6,578 research outputs found

    Reconstructing diffusion fields sampled with a network of arbitrarily distributed sensors

    Get PDF
    Sensor networks are becoming increasingly prevalent for monitoring physical phenomena of interest. For such wireless sensor network applications, knowledge of node location is important. Although a uniform sensor distribution is common in the literature, it is normally difficult to achieve in reality. Thus we propose a robust algorithm for reconstructing two-dimensional diffusion fields, sampled with a network of arbitrarily placed sensors. The two-step method proposed here is based on source parameter estimation: in the first step, by properly combining the field sensed through well-chosen test functions, we show how Prony's method can reveal locations and intensities of the sources inducing the field. The second step then uses a modification of the Cauchy-Schwarz inequality to estimate the activation time in the single source field. We combine these steps to give a multi-source field estimation algorithm and carry out extensive numerical simulations to evaluate its performance

    Estimating localized sources of diffusion fields using spatiotemporal sensor measurements

    Get PDF
    We consider diffusion fields induced by a finite number of spatially localized sources and address the problem of estimating these sources using spatiotemporal samples of the field obtained with a sensor network. Within this framework, we consider two different time evolutions: the case where the sources are instantaneous, as well as, the case where the sources decay exponentially in time after activation. We first derive novel exact inversion formulas, for both source distributions, through the use of Green's second theorem and a family of sensing functions to compute generalized field samples. These generalized samples can then be inverted using variations of existing algebraic methods such as Prony's method. Next, we develop a novel and robust reconstruction method for diffusion fields by properly extending these formulas to operate on the spatiotemporal samples of the field. Finally, we present numerical results using both synthetic and real data to verify the algorithms proposed herein

    Solving physics-driven inverse problems via structured least squares

    Get PDF
    Numerous physical phenomena are well modeled by partial differential equations (PDEs); they describe a wide range of phenomena across many application domains, from model- ing EEG signals in electroencephalography to, modeling the release and propagation of toxic substances in environmental monitoring. In these applications it is often of interest to find the sources of the resulting phenomena, given some sparse sensor measurements of it. This will be the main task of this work. Specifically, we will show that finding the sources of such PDE-driven fields can be turned into solving a class of well-known multi-dimensional structured least squares prob- lems. This link is achieved by leveraging from recent results in modern sampling theory – in particular, the approximate Strang-Fix theory. Subsequently, numerical simulation re- sults are provided in order to demonstrate the validity and robustness of the proposed framework

    Sampling Sparse Signals on the Sphere: Algorithms and Applications

    Get PDF
    We propose a sampling scheme that can perfectly reconstruct a collection of spikes on the sphere from samples of their lowpass-filtered observations. Central to our algorithm is a generalization of the annihilating filter method, a tool widely used in array signal processing and finite-rate-of-innovation (FRI) sampling. The proposed algorithm can reconstruct KK spikes from (K+K)2(K+\sqrt{K})^2 spatial samples. This sampling requirement improves over previously known FRI sampling schemes on the sphere by a factor of four for large KK. We showcase the versatility of the proposed algorithm by applying it to three different problems: 1) sampling diffusion processes induced by localized sources on the sphere, 2) shot noise removal, and 3) sound source localization (SSL) by a spherical microphone array. In particular, we show how SSL can be reformulated as a spherical sparse sampling problem.Comment: 14 pages, 8 figures, submitted to IEEE Transactions on Signal Processin

    Sensing physical fields: Inverse problems for the diffusion equation and beyond

    Get PDF
    Due to significant advances made over the last few decades in the areas of (wireless) networking, communications and microprocessor fabrication, the use of sensor networks to observe physical phenomena is rapidly becoming commonplace. Over this period, many aspects of sensor networks have been explored, yet a thorough understanding of how to analyse and process the vast amounts of sensor data collected, remains an open area of research. This work therefore, aims to provide theoretical, as well as practical, advances this area. In particular, we consider the problem of inferring certain underlying properties of the monitored phenomena, from our sensor measurements. Within mathematics, this is commonly formulated as an inverse problem; whereas in signal processing it appears as a (multidimensional) sampling and reconstruction problem. Indeed it is well known that inverse problems are notoriously ill-posed and very demanding to solve; meanwhile viewing it as the latter also presents several technical challenges. In particular, the monitored field is usually nonbandlimited, the sensor placement is typically non-regular and the space-time dimensions of the field are generally non-homogeneous. Furthermore, although sensor production is a very advanced domain, it is near impossible and/or extremely costly to design sensors with no measurement noise. These challenges therefore motivate the need for a stable, noise robust, yet simple sampling theory for the problem at hand. In our work, we narrow the gap between the domains of inverse problems and modern sampling theory, and in so doing, extend existing results by introducing a framework for solving the inverse source problems for a class of some well-known physical phenomena. Some examples include: the reconstruction of plume sources, thermal monitoring of multi-core processors and acoustic source estimation, to name a few. We assume these phenomena and their sources can be described using partial differential equation (PDE) and parametric source models, respectively. Under this assumption, we obtain a well-posed inverse problem. Initially, we consider a phenomena governed by the two-dimensional diffusion equation -- i.e. 2-D diffusion fields, and assume that we have access to its continuous field measurements. In this setup, we derive novel exact closed-form inverse formulae that solve the inverse diffusion source problem, for a class of localized and non-localized source models. In our derivation, we prove that a particular 1-D sequence of, so called, generalized measurements of the field is governed by a power-sum series, hence it can be efficiently solved using existing algebraic methods such as Prony's method. Next, we show how to obtain these generalized measurements, by using Green's second identity to combine the continuous diffusion field with a family of well-chosen sensing functions. From these new inverse formulae, we therefore develop novel noise robust centralized and distributed reconstruction methods for diffusion fields. Specifically, we extend these inverse formulae to centralized sensor networks using numerical quadrature; conversely for distributed networks, we propose a new physics-driven consensus scheme to approximate the generalized measurements through localized interactions between the sensor nodes. Finally we provide numerical results using both synthetic and real data to validate the proposed algorithms. Given the insights gained, we eventually turn to the more general problem. That is, the two- and three-dimensional inverse source problems for any linear PDE with constant coefficients. Extending the previous framework, we solve the new class of inverse problems by establishing an otherwise subtle link with modern sampling theory. We achieved this by showing that, the desired generalized measurements can be computed by taking linear weighted-sums of the sensor measurements. The advantage of this is two-fold. First, we obtain a more flexible framework that permits the use of more general sensing functions, this freedom is important for solving the 3-D problem. Second, and remarkably, we are able to analyse many more physical phenomena beyond diffusion fields. We prove that computing the proper sequence of generalized measurements for any such field, via linear sums, reduces to approximating (a family of) exponentials with translates of a particular prototype function. We show that this prototype function depends on the Green's function of the field, and then derive an explicit formula to evaluate the proper weights. Furthermore, since we now have more freedom in selecting the sensing functions, we discuss how to make the correct choice whilst emphasizing how to retrieve the unknown source parameters from the resulting (multidimensional) Prony-like systems. Based on this new theory we develop practical, noise robust, sensor network strategies for solving the inverse source problem, and then present numerical simulation results to verify the performance of our proposed schemes.Open Acces

    Reactive explorers to unravel network topology

    Get PDF
    A procedure is developed and tested to recover the distribution of connectivity of an a priori unknown network, by sampling the dynamics of an ensemble made of reactive walkers. The relative weight between reaction and relocation is gauged by a scalar control parameter, which can be adjusted at will. Different equilibria are attained by the system, following the externally imposed modulation, and reflecting the interplay between reaction and diffusion terms. The information gathered on the observation node is used to predict the stationary density as displayed by the system, via a direct implementation of the celebrated Heterogeneous Mean Field (HMF) approximation. This knowledge translates into a linear problem which can be solved to return the entries of the sought distribution. A variant of the model is then considered which consists in assuming a localized source where the reactive constituents are injected, at a rate that can be adjusted as a stepwise function of time. The linear problem obtained when operating in this setting allows one to recover a fair estimate of the underlying system size. Numerical experiments are carried so as to challenge the predictive ability of the theory
    • …
    corecore