829 research outputs found

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Signal Reconstruction From Nonuniform Samples Using Prolate Spheroidal Wave Functions: Theory and Application

    Get PDF
    Nonuniform sampling occurs in many applications due to imperfect sensors, mismatchedclocks or event-triggered phenomena. Indeed, natural images, biomedical responses andsensor network transmission have bursty structure so in order to obtain samples that correspondto the information content of the signal, one needs to collect more samples when thesignal changes fast and fewer samples otherwise which creates nonuniformly distibuted samples.On the other hand, with the advancements in the integrated circuit technology, smallscale and ultra low-power devices are available for several applications ranging from invasivebiomedical implants to environmental monitoring. However the advancements in the devicetechnologies also require data acquisition methods to be changed from the uniform (clockbased, synchronous) to nonuniform (clockless, asynchronous) processing. An important advancementis in the data reconstruction theorems from sub-Nyquist rate samples which wasrecently introduced as compressive sensing and that redenes the uncertainty principle. Inthis dissertation, we considered the problem of signal reconstruction from nonuniform samples.Our method is based on the Prolate Spheroidal Wave Functions (PSWF) which can beused in the reconstruction of time-limited and essentially band-limited signals from missingsamples, in event-driven sampling and in the case of asynchronous sigma delta modulation.We provide an implementable, general reconstruction framework for the issues relatedto reduction in the number of samples and estimation of nonuniform sample times. We alsoprovide a reconstruction method for level crossing sampling with regularization. Another way is to use projection onto convex sets (POCS) method. In this method we combinea time-frequency approach with the POCS iterative method and use PSWF for the reconstructionwhen there are missing samples. Additionally, we realize time decoding modulationfor an asynchronous sigma delta modulator which has potential applications in low-powerbiomedical implants

    A Survey of Signal Processing Problems and Tools in Holographic Three-Dimensional Television

    Get PDF
    Cataloged from PDF version of article.Diffraction and holography are fertile areas for application of signal theory and processing. Recent work on 3DTV displays has posed particularly challenging signal processing problems. Various procedures to compute Rayleigh-Sommerfeld, Fresnel and Fraunhofer diffraction exist in the literature. Diffraction between parallel planes and tilted planes can be efficiently computed. Discretization and quantization of diffraction fields yield interesting theoretical and practical results, and allow efficient schemes compared to commonly used Nyquist sampling. The literature on computer-generated holography provides a good resource for holographic 3DTV related issues. Fast algorithms to compute Fourier, Walsh-Hadamard, fractional Fourier, linear canonical, Fresnel, and wavelet transforms, as well as optimization-based techniques such as best orthogonal basis, matching pursuit, basis pursuit etc., are especially relevant signal processing techniques for wave propagation, diffraction, holography, and related problems. Atomic decompositions, multiresolution techniques, Gabor functions, and Wigner distributions are among the signal processing techniques which have or may be applied to problems in optics. Research aimed at solving such problems at the intersection of wave optics and signal processing promises not only to facilitate the development of 3DTV systems, but also to contribute to fundamental advances in optics and signal processing theory. © 2007 IEEE

    Submillimeter Polarimetry with PolKa, a reflection-type modulator for the APEX telescope

    Get PDF
    Imaging polarimetry is an important tool for the study of cosmic magnetic fields. In our Galaxy, polarization levels of a few up to \sim10\% are measured in the submillimeter dust emission from molecular clouds and in the synchrotron emission from supernova remnants. Only few techniques exist to image the distribution of polarization angles, as a means of tracing the plane-of-sky projection of the magnetic field orientation. At submillimeter wavelengths, polarization is either measured as the differential total power of polarization-sensitive bolometer elements, or by modulating the polarization of the signal. Bolometer arrays such as LABOCA at the APEX telescope are used to observe the continuum emission from fields as large as \sim0\fdg2 in diameter. %Here we present the results from the commissioning of PolKa, a polarimeter for Here we present PolKa, a polarimeter for LABOCA with a reflection-type waveplate of at least 90\% efficiency. The modulation efficiency depends mainly on the sampling and on the angular velocity of the waveplate. For the data analysis the concept of generalized synchronous demodulation is introduced. The instrumental polarization towards a point source is at the level of 0.1\sim0.1\%, increasing to a few percent at the 10-10db contour of the main beam. A method to correct for its effect in observations of extended sources is presented. Our map of the polarized synchrotron emission from the Crab nebula is in agreement with structures observed at radio and optical wavelengths. The linear polarization measured in OMC1 agrees with results from previous studies, while the high sensitivity of LABOCA enables us to also map the polarized emission of the Orion Bar, a prototypical photon-dominated region

    On the Relationship Between Uniform and Recurrent Nonuniform Discrete-Time Sampling Schemes

    Full text link
    corecore