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50019 Sesto Fiorentino, Italy
4 INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
5 naXys, Namur Institute for Complex Systems, University of Namur, Namur, Belgium

Received 29 November 2018 / Received in final form 21 March 2019
Published online 8 May 2019
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Abstract. A procedure is developed and tested to recover the distribution of connectivity of an a priori
unknown network, by sampling the dynamics of an ensemble made of reactive walkers. The relative weight
between reaction and relocation is gauged by a scalar control parameter, which can be adjusted at will. Dif-
ferent equilibria are attained by the system, following the externally imposed modulation, and reflecting the
interplay between reaction and diffusion terms. The information gathered on the observation node is used
to predict the stationary density as displayed by the system, via a direct implementation of the celebrated
Heterogeneous Mean Field (HMF) approximation. This knowledge translates into a linear problem which
can be solved to return the entries of the sought distribution. A variant of the model is then considered
which consists in assuming a localized source where the reactive constituents are injected, at a rate that
can be adjusted as a stepwise function of time. The linear problem obtained when operating in this setting
allows one to recover a fair estimate of the underlying system size. Numerical experiments are carried so
as to challenge the predictive ability of the theory.

1 Introduction

Networks are abstract mathematical structures, often
invoked in modeling the dynamics of complex interacting
units [1–5]. The brain, Internet and the cyberworld, food-
webs and social contacts are examples, drawn from dis-
tinct fields of investigation, which can be ideally grouped
under the unifying umbrella of network science. Nodes
(vertices) can point to individual actors of the inspected
dynamics (e.g. material units, bits of information, or, on a
different scale, extended populations), while edges (links)
stand for existing bilateral ties. Alternatively, nodes can
tag spatial or functional niches, bounded regions of an
embedding landscape, mutually connected by physical
or virtual paths, as epitomized by the links [4,6–10]. In
several cases of interest, punctual entities, also termed
agents, may jump from one node to any of its adjacent
neighbors, following the intricate network’s architecture.
Agents relocating across the network via multiple suc-
cessive jumps are said to execute a random walk: their
asymptotic distribution convey important information on
the inherent organization of the underlying network. If
walkers do not interact with each other, their steady
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state distribution reflects in fact the degree of connectiv-
ity of the nodes, a direct measure of the number of links
possessed by any given node of the collection. Photograph-
ing the asymptotic nodes’ occupancy, enables hence to
reconstruct the distribution of connectivities, a topological
quantity of paramount importance when aiming at classi-
fying the characteristics of the underlying graph. Indeed,
the structure of the network is often unknown and several
methods have been devised in the literature to recover
it, from functions back to structure, a non trivial task
that hides formidable challenges [11–19]. Efficient schemes
should gather the necessary information from a limited
number of nodes, as monitoring the population on each
vertex becomes virtually impracticable, for large network
sizes. In a recent paper [20] a variant of the random walk
problem was introduced which accounts for the mutual
interference between agents, as stemming from the compe-
tition for the available space in crowded operating condi-
tion [21–29]. Nodes are assigned a finite carrying capacity,
a sensible constraint which makes walkers dynamically
intertwingled, through dedicated nonlinear terms. The
asymptotic density distribution of walkers in the presence
of crowding differs significantly from that obtained under
diluted conditions. In crowded conditions, the equilibrium
concentration saturates for large enough values of the
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connectivity. This observation opens up the perspective
of recovering the unknown distribution of connectivities
from repeated single-node measurements of the asymp-
totic dynamics, at increasing crowding. The nonlinearities
that originate from the interference among microscopic
agents competing for space is the key of success to the
proposed approach. Building on this achievement, we here
generalize the method to the setting where agents per-
form standard, hence linear, diffusion, but the nonlinearity
comes from a local reaction term. In the first part of this
paper, the relative strength of the reaction and diffusion
contributions is weighted by a scalar control parameter.
Different equilibria are attained by the system, by mod-
ulating the latter parameter, and reflecting the interplay
between reaction and diffusion terms. The equilibrium dis-
tribution is sampled by punctual measurements performed
on just one node. The information gathered on the obser-
vation node is used to predict the stationary density as
displayed by the system, via a direct implementation of
the celebrated Heterogeneous Mean Field (HMF) approx-
imation [4,30,31]. The entries of the sought distribution
link the solution, as obtained within the HMF working
ansatz, to the average density sampled on the reference
node. Solving the ensuing linear problem with standard
optimization tools, returns a rather accurate estimate of
the distribution of connectivity, as we shall prove for a
selected gallery of test network models. In the second
part of the paper, we consider a variant of the model by
accounting for the presence of a source where the reactive
constituents are injected, at a rate that we assume to be
modulated as a stepwise function of time. This allows for
the fixed point to be successively tweaked, as required by
the reconstruction scheme here developed. In our appli-
cation, the reaction model is assumed of the logistic type
and it is therefore tempting to ideally interpret the reac-
tive explorers, as living entities crawling on the unknown
network support.

2 The mathematical framework

Label with xi the concentration of the reactive species on
node i. The dynamics of the system that we shall examine
is governed by the following set of ordinary differential
equations:

ẋi = αf(xi) + (1− α)
N∑
j=1

Lijxj (1)

where Lij = Aij

kj
− δij are the entries of the random walk

Laplacian operator L; A is the adjacency matrix of the
(undirected) network, while ki =

∑
j Aij denotes the con-

nectivity (or degree) of node i. The scalar parameter
α ∈ [0, 1] gauges the relative weight of the two terms,
appearing on the right hand side of the above equation.
In the following, we will operate under an idealized set-
ting and assume that α can be freely tuned within the
interval of pertinence. This choice has pedagogical value,
and builds on the analysis in [32]: when α = 0 the reac-
tion term is silenced and the agents behave as standard

linear walkers. By making α progressively larger, non-
linearities gain in relevance. The linear problem that is
obtained when α = 0 can be solved analytically. By direct
inspection, it is immediate to conclude that, at equilib-
rium (ẋi = 0), xi = ki/

∑
j(kj). When nonlinearities come

into play (α 6= 0), the complexity of the problem rises con-
siderably and no closed form solutions exist in general.
Approximate techniques can be however put forward, to
access information on the asymptotic fate of the system.
In particular, for relatively small values of α it can be rea-
sonably hypothesized that the displayed concentration is
still arranged in classes of connectivities, as it happens in
the reference setting of a pure random walk (α = 0). This
working ansatz motivates recasting the problem at hand
in the form:

ẋk = αf(xk) + (1− α)

[
k

∑
k′

P (k′ | k)
xk′

k′
− xk

]
(2)

where xk stands for the density displayed by the nodes
that share the connectivity k. The discrete index k runs
from 1 to kmax, where kmax stands for the largest con-
nectivity, as exhibited by the network being analyzed.
P (k′ | k) is the conditional probability that a link exists
from a given class k to a class k′. In (2) we have implicitly
assumed that the nonlinear contribution f(x), can be also
organized in classes f(xk), as reflecting the degree of con-
nectivity associated to individual nodes. While this is not
true in general, it can be reasonably postulated as long as
α is forced small, i.e. when the system under scrutiny is a
perturbation to the linear random walk problem. Neglect-
ing correlation among node degrees, one can break the
probability as P (k′ | k) = k′P (k′)

〈k〉 , where 〈k〉 =
∑
k kP (k)

and P (k′) is the connectivity distribution. This latter con-
dition constitutes the core of the celebrated Heterogeneous
Mean Field (HMF) approximation, to which we shall make
extensive reference in the following. A straightforward
manipulation yields

ẋk = αf(xk) + (1− α)

[
k

〈k〉
∑
k′

P (k′)xk′ − xk

]
. (3)

Introduce now the quantity Θ = 1
〈k〉

∑
k′ P (k′)xk′ which

enables one to recast the previous equation in the compact
form:

ẋk = αf(xk) + (1− α)[kΘ− xk]. (4)

Θ is a collective mean-field variable, which allows to for-
mally decouple the dynamics, as seen on different nodes,
grouped in classes of homologous connectivity. Stated dif-
ferently, the knowledge of Θ is sufficient, under the range
of validity of the HMF approximation, to solve for the
densities at any time and for all degree classes k. In the fol-
lowing, we will focus on the equilibrium solution, which in
turn amounts to setting ẋk = 0 ∀k. We will then label with
x̄k the fixed points as displayed by the system and, con-
sequently, Θ̄ = 1

〈k〉
∑
k′ P (k′)x̄k′ . Further, we will assume

https://epjb.epj.org/
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the nonlinear function f(·) to be of the logistic type, and
thus set f(x̄k) = x̄k(1 − x̄k). This is not a mandatory
step for the forthcoming analysis, as any generic nonlinear
function would serve equally well the scope.1 The advan-
tage of using a logistic equation resides in that it allows
for explicit analytical progress to be made.

From equation (4), at the fixed point, one gets:

x̄k =
(2α− 1)±

√
(2α− 1)2 + 4α[(1− α)kΘ̄]

2α
. (5)

To elaborate on the fundamental interest of equation (5),
we consider a numerical implementation of system (1),
assuming a random network made of N = 200 nodes (see
caption of Fig. 1) as the backbone support. Starting out
of equilibrium, the system evolves towards a fixed point,
as it can be appreciated by visual inspection of Figure 1.
Trajectories stemming from nodes sharing the same con-
nectivity cluster together, thus confirming a posteriori
the validity of the HMF ansatz. The asymptotic attrac-
tor as attained by the system in its late time evolution
can be effectively estimated by resorting to relation (5).
More specifically, we select a randomly chosen node of the
pool, with degree k∗, and measure the density therein dis-
played, x̄k∗ . By inversion of (5) one gets an estimate for
the mean-field variable Θ̄ as:

Θ̄ =
αx̄2

k∗ − (2α− 1)x̄k∗
(1− α)k∗

. (6)

This latter is then inserted in equation (5) to predict the
equilibrium solution x̄k for all choices of the class index
k. The predicted values are depicted in Figure 1 with a
symbol (crosses) and match the equilibrium solution as
obtained by direct integration of the dynamics. This obser-
vation forms the basis of the scheme of inversion that we
shall outline in the following. We remind that the inverse
scheme is ultimately targeted to reconstructing the dis-
tribution of connectivity of a network, a priori unknown,
that happens to host the inspected dynamics. Moreover,
the number of necessary information are to be gathered
on just one node.

3 The inverse protocol

The procedure that we shall illustrate builds on the follow-
ing recipe. Imagine to perform a series of experiments by
tuning progressively the parameter α, in discrete, ascend-
ing steps. The sequence of the experiments is indexed by r,
which ranges from 1 to at least kmax. In each experiment
the system is let to equilibrate, and the corresponding
density x̄

(r)
k∗ is recorded on a node of class k∗ where the

inspection is performed. From the knowledge of x̄(r)
k∗ one

can infer an estimate of Θ̄r, which can be used to access
an approximate measure of x̄(r)

k , for k 6= k∗, by means
of equation (5). Combining these information together,

1 The only request is the existence of a stable fixed point and the
boundedness of orbits to avoid escaping solutions.

Fig. 1. Densities xi are plotted against time, starting out-of-
equilibrium and assuming a random Watts-Strogatz network
with relocation probability β = 0.99 and N = 200 nodes.
Solid lines refer to a direct integration of the governing equa-
tion (1), while symbols (crosses) stand for the HMF-based
prediction, obtained following the procedure described in the
main text. All 200 trajectories are displayed and cluster in
families of homologous connectivity k, Each solid curve in the
graph corresponds exactly to a given connectivity class. Here,
α = 0.05.

and recalling the definition of Θ, results in a linear prob-
lem for the unknown entries of the q-component vector
~P = (P (1) . . . P (q)). In formulae:

〈k〉

Θ̄1

...
Θ̄q

 =

x̄
(1)
1 · · · x̄

(1)
q

...
. . .

...
x̄

(q)
1 · · · x̄

(q)
q


︸ ︷︷ ︸

.
=Γ

P (1)
...

P (q)

. (7)

Solving the above problem for (P (1) . . . P (q)) implies
inverting the matrix Γ, a task that proved numerically
cumbersome, being Γ poorly conditioned. To overcome
this limitation we resorted to an optimization approach,
which enforced the minimization of the norm ‖~Θ〈k〉 −
Γ~P‖, while imposing the entries of ~P to be positive
defined. Here, ~Θ = (Θ1 . . .Θq). The average connectiv-
ity 〈k〉 is a priori unknown and it is therefore assumed,
as a free control parameter in the optimization scheme.
More specifically, we set 〈k〉 to a nominal value and run
consequently the optimization protocol, recording as an
output the quantity

∑
k′ P (k′). An implicit requirement

of the analysis that leads to (5) is the normalization of
the distribution of connectivity,

∑
k′ P (k′) = 1. Among

the solutions that are found by solving the problem
in norm for different 〈k〉, we select the one that mini-
mizes the positive residue (1−

∑
k P (k))2. By invoking

this closure of the scheme, we also get an estimate for
the average connectivity 〈k〉. This latter could be chal-
lenged against the true values in synthetic network model,

https://epjb.epj.org/
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Fig. 2. The normalization error
(
1−

∑
k P (k)

)2
is plotted

against the value of 〈k〉 imposed when running the inverse
scheme. A clear minimum is displayed for 〈k〉 ' 20, which
is very close to the correct value of the average connectiv-
ity (〈k〉 = 20). The reconstruction procedure is hence able to
single out the correct average connectivity as possessed by the
network being analyzed. The solid line is obtained by fitting a
parabola to the collected data.

in the aim of testing the adequacy of the proposed
procedure.2

To this end we begin by considering the model (1)
defined on a random network made of N = 200 nodes. The
network is generated with the Watts-Strogatz recipe [33],
for a large relocation probability, which makes the network
almost random. The average connectivity is 〈k〉 = 20. We
performed q = 75 different measurements, sampling the
dynamics on the very same node and letting α to change
in uniform steps in the interval [0.005, 0.4]. In Figure 2 the
normalization error (1−

∑
k P (k))2 is depicted against

the imposed average connectivity. A clear minimum is
displayed, for approximately the correct value of 〈k〉.

Setting 〈k〉 to the value that minimizes the normaliza-
tion error returns the distribution of connectivity depicted
in Figure 3. The blue line (with diamonds) stands for the
true distribution, while the red curve (with dot markers)
refer to the reconstructed profile. Changing the node from
which the dynamics is sampled yields different estimates
of the average connectivity 〈k〉 (and of the distribution
that is consequently recovered). To provide a qualitative
illustration of the degree of variability that stems from an
arbitrary choice of the reference node, we plot in Figure 4a
the histogram of 〈k〉, as obtained for all possible selec-
tions of the observation site. The distribution of predicted
average connectivity is peaked around the correct solu-
tion. To further challenge the reconstruction scheme we
also monitored the root mean square deviation between

2 In principle, one could absorb 〈k〉 in the definition of Pk, com-
pute the rescaled entries P̃k = Pk/〈k〉 via the linear problem and
enforce a posteriori the normalization. This scheme proved however
less stable that the one that we have illustrated in the main body
of the paper.

105 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

Fig. 3. The reconstructed distribution of connectivities: the
blue line (with the diamond markers) represent the true degree
distribution. The red line (with dot markers) stands for the
distribution reconstructed via the procedure described in the
main text. Here, 75 independent experiments are employed
and the dynamics is sampled from just one node of the collec-
tion. The network is generated according to the Watts-Strogatz
recipe with relocation probability β = 0.99. Here, N = 200.

the reconstructed (P (k)rc) and the exact (P (k)ex) pro-
files. This latter quantity is labelled σ and formally defined

as σ =
√∑

k (P (k)ex − P (k)rc)2 /q. The histogram of the
values of σ obtained when changing the observation nodes
is depicted in Figure 4b and points to the adequacy of
the proposed scheme. To improve on the accuracy of the
method one can repeat the measurements on different
sites and combine together the acquired information. This
significantly improve on the ability of the HMF approx-
imation to adhere on the exact asymptotic solution, as
seen in direct simulations. In Figure 5 the reconstruction
procedure is tested for a Watts Strogatz network with
a smaller relocation probability and the quality of the
reconstruction is still satisfying.

To further elaborate on the potential of the described
procedure we considered a scale free network made of
N = 500 nodes. More specifically P (k) ∝ k−γ with γ = 3.
The P (k) is correctly recovered following the method, as
displayed in Figure 6. The distribution of 〈k〉 as obtained
by sampling the dynamics on all possible observation sites
is shown in Figure 7a. At variance to the case of the ran-
dom network analyzed above, changing the reference node
impacts more significantly on the recorded P (k), as seen
from the histogram of σ in Figure 7b (while 〈k〉 is correctly
estimated). However, we could not identify any significant
correlation between the error displayed by the reconstruc-
tion and the topological characteristics of the observation
node (as e.g. its degree). Averaging independent profiles
obtained by sampling the dynamics from distinct nodes
contributed to enhance the fidelity of the reconstruction.

Summing up to this point, we have introduced and
successfully applied a procedure to reconstruct the
distribution of connectivity of an unknown network by

https://epjb.epj.org/


Eur. Phys. J. B (2019) 92: 99 Page 5 of 8

18.5 19 19.5 20

(a)

(b)

20.5 21

5

10

15

20

25

30

35

40

F
re
q
u
e
n
c
y

0 0.02 0.04 0.06 0.08 0.1 0.12

10

20

30

40

50

60

70

80

90

100

F
re
q
u
e
n
c
y

Fig. 4. (a) The histogram of the averaged connectivity 〈k〉 is
displayed. Each value of 〈k〉 refers to a different selection of the
node from which the dynamics is sampled. (b) The histogram
of the root mean square error in reconstruction σ is plotted.
Each value of σ refers to different observation nodes.

performing local measurements on just on node. The
inspected system combines nonlinear reactions to relo-
cation. The method implemented requires adjusting a
control parameter which sets the relative strength of
the two aforementioned contributions, a condition that
might prove difficult to meet in real experiments. To
overcome this limitation and formulate a reconstruction
scheme which could be viably implemented, we will here-
after consider a slightly modified version of the examined
dynamical process. More precisely, we will accommodate
for the presence of a set of sources, where the interacting
elements can be injected at a given rate to be externally
tuned.

100 20 30 40
0

0.05

0.1

0.15

0.2

Fig. 5. The reconstructed distribution of connectivities, for
a Watts-Strogatz network with relocation probability β = 0.5
and N = 200. Symbols are chosen as explained in the caption
of Figure 3.

10
0

10
1

10
-3

10
-2

10
-1

10
0

Fig. 6. The reconstructed distribution, assuming a scale free
network. The network consists of 500 nodes. Here, P (k) ∝ k−γ
with γ = 3. Symbols follows the convention introduced in
Figure 3.

4 Introducing the sources and modulating
their strengths

The updated scheme builds on the following steps. First,
we freeze α to a constant amount. Then, we modify the
dynamics of a given class of nodes, say those character-
ized by a connectivity k̂, by introducing an ensemble made
of identical sources, characterized by a constant injection
strength η. Mathematically, this corresponds to inserting
on the right hand side of equation (1) a constant fac-
tor η, for the entries i which identify the selected pool
of nodes. For any given choice of η, the asymptotic fate of
the system can be analytically investigated by proceeding
with the HMF approximation, in analogy with the results
reported above. Formally, one ends up with an expression
for the fixed point which trivially extends that displayed

https://epjb.epj.org/
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Fig. 7. (a) The histogram of the reconstructed averaged con-
nectivity 〈k〉 is plotted, for a scale free network. Each value
of 〈k〉 refers to a different selection of the node from which
the dynamics is sampled. (b) The histogram of the root mean
square error in reconstruction σ is represented. Each value of
σ refers to different observation nodes.

in equation (5):

x̄k =
(2α− 1)±

√
(2α− 1)2 + 4α[(1− α)kΘ̄ + ηδkk̂]

2α
(8)

where δkk̂ stands for the Kronecker delta.
The reconstruction scheme can be hence modified as

follows: (i) change η within a given interval; (ii) for each
choice of η, measure the asymptotic state attained by
the system on a given node with degree k = k∗; (iii) use
this knowledge to estimate the mean-field variable Θ̄, by
inversion of equation (8) and, finally, (iv) predict the equi-
librium solution x̄k, ∀k 6= k∗. Repeating this procedure
for a sufficiently large set of distinct values of η, yields
a linear problem of the type (7) which can be solved in
norm to compute ~P = (P (1) . . . P (q)). Also in this case
the average connectivity is estimated by minimizing the

100 20 30 40
0

0.05

0.1

0.15

0.2

Fig. 8. The reconstructed distribution of connectivities: the
blue line (with the diamond markers) stands for the true degree
distribution. The red line (with dot markers) identifies the
distribution reconstructed via the procedure described in the
main text. Here, α = 0.005 and η is changed in the interval
[0.005, 5.5] with uniform increments of 0.2. The sources are

placed on the nodes sharing degree k̂ = 15 (the results do not
depend on this specific choice). This class contains 7 different
nodes, for the network realization here considered. The network
employed is that of Figure 3.
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0

10

20

30

40

50

60

F
re
q
u
e
n
c
y

Fig. 9. The histogram of σ is plotted. Each curve refers to a
specific choice of the source nodes. More specifically, the green
line with diamond markers is obtained by setting the sources on
the nodes that share connectivity k̂ = 15. The red dashed line
with circle markers refers to k̂ = 20 and the dash dotted blue
line with crosses stands for k̂ = 25. For each sources selection,
we perform the reconstruction by sampling the dynamics on
different observation nodes and quantify the associated error σ.

residual error. As a demonstrative example, we compare in
Figure 8 the reconstructed P (k) to its exact homologue.
Here, the underlying network is generated according to
the Watts-Strogatz recipe and the agreement between the
two depicted curves is satisfying.

In Figure 9 we report the histogram of σ, the root
mean square error of the reconstructed profile against

https://epjb.epj.org/
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Fig. 10. The reconstructed distribution of connectivities: the
blue line (with the diamond markers) stands for the true degree
distribution. The red line (with dot markers) identifies the
distribution reconstructed via the procedure described in the
main text. Here, α = 0.005 and η is changed in the inter-
val [0.005, 0.35], with 80 successive uniform increments. The

source is placed on one of the nodes sharing degree k̂ = 15.
The network employed is that of Figure 3.

the exact one. Each curve refers to a different choice of
the nodes that act as sources. The corresponding ensem-
ble of σ is obtained by changing the observation node,
for each source selection. The results are quite consistent
and point to the overall validity of the proposed method.
The connectivity of the selected sources is, respectively,
k̂ = 15, 20, 25, and it does not influence significantly the
performance of the reconstruction algorithm.

As a final point, we will relax the assumption of dealing
with a full class of nodes which behave as identical sources.
More precisely, we will break the symmetry and assume
that just one node of a given class k̂ acts as a source. To
handle this generalized setting, we revisit the definition
of the mean field variable. Recall that P (k̂) measures the
number of nodes sharing connectivity k̂ normalized to the
system size N . Then one can define the following collective
variable:

Π =
1
〈k〉

[∑
k′

P (k′)xk′ +
y − xk̂
N

]
(9)

where y denotes the value of the density at the source
location. One can apply the HMF machinery3 to yield:

x̄k =
(2α− 1)±

√
(2α− 1)2 + 4α(1− α)kΠ

2α
(10)

for the fixed point concentration as predicted on all
nodes, but the source. This latter is characterized by an

3 In doing so we postulate that the inserted source does not dis-
rupt the organization in classes. The validity of this working ansatz is
confirmed a posteriori by the quality of the obtained reconstruction.
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Fig. 11. (a) The histogram of N , the reconstructed net-
work size. Each value of N refers to distinct observation node.
(b) The histogram of the reconstructed averaged connectivity
〈k〉 is plotted. Each value of 〈k〉 refers to a different selection
of the node from which the dynamics is sampled.

asymptotic density given by:

ȳ =
(2α− 1)±

√
(2α− 1)2 + 4α[(1− α)kΠ + η]

2α
. (11)

Building on the above, one can put forward a straight-
forward generalization of the reconstruction algorithm.
For any given choice of the source injection rate η, one
can measure the equilibrium density as displayed on one
individual node, belonging to class k∗. By manipulat-
ing equation (10), one can then estimate Π and use this
latter to predict the expected density on each of the
classes (x̄k, k 6= k∗) and on the source (ȳ). To this end
one makes explicit use of, respectively, equations (10)
and (11). Repeating the analysis for a sufficiently large
set of η returns a linear problem of the type discussed
above, with the sole difference that now the size of the
network N qualifies as one of the unknowns to be even-
tually recovered. In formulae, equation (9) can be cast in
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the form:

〈k〉Π =
∑
k′

P (k′)xk′ +
z

N

where z = y − xk̂. We hence get:

〈k〉

Π̄1

...
Π̄q

 =

x̄
(1)
k1

· · · x̄
(1)
q z̄1

...
. . .

...
...

x̄
(q)
1 · · · x̄

(q)
q z̄q



P (1)

...
P (q)

1
N

 (12)

where q (>kmax) stands for the number of repeated
measurements performed at different choices of η. The
reconstruction obtained following this updated strategy
is displayed in Figure 10, for the same realization of the
Watts-Strogatz network as considered above. The quality
of the reconstruction is still adequate and the estimated
value of N is in agreement with the true one. The perfor-
mance of the algorithm may change depending on the node
of observation but the distribution of N obtained when
covering the full set of possible choices is peaked in cor-
respondence of the correct value as shown in Figure 11a.
Similarly, in Figure 11b the distribution of 〈k〉, the aver-
age value of the reconstructed connectivity, extends over
a finite domain which contains the correct value.

5 Conclusion

In conclusion, we have here introduced and tested a
procedure to access structural information on network
topology. The method samples the dynamics of reactive
walkers, microscopic entities which are made to explore
the embedding network, while subject to nonlinear (and
local) reaction terms. The imposed non-linearity makes it
possible to recover the network’s distribution of connec-
tivity, from sequences of measurements performed on just
one node of the collection. To reach this goal, we exploit
the organization in classes of the ensuing dynamical
equilibrium and make explicit use of the celebrated Het-
erogeneous Mean Field approximation. A variant of the
method which consists in introducing localized sources of
modulable strength, enables in turn to estimate the size
of the scrutinized network. Future investigations will be
aimed to improving on the optimization scheme and, con-
sequently, on testing the predictive ability of the proposed
techniques versus more challenging network architecture,
including multiplex. Moreover, it would be also interest-
ing to elaborate on possible generalization of the method
so as to account for corrections beyond the simplified
Heterogeneous Mean Field approximation.
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