8,508 research outputs found

    Multilevel Double Loop Monte Carlo and Stochastic Collocation Methods with Importance Sampling for Bayesian Optimal Experimental Design

    Full text link
    An optimal experimental set-up maximizes the value of data for statistical inferences and predictions. The efficiency of strategies for finding optimal experimental set-ups is particularly important for experiments that are time-consuming or expensive to perform. For instance, in the situation when the experiments are modeled by Partial Differential Equations (PDEs), multilevel methods have been proven to dramatically reduce the computational complexity of their single-level counterparts when estimating expected values. For a setting where PDEs can model experiments, we propose two multilevel methods for estimating a popular design criterion known as the expected information gain in simulation-based Bayesian optimal experimental design. The expected information gain criterion is of a nested expectation form, and only a handful of multilevel methods have been proposed for problems of such form. We propose a Multilevel Double Loop Monte Carlo (MLDLMC), which is a multilevel strategy with Double Loop Monte Carlo (DLMC), and a Multilevel Double Loop Stochastic Collocation (MLDLSC), which performs a high-dimensional integration by deterministic quadrature on sparse grids. For both methods, the Laplace approximation is used for importance sampling that significantly reduces the computational work of estimating inner expectations. The optimal values of the method parameters are determined by minimizing the average computational work, subject to satisfying the desired error tolerance. The computational efficiencies of the methods are demonstrated by estimating the expected information gain for Bayesian inference of the fiber orientation in composite laminate materials from an electrical impedance tomography experiment. MLDLSC performs better than MLDLMC when the regularity of the quantity of interest, with respect to the additive noise and the unknown parameters, can be exploited

    Low rank matrix recovery from rank one measurements

    Full text link
    We study the recovery of Hermitian low rank matrices X∈CnΓ—nX \in \mathbb{C}^{n \times n} from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajajβˆ—a_j a_j^* for some measurement vectors a1,...,ama_1,...,a_m, i.e., the measurements are given by yj=tr(Xajajβˆ—)y_j = \mathrm{tr}(X a_j a_j^*). The case where the matrix X=xxβˆ—X=x x^* to be recovered is of rank one reduces to the problem of phaseless estimation (from measurements, yj=∣⟨x,aj⟩∣2y_j = |\langle x,a_j\rangle|^2 via the PhaseLift approach, which has been introduced recently. We derive bounds for the number mm of measurements that guarantee successful uniform recovery of Hermitian rank rr matrices, either for the vectors aja_j, j=1,...,mj=1,...,m, being chosen independently at random according to a standard Gaussian distribution, or aja_j being sampled independently from an (approximate) complex projective tt-design with t=4t=4. In the Gaussian case, we require mβ‰₯Crnm \geq C r n measurements, while in the case of 44-designs we need mβ‰₯Crnlog⁑(n)m \geq Cr n \log(n). Our results are uniform in the sense that one random choice of the measurement vectors aja_j guarantees recovery of all rank rr-matrices simultaneously with high probability. Moreover, we prove robustness of recovery under perturbation of the measurements by noise. The result for approximate 44-designs generalizes and improves a recent bound on phase retrieval due to Gross, Kueng and Krahmer. In addition, it has applications in quantum state tomography. Our proofs employ the so-called bowling scheme which is based on recent ideas by Mendelson and Koltchinskii.Comment: 24 page

    TV-min and Greedy Pursuit for Constrained Joint Sparsity and Application to Inverse Scattering

    Full text link
    This paper proposes a general framework for compressed sensing of constrained joint sparsity (CJS) which includes total variation minimization (TV-min) as an example. TV- and 2-norm error bounds, independent of the ambient dimension, are derived for the CJS version of Basis Pursuit and Orthogonal Matching Pursuit. As an application the results extend Cand`es, Romberg and Tao's proof of exact recovery of piecewise constant objects with noiseless incomplete Fourier data to the case of noisy data.Comment: Mathematics and Mechanics of Complex Systems (2013
    • …
    corecore