space. Then, a policy is found in the product Markov decision process created between the transition system and a Rabin automaton representing a linear temporal logic formula. The proposed solution allows the system to react to previously unknown elements in the environment. To achieve fast reaction time, a FIRM considering the probability of violating the specification in each transition is used to drive the system towards local targets or to avoid obstacles. The method is demonstrated with an illustrative example

    Optimistic Motion Planning Using Recursive Sub- Sampling: A New Approach to Sampling-Based Motion Planning

    Get PDF
    Sampling-based motion planning in the field of robot motion planning has provided an effective approach to finding path for even high dimensional configuration space and with the motivation from the concepts of sampling based-motion planners, this paper presents a new sampling-based planning strategy called Optimistic Motion Planning using Recursive Sub-Sampling (OMPRSS), for finding a path from a source to a destination sanguinely without having to construct a roadmap or a tree. The random sample points are generated recursively and connected by straight lines. Generating sample points is limited to a range and edge connectivity is prioritized based on their distances from the line connecting through the parent samples with the intention to shorten the path. The planner is analysed and compared with some sampling strategies of probabilistic roadmap method (PRM) and the experimental results show agile planning with early convergence
    corecore