50,227 research outputs found

    K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases

    Get PDF
    We consider the kk-core decomposition of network models and Internet graphs at the autonomous system (AS) level. The kk-core analysis allows to characterize networks beyond the degree distribution and uncover structural properties and hierarchies due to the specific architecture of the system. We compare the kk-core structure obtained for AS graphs with those of several network models and discuss the differences and similarities with the real Internet architecture. The presence of biases and the incompleteness of the real maps are discussed and their effect on the kk-core analysis is assessed with numerical experiments simulating biased exploration on a wide range of network models. We find that the kk-core analysis provides an interesting characterization of the fluctuations and incompleteness of maps as well as information helping to discriminate the original underlying structure

    Exploring networks with traceroute-like probes: theory and simulations

    Get PDF
    Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology, akin to the merging of different spanning trees to a set of destination, has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. In this paper we explore these biases and provide a statistical analysis of their origin. We derive an analytical approximation for the probability of edge and vertex detection that exploits the role of the number of sources and targets and allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular, we find that the edge and vertex detection probability depends on the betweenness centrality of each element. This allows us to show that shortest path routed sampling provides a better characterization of underlying graphs with broad distributions of connectivity. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in network models with different topologies. We show that sampled graphs provide a fair qualitative characterization of the statistical properties of the original networks in a fair range of different strategies and exploration parameters. Moreover, we characterize the level of redundancy and completeness of the exploration process as a function of the topological properties of the network. Finally, we study numerically how the fraction of vertices and edges discovered in the sampled graph depends on the particular deployements of probing sources. The results might hint the steps toward more efficient mapping strategies.Comment: This paper is related to cond-mat/0406404, with explorations of different networks and complementary discussion

    A Style-Based Generator Architecture for Generative Adversarial Networks

    Full text link
    We propose an alternative generator architecture for generative adversarial networks, borrowing from style transfer literature. The new architecture leads to an automatically learned, unsupervised separation of high-level attributes (e.g., pose and identity when trained on human faces) and stochastic variation in the generated images (e.g., freckles, hair), and it enables intuitive, scale-specific control of the synthesis. The new generator improves the state-of-the-art in terms of traditional distribution quality metrics, leads to demonstrably better interpolation properties, and also better disentangles the latent factors of variation. To quantify interpolation quality and disentanglement, we propose two new, automated methods that are applicable to any generator architecture. Finally, we introduce a new, highly varied and high-quality dataset of human faces.Comment: CVPR 2019 final versio

    The Internet AS-Level Topology: Three Data Sources and One Definitive Metric

    Full text link
    We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.Comment: This paper is a revised journal version of cs.NI/050803

    Bias estimation in sensor networks

    Get PDF
    This paper investigates the problem of estimating biases affecting relative state measurements in a sensor network. Each sensor measures the relative states of its neighbors and this measurement is corrupted by a constant bias. We analyse under what conditions on the network topology and the maximum number of biased sensors the biases can be correctly estimated. We show that for non-bipartite graphs the biases can always be determined even when all the sensors are corrupted, while for bipartite graphs more than half of the sensors should be unbiased to ensure the correctness of the bias estimation. If the biases are heterogeneous, then the number of unbiased sensors can be reduced to two. Based on these conditions, we propose some algorithms to estimate the biases.Comment: 12 pages, 8 figure
    • …
    corecore