75 research outputs found

    Apparatus for sampling particulates in gases

    Get PDF
    A device for sampling particulates in gases is described. The device is used to obtain samples of the upper atmosphere. The equipment used a common source of gas pressure to provide the driving gas of an air ejector pump. The sample collection cylinder has many slit impactors running longitudinally on the outer surface of a cylinder and terminating just short of each end of the cylinder

    An Occupational Hygiene and Safety Primer, Volume 2

    Get PDF
    Intended to teach the basic tenets of occupational hygiene and safety to a wide variety of undergraduate college students with quite diverse backgrounds, the information in these volumes is open-sourced from a variety of experts on the subject.https://ohioopen.library.ohio.edu/opentextbooks/1006/thumbnail.jp

    Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment

    Get PDF
    An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample

    The effect of sampling height on grass pollen concentrations in different urban environments in the Helsinki Metropolitan Area, Finland

    Get PDF
    Introduction It is important to study potential differences in pollen concentrations between sampling heights because of diverse outdoor and indoor activity of humans (exposure) at different height levels in urban environments. Previous studies have investigated the effect of height on pollen concentrations based on just one or a few sampling points. We studied the effect of sampling height on grass pollen concentrations in several urban environments with different levels of urbanity. Methods This study was conducted in the Helsinki Metropolitan Area, Finland, in 2013 during the pollen season of grasses. Pollen grains were monitored in eight different points in the morning and afternoon. Rotorod-type samplers were attached on sampling poles at the heights of 1.5 meters and 4 meters. Results Grass pollen concentrations were on average higher at the height of 1.5 meters (Helsinki mean 5.24 grains / m3; Espoo mean 75.71 grains / m3) compared to the height of 4 meters (Helsinki mean 3.84 grains / m3; Espoo mean 37.42 grains / m3) with a difference of 1.40 grains / m3 (95% CI -0.21 to 3.01) in Helsinki, and 38.29 grains / m3 (7.52 to 69.07) in Espoo, although not always statistically significant. This was detected both in the morning and in the afternoon. However, in the most urban sites the levels were lower at 1.5 meters compared to 4 meters, whereas in the least urban sites the concentrations were higher at 1.5 meters. In linear regression models with interaction terms, the modifying effect of urbanity on concentration-height relation was statistically significant in both cities. The effect of urbanity on pollen concentrations at both heights was stronger in less urban Espoo. Conclusions The present study provides evidence that height affects the abundance and distribution of grass pollen in urban environments, but this effect depends on the level of urbanity.Peer reviewe

    Feasibility study of launch vehicle ground cloud neutralization

    Get PDF
    The distribution of hydrogen chloride in the cloud was analyzed as a function of launch pad geometry and rate of rise of the vehicle during the first 24 sec of burn in order to define neutralization requirements. Delivery systems of various types were developed in order to bring the proposed chemical agents in close contact with the hydrogen chloride. Approximately one-third of the total neutralizing agent required can be delivered from a ground installed system at the launch pad; concentrated sodium carbonate solution is the preferred choice of agent for this launch pad system. Two-thirds of the neutralization requirement appears to need delivery by aircraft. Only one chemical agent (ammonia) may be reasonably considered for delivery by aircraft, because weight and bulk of all other agents are too large

    Lunar Dust Effects on Spacesuit Systems: Insights from the Apollo Spacesuits

    Get PDF
    Systems and components of selected Apollo A7L/A7LB flight-article spacesuits that were worn on the lunar surface have been studied to determine the degree to which they suffered contamination, abrasion and wear or loss of function due to effects from lunar soil particles. Filter materials from the lithium hydroxide (LiOH) canisters from the Apollo Command Module were also studied to determine the amount and type of any lunar dust particles they may have captured from the spacecraft atmosphere. The specific spacesuit study materials include the outermost soft fabric layers on Apollo 12 and 17 integrated thermal micrometeorite garment assemblies and outermost fabrics on Apollo 17 extravehicular pressure gloves. In addition, the degree of surface wear in the sealed wrist rotation bearing from Apollo 16 extravehicular and intravehicular pressure gloves was evaluated and compared. Scanning electron microscope examination of the Apollo 12 T-164 woven TeflonO fabric confirms the presence of lunar soil particles and the ability of these particles to cause separation and fraying of the Teflon fibers. Optical imaging, chemical analysis and particle sampling applied to the outer fabric of the Apollo 17 spacesuit has identified Ti as a potentially useful chemical marker for comparing the amount of lunar soil retained on different areas of the spacesuit outer fabric. High-yield particle sampling from the Apollo 17 fabric surfaces using adhesive tape found 80% of particles on the fabric are lunar soil particles averaging 10.5 m in diameter, with the rest being intrinsic fabric materials or environmental contaminants. Analysis of the mineralogical composition of the lunar particles found that on a grain-count basis the particle population is dominated by plagioclase feldspar and various types of glassy particles derived mostly from soil agglutinates, with a subordinate amount of pyroxene. On a grain size basis, however, the pyroxene grains are generally a factor of 2 larger than glass and plagioclase, so conversion of the data to a modal (volume %) basis results in pyroxene becoming the modally dominant particle type with glass and plagioclase significantly less abundant. When comparisons are made to the modal composition of lunar soil at the Apollo 17 landing site, the results suggest that pyroxene particles have overall better retention on the spacesuit outer fabric compared to plagioclase and especially glass. Scanning electron microscopy revealed no measureable difference in the amount of wear and abrasion in the wrist rotation bearing of an Apollo 16 pressure glove worn only in the spacecraft and one worn only for extravehicular activity on the lunar surface. The results suggest either that the bearing prevented entry of lunar dust, or that dust was not sufficiently abrasive to damage the bearing, or both
    corecore