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Abstract The tomographic mapping of a 2-D vector field
from line-integral data in the discrete domain requires the
uniform sampling of the continuous Radon domain parame-
ter space. In this paper we use sampling theory and derive
limits for the sampling steps of the Radon parameters, so
that no information is lost. It is shown that if �x is the
sampling interval of the reconstruction region and xmax is
the maximum value of domain parameter x, the steps one
should use to sample Radon parameters ρ and θ should
be: �ρ ≤ �x/

√
2 and �θ ≤ �x/((

√
2 + 2)|xmax|). Exper-

iments show that when the proposed sampling bounds are
violated, the reconstruction accuracy of the vector field de-
teriorates. We further demonstrate that the employment of a
scanning geometry that satisfies the proposed sampling re-
quirements also increases the resilience to noise.

Keywords Vector field tomography · Radon transform ·
Sampling theorem · Scanning geometry · Inverse problems

1 Introduction

The reconstruction of 2-D vector fields from projections
has opened new possibilities in a wide variety of disci-
plines. Applications that have been considered include:
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blood flow imaging in vessels [14, 31]; flow velocity imag-
ing with MRI [22]; fluid mesoscale velocity imaging in
ocean acoustic tomography [11, 16, 24]; fluid-flow imag-
ing [3, 12, 15, 17–19, 32, 33]; electric field imaging in Kerr
materials [1, 10, 34]; imaging of the component of the gra-
dient of the refractive index field, which is transversal to the
beam, in Schlieren tomography [3]; velocity field imaging
of heavy particles in plasma physics [8]; density imaging in
supersonic expansions and flames in beam deflection optical
tomography [9]; non-destructive stress distribution imaging
of transparent specimens in photoelasticity [2, 30]; determi-
nation of temperature distributions and velocity vector fields
in furnaces [26] and magnetic field imaging in tokomak in
polarimetric tomography [29].

The mathematical basis for dealing with the problem of
vector field tomographic mapping is formed by a projection
transformation, the vectorial Radon transform. When we try
to investigate planar vector fields in bounded domains, two
classes of the vectorial Radon transform, that model the to-
mographic measurements, arise, depending on the interac-
tion between the obtained measurements and the investi-
gated vector field. The first type of the line integral trans-
form, J1, is

J1 =
∫

L

f̄(x, y) · ŝ ds =
∫

L

f‖ ds (1)

where f̄(x, y) is the planar vector field under investigation, ŝ
is the unit vector along the integration (measurement) line L,
ds is an element of path length along this line, · is the symbol
for the dot product of two vectors and f‖ is the component
of f̄(x, y) along L. From (1), we may deduce that only the
component of f̄(x, y) along the line L is observed in this
type of measurement (longitudinal measurements). The sec-
ond class of line integral transforms, J2, is used to model to-
mographic measurements that collect information from the
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component of the investigated vector field perpendicular to
the measurement line (transversal measurements):

J2 =
∫

L

f̄(x, y) · ρ̂ ds =
∫

L

f⊥ ds (2)

Here ρ̂ is the unit vector perpendicular to the line of integra-
tion L, and f⊥ is the component of f̄(x, y) transverse to L.
The integral transforms of (1) and (2) (which are the two
types of vectorial Radon transform for planar vector fields)
are natural generalisations of the classical Radon transform
to vector fields.

When the inverse problem in 2-D vector field tomog-
raphy was typically discussed in continuum terms, using
a scalar Radon-based approach and relying only on line-
integral measurements, it turned out that the problem was
under-determined [3, 13, 18, 30]. In particular, it was found
that only one component of the vector field could be re-
covered from tomographic measurements. The recovered
component was either the curl-free (irrotational) part or the
divergence-free (solenoidal) part, depending on the physical
principle of the measurements, namely the relation between
the obtained set of measurements and the investigated vector
field. An algebraic reconstruction method of this type, where
the authors considered the problem of only reconstructing
the solenoidal component from the tomographic data, was
developed in [7].

One possible solution to this problem would be to collect
data using both types of relation between the measurements
and the examined vector field for every application. Indeed,
such an amount of information would be sufficient to allow
for a full reconstruction of the vector field as Braun and
Hauck demonstrated in [3]. Unfortunately, there are only
very few specialised applications (mainly in optics), where
it is physically realizable to have all these measurements
available. Moreover, as Norton showed in [18], we may
have a full reconstruction based only on longitudinal mea-
surements, as long as, apart from the longitudinal measure-
ments, supplementary information about the vector field, es-
pecially boundary conditions and a priori information about
the source distribution, is available as well. A study, where
the developed algebraic methodology is about reconstruct-
ing a divergence-free vector field based only on longitudinal
measurements, is presented in [25]. In [5] it was shown that
the reconstruction problem may be solved if one relies not
only on the integral measurements, but also on information
concerning the attenuation distribution of the field.

In addition, Rouseff and Winters showed in [23] that a
2-D vector field reconstruction based on boundary data is
possible for scattering geometries. However, the model they
used for the available scattering measurements was differ-
ent from the integral transforms of (1) and (2). An important
paper, laying down the foundations for collecting measure-
ments from any direction (i.e., integrating along any direc-
tion) to allow 3D MR flow velocity imaging, by using an

MR scanner and manipulating appropriately the gradients,
is the work presented in [22].

It has recently been demonstrated [21] that in the discrete
domain, the complete recovery1 of a 2-D band-limited vec-
tor field based only on a limited number of line-integral data
may be achieved.

The reconstruction method described in [21] is based on
linear algebra and casts the tomographic vector field recon-
struction problem as the solution of a system of linear equa-
tions. Solving, however, the problem in the discrete domain
requires the sampling of the continuous Radon domain pa-
rameter space. The variables of the parameter space are the
radial and angular parameters used to define the scanning
lines, over which we integrate to obtain the line-integral
measurements. In this paper we consider vector field tomog-
raphy, and by using the frequency properties of the vectorial
Radon transform, we derive the lower bounds that must be
imposed on the sampling rates of the variables in the para-
meter domain.

Sampling issues in relation to vector field tomography
were also discussed in [7]. However, the authors of [7] con-
sidered the problem of only reconstructing one of the two
components of the examined vector field from tomographic
data, in line with the conclusions drawn in [3, 13, 18, 30].
Their key insight was to extend efficient sampling schemes
of scalar tomography for vector field tomography. They did
not attempt to perform complete reconstruction of the exam-
ined vector field, but seemed merely interested in recovering
only one component. In this paper we deal with the prob-
lem of reconstructing both components of a 2-D vector field
based only on line-integral data and, therefore, we investi-
gate sampling issues of the scanning geometry with a view
to solving this problem.

This paper is organised as follows. In Sect. 2 we for-
mulate the problem, set up our notation and present a brief
summary of the algebraic reconstruction method presented
in [21]. In Sect. 3 we derive the minimum sampling rates for
the complete 2-D vector field reconstruction by using sam-
pling theory for deterministic band-limited signals and the
sinc-expansion procedure. In Sect. 4 we present some re-
construction results of static electric fields and demonstrate
the effect of the sampling rate on the quality of reconstruc-
tion. In Sect. 5 we examine the effect of the sampling rate
on resilience to noise. We conclude in Sect. 6.

2 The Reconstruction Methodology

In this section, we review the linear algebra-based recon-
struction methodology that is presented in [21]. Let us as-
sume that we have the digitised square 2-D domain that is

1Complete recovery here means the recovery of all components of a
vector field at a finite number of sampling points of its domain.
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Fig. 1 A scanning line AB that goes through the square digitised re-
construction region of size 2U . The line segment is sampled with sam-
pling step �s. The angle between the line segment and the positive
direction of the x-axis is w. The size of the tiles, with which we sam-
ple the 2-D space, is P × P . Also shown are the two parameters ρ and
θ used to define the scanning line (Radon domain coordinates) and the
unit vectors ŝ and ρ̂ which are parallel and perpendicular, respectively,
to line segment AB

shown in Fig. 1, within which we want to recover the vector
field. The length of each side of the square domain is taken
to be equal to 2U and the origin of the axes of the coordi-
nate system is chosen to be at the centre of the domain. The
square domain is divided into tiles of finite size, P × P , so
that K ≡ 2U/P is an integer. The goal is to recover vector
field f̄(x, y) = fx(x, y)x̂ + fy(x, y)ŷ at the centre of every
tile of this space, namely the sampling points of the domain.

A set of scanning lines AB are considered, that are para-
meterised by parameters ρ and θ , where ρ is the length of
the normal to the scanning line, and θ is the angle this nor-
mal forms with the positive x semi-axis (see Fig. 1). Each
scanning line (ρ, θ) is described by

ρ = x cos θ + y sin θ (3)

and yields a line-integral measurement of the projection of
the vector field along or perpendicular to the line’s direction.

By assuming that a pair of sensors measures only the in-
tegral of the component of the vector field along the scan-
ning line (ρ, θ), then, the integral transform that models
the process of data acquisition is given by (1). In order to
translate into the digital domain, the integration expressed
by (1) in the continuous domain, the integral of the vector
field along the scanning line has to be expressed in terms
of the components of the field at the sampling points of the
2-D grid. To do that, the scanning line is sampled with step
�s (see Fig. 1), and the value of the vector field assigned to
each centre of segment of length �s is the unknown value
of the field at the nearest neighbour sampling point of the
reconstruction domain. Along each segment of length �s,
the vector field is assumed constant, equal to the assigned
value of the vector field at the corresponding sampling point
of the line. It is possible, then, to approximate the integral

of (1) by a sum by projecting the value of the field at each
sampling point l of the line onto the vector that represents
the direction of the line:

Ji =
∑

l

f̄l · �s (4)

Here f̄l = (fx l, fy l
) are the unknown vector field values at

sampling points l and �s = �s ŝ = �s(coswx̂ + sinwŷ),
where w is the angle between the scanning line and the
positive direction of the x-axis (see Fig. 1). The number of
equations (4), we have, depends on the number of scanning
lines we consider. In general, it is an over-determined sys-
tem of linear equations, and its solution is obtained in the
least-square error sense.

According to the theory of the Radon transform [6],
a necessary requirement for producing accurate reconstruc-
tions is to sample uniformly the (ρ, θ) parameter space. In
this paper we derive the minimum sampling rates that should
be used for these parameters.

3 Sampling the Vectorial Radon Transform

In order to impose upper bounds on sampling intervals �ρ

and �θ , we use sampling theory for deterministic band-
limited signals [20]. The derivation we provide is based on
the sinc-expansion procedure [20] and the study of the 2-D
frequency content of the available integral measurements in
2-D vector field tomography.

Let us define a coordinate system (ρ̂, ŝ), such that ρ̂ is
the unit vector along the direction of the normal to a scan-
ning line, and ŝ is the unit vector orthogonal to that, forming
a right-handed coordinate system (see Fig. 1). The transfor-
mation relationships between this and the (x̂, ŷ) coordinate
systems, shown in Fig. 1, are:

x = −s sin θ + ρ cos θ (5)

y = s cos θ + ρ sin θ (6)

Also, by examining Fig. 1, we can see that the unit vector ŝ,
parallel to scanning line AB , may be written as:

ŝ = − sin θ x̂ + cos θ ŷ (7)

By combining the (ρ, θ) line parameterisation for scanning
line AB , shown in Fig. 1, with (5)–(7), and assuming that
f̄(x, y) = 0̄ outside the square measurement region, (1), that
describes the available data, becomes:

Ji(ρ, θ) =
∫ +∞

−∞
f̄(ρ cos θ − s sin θ,ρ sin θ + s cos θ)

· (− sin θ x̂ + cos θ x̂)ds (8)
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If we assume that the unknown vector field f̄(x, y) is band-
limited to a known upper limit spatial frequency2 and the
sampling of the reconstruction region was made according
to the Whittaker-Shannon theorem [20], then, vector field
f̄(x, y) may be recovered from the digital vector f̄(m,n) =
fx(m,n)x̂ + fy(m,n)ŷ by convolution with a sinc func-
tion [20]

f̄(x, y) =
M−1∑
m=0

N−1∑
n=0

f̄(m,n)
sin( π

�x
(x − xm))

π
�x

(x − xm)

× sin( π
�y

(y − yn))

π
�y

(y − yn)
(9)

where M and N are the total numbers of samples in the
x and y directions, respectively, �x and �y are the sam-
pling intervals of the reconstruction domain, and (xm, yn)

are the coordinates of the vector field reconstruction points.3

By substituting (9) into (8), we obtain:

Ji(ρ, θ)

=
∫ +∞

−∞

M−1∑
m=0

N−1∑
n=0

fx(m,n)

× sin( π
�x

(ρ cos θ − s sin θ − xm))
π
�x

(ρ cos θ − s sin θ − xm)

× sin( π
�y

(ρ sin θ + s cos θ − yn))

π
�y

(ρ sin θ + s cos θ − yn)
(− sin θ)ds

+
∫ +∞

−∞

M−1∑
m=0

N−1∑
n=0

fy(m,n)

× sin( π
�x

(ρ cos θ − s sin θ − xm))
π
�x

(ρ cos θ − s sin θ − xm)

× sin( π
�y

(ρ sin θ + s cos θ − yn))

π
�y

(ρ sin θ + s cos θ − yn)
(cos θ)ds (10)

We want to study the sampling properties in the (ρ, θ) pa-
rameter domain. These are determined by the upper limit
frequency of Ji(ρ, θ), as it is expressed by (10). However,
some formulae are more easily derived at the (p, τ ) domain,

2A gross estimate of the upper limit spatial frequency of the vector field
we wish to recover is expected to be known. See, for example, [31] for
blood flow imaging.
3It is not quite true that f̄(x, y) is exactly recovered from f̄(m,n) be-
cause the summations in (9), in principle, should be infinitely long, but
these extra f̄(m,n) are assumed to have zero value.

Fig. 2 The two parameters used to define a scanning line: slope p and
intercept τ

where lines are parameterised by slope p and intercept τ (see
Fig. 2) as:

y = px + τ (11)

The conclusions drawn can be easily translated, afterwards,
to the (ρ, θ) domain. By using the (p, τ ) line parameterisa-
tion described by (11), and, also, by taking into account that
dx = − sin θ ds, dy = cos θ ds (see (5)–(6)) and dy = p dx

(see (11)), (10) may be put in the form

Ji(p, τ ) =
M−1∑
m=0

N−1∑
n=0

fx(m,n)I(p, τ, xm, yn)

+
M−1∑
m=0

N−1∑
n=0

fy(m,n)pI(p, τ, xm, yn) (12)

where:

I(p, τ, xm, yn ) =
∫ +∞

−∞
sin( π

�x
(x − xm))

π
�x

(x − xm)

× sin( π
�y

(px + τ − yn))

π
�y

(px + τ − yn)
dx (13)

In this analysis we deal with the reconstruction of a vec-
tor field only inside a rectangle. Hence, we choose to have
�x = �y, so that all reconstruction sampling points lie in
symmetrical intervals around the origin of the coordinate
system. By taking this into account and also introducing
variables

t ≡ π

�x
(x − xm) (14)

γ ≡ π

�x
(pxm + τ − yn) (15)

integral I(p, τ, xm, yn) is simplified to:

I(p, τ, xm, yn) = �x

π

∫ +∞

−∞
sin t

t

sin(pt + γ )

pt + γ
dt (16)
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In order to calculate integral I(p, τ, xm, yn), we define
two functions g1(τ ), g2(τ ) as:

g1(τ ) ≡ sin τ

τ
(17)

g2(τ ) ≡ sin(pτ + γ )

pτ + γ
(18)

The convolution of these two functions gives:

g(τ) ≡ g2(τ ) ∗ g1(τ ) =
∫ +∞

−∞
g2(t)g1(τ − t)dt =⇒

g(τ) =
∫ +∞

−∞
sin(τ − t)

τ − t

sin(pt + γ )

pt + γ
dt (19)

By substituting τ = 0 in (19) we have:

g(0) =
∫ +∞

−∞
sin(−t)

−t

sin(pt + γ )

pt + γ
dt =⇒

g(0) =
∫ +∞

−∞
sin(t)

t

sin(pt + γ )

pt + γ
dt (20)

Hence, by (16) and (20), in order to compute integral
I(p, τ, xm, yn), it is enough to compute the convolution de-
scribed by (19) at τ = 0. However, convolution in the τ -
domain means multiplication in the frequency domain. The
Fourier transform of function g(τ) is given by

G(f ) = G1(f )G2(f ) (21)

where G1(f ) and G2(f ) are the Fourier transforms of
g1(τ ) and g2(τ ), respectively. These are both sinc functions.
Hence, their Fourier transforms are

G1(f ) = πrect(πf ) (22)

G2(f ) = π

|p| rect

(
πf

|p|
)

exp

(
j2πf

γ

p

)
(23)

where rect(f ) is a rectangular function of value 1 for argu-
ment between − 1

2 and 1
2 , and zero otherwise. The combina-

tion of (21)–(23) yields:

G(f ) = π2

|p| W(f ) exp

(
j2πf

γ

p

)
(24)

where W(f ) is similar to rect(πf ) if |p| ≥ 1, and similar to
rect(πf

|p| ) otherwise. The inverse Fourier transform of func-
tion G(f ) yields convolution function g(τ):

g(τ) =
∫ +∞

−∞
G(f ) exp(j2πf τ)df (25)

Two cases have to be distinguished: |p| ≥ 1 and |p| < 1.

1. Case |p| ≥ 1. In this case, W(f ) is similar to rect(πf )

and (25) becomes:

g(τ) =
∫ + 1

2π

− 1
2π

π2

|p| exp

(
j2πf

γ

p

)
exp(j2πf τ)df

= π2

|p|
∫ + 1

2π

− 1
2π

exp

(
j2πf

(
τ + γ

p

))
df

= π

|p|
sin(τ + γ

p )

τ + γ
p

(26)

For τ = 0 we obtain:

g(0) = π

|p|
sin(

γ
p )

γ
p

= π
sin(

γ
|p| )

γ
(27)

By comparing (16), (20) and (27), (16) becomes:

I(p, τ, xm, yn) = �x
sin(

γ
|p| )

γ
(28)

2. Case |p| < 1. In this case, W(f ) is similar to rect(πf
|p| )

and (25) becomes:

g(τ) =
∫ + |p|

2π

− |p|
2π

π2

|p| exp

(
j2πf

γ

p

)
exp(j2πf τ)df

= π2

|p|
∫ + |p|

2π

− |p|
2π

exp

(
j2πf

(
τ + γ

p

))
df

= π

|p|
sin(|p|(τ + γ

p ))

τ + γ
p

(29)

For τ = 0 we obtain:

g(0) = π

|p|
sin(|p| γ

p )

γ
p

= π
sinγ

γ
(30)

By comparing (16), (20) and (30), (16) becomes:

I(p, τ, xm, yn) = �x
sinγ

γ
(31)

By taking (28) and (31) into account, (12) may be rewrit-
ten as:

Ji(p, τ )

=
M−1∑
m=0

N−1∑
n=0

fx(m,n)�x
sin(γ min{1, 1

|p| })
γ︸ ︷︷ ︸

C

+
M−1∑
m=0

N−1∑
n=0

fy(m,n)�x
p sin(γ min{1, 1

|p| })
γ︸ ︷︷ ︸

D

(32)
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This expression of tomographic data in 2-D vector field
tomography, obtained above, will be now used to establish
the sampling requirements in the (ρ, θ) domain. The result
of (32) shows that the continuous line-integral data are given
by the sum of two quantities, C and D.

By using lines with slope |p| ≤ 1, the frequency content
of quantity C is determined by function sinγ

γ
, which, as a

function of γ , has an upper limit frequency of 1
2π

.
In a similar way, the frequency content of quantity D is

determined by function p sinγ
γ

, where sinγ
γ

is a function of
variables p and τ (see (15)). Therefore, we may write:

h(p, τ ) ≡ sinγ

γ

In order to determine the frequency content of the product
p sinγ

γ
= ph(p, τ ), we consider the 2-D FT of h(p, τ ):

h̃(kp, kτ ) =
∫ +∞

−∞

∫ +∞

−∞
h(p, τ )e−j (kpp+kτ τ) dp dτ (33)

By differentiating (33) with respect to kp, we obtain:

∂h̃(kp, kτ )

∂kp

= −j

∫ +∞

−∞

∫ +∞

−∞
ph(p, τ )e−j (kpp+kτ τ) dp dτ =⇒

j
∂h̃(kp, kτ )

∂kp
=

∫ +∞

−∞

∫ +∞

−∞
ph(p, τ )e−j (kpp+kτ τ) dp dτ

(34)

By examining (34), we notice that the second part of this
equation gives the Fourier transform of the product ph(p, τ ).
Therefore, by taking into account the same equation, we
may deduce that the product ph(p, τ ) is band-limited to the
upper limit frequency of function h(p, τ ). Hence, we con-
clude that the frequency content of D is also determined by
function sinγ

γ
, and the overall tomographic data have, as a

function of γ , an upper limit frequency of 1
2π

. Thus, if γ

should be sampled, this should be done with a rate faster
than π :

�γ ≤ π (35)

If we use the transformation relationships between the (p, τ )

and (ρ, θ) domains (see (3) and (11))

p = − cot θ (36)

τ = ρ

sin θ
(37)

then, (15) becomes:

γ = π

�x

(
− cot θxm + ρ

sin θ
− yn

)
(38)

From (35) and (38) we obtain:

�γ =
∣∣∣∣∂γ

∂ρ

∣∣∣∣�ρ = π

�x|sin θ |�ρ ≤ π =⇒

�ρ ≤ �x|sin θ | (39)

Since we are examining lines with |p| ≤ 1, hence, |cot θ | ≤ 1.
Therefore, θ ∈ [π

4 , 3π
4 ] ∪ [ 5π

4 , 7π
4 ] and |sin θ |, as a function

of θ , has values between 1 and 1√
2

. By using the minimum

value of 1√
2

, (39) yields:

�ρ ≤ �x√
2

(40)

Similarly, (35) and (38) give for the angular parameter:

�γ =
∣∣∣∣∂γ

∂θ

∣∣∣∣�θ = π

�x

∣∣∣∣ xm

sin2 θ
− ρ cos θ

sin2 θ

∣∣∣∣�θ ≤ π =⇒

π

�x

∣∣∣∣xm − ρ cos θ

sin2 θ

∣∣∣∣�θ ≤ π =⇒

�θ ≤ �x

∣∣∣∣ sin2 θ

xm − ρ cos θ

∣∣∣∣︸ ︷︷ ︸
F

(41)

We want the sampling criterion that we shall derive to be
valid for all values of xm. Hence, we must find the minimum
value of quantity F in (41). For the denominator we have

|xm − ρ cos θ | ≤ |xm| + |ρ cos θ | ≤ |xmax| + |ρmax cos θ |
(42)

where xmax and ρmax are the maximum values of parame-
ters x and ρ, respectively. We consider uniform sampling
in (ρ, θ) for the employed square domain of Fig. 1. There-
fore, it must be ρmax ≤ xmax. Otherwise, for ρmax > xmax

and θ = k π
2 where k is an integer, the resulting scanning

lines do not lie within the region of interest. So, (42) be-
comes:

|xm − ρ cos θ | ≤ |xmax|(1 + |cos θ |) (43)

Quantity F in (41) becomes minimum when the numera-
tor of F becomes minimum and the denominator of F be-
comes maximum. However, by taking into account (43) and
the considered area of values of θ , then, we may say that F

becomes minimum for |sin θ | = |cos θ | = 1√
2

. Hence, (41)
may be written as:

�θ ≤ �x
( 1√

2
)2

|xmax|(1 + 1√
2
)

=⇒

�θ ≤ �x√
2(1 + √

2)|xmax|
(44)



J Math Imaging Vis (2010) 37: 151–165 157

It must be noted that the evaluation of the upper bounds of
(40) and (44) was very conservative in order to make sure
that these expressions are valid for all values of (xm, yn).

It can be easily proven that the same bounds for the sam-
pling steps in the (ρ, θ) domain, as those expressed by (40)
and (44), are obtained when using lines with slope |p| > 1.
In this case, it is easier to describe lines as x = ry + η with
r = 1

p and η = − τ
p and, then, obtain the sampling steps in

the (ρ, θ) domain, based on the frequency properties of the
parameter domain (r, η).

In summary, if �x is the sampling interval of the recon-
struction region and xmax is the maximum value of parame-
ter x, the steps one should use to sample parameters ρ and
θ should be:

�ρ ≤ �x√
2

(45)

�θ ≤ �x√
2(1 + √

2)|xmax|
(46)

4 An Example: Electric Field Imaging

In this section we consider the case where the vector field
that we want to recover is the electric field created by a sta-
tic charge. There are many ways to recover the electric field
from boundary data. However, here we use the electric field
only to demonstrate our method. In order to avoid problems
with singularities and to ensure that the field is band-limited,
we place the source of the vector field outside the bounded
2-D area. In a real physical system, we do not expect to
have to deal with real singularities anyway. The fields used
here for reconstruction were selected only on the grounds of
not containing singularities. No other selection criterion was
used. One may find the reconstruction of more complicated
fields, created by more than one point sources, in [21].

For the electric field recovery, the data, we relied entirely
on, were voltage differences measured by pairs of sensors
located along the border of the 2-D area. Such data measure
the integral of the component of the electric field along the
line that connects the two sensors. For the simulations we
present here, these data were obtained by using Coulomb’s
law. It must be noted that the electric field is irrotational,
so according to [18], only transversal measurements would
be helpful to recover this field. However, the only realizable
measurements for this application are longitudinal.

For our experiments, we employed the digital domain of
Fig. 1 and we chose for parameter values: 2U = 11 as do-
main size and P = 1 as tile size. Hence, the domain con-
sisted of 121 tiles and the number of the unknowns (the
Ex and Ey components of the field for every tile of the
domain) was 242. Four different cases for the location of
the source of the vector field are reported. In the sampling

process along line segments between sensors, so as to ap-
proximate the integral measurements by sums, we selected
the sampling step to be equal to 1 (=tile size) in all cases.
To exemplify the theory of the study described in this paper,
we performed four sets of experiments.

In the first set of experiments, we used a data acquisition
geometry that corresponded to uniformly sampled parame-
ters ρ and θ , where the sampling criteria that we derived in
Sect. 3 were satisfied. For the employed rectangle of interest,
we have �x = �y = P = 1 and xmax = U = 5.5. Hence, the
sampling criteria of (45) and (46) yield:

�ρ ≤ 0.7071 and �θ ≤ 3.0512◦ (47)

In order to meet these requirements, we selected for the sam-
pling steps: �ρ = 0.7 and �θ = 3◦. With the purpose of
covering fully the region of interest (Fig. 1), the selected
steps resulted in having 8 samples for the radial parame-
ter and 120 samples for the angular parameter. As a result,
the over-determined system of linear equations, the solution
of which gave the reconstructed field, had 960 (= 8 × 120)

equations. We must note that we could have selected smaller
sampling steps for �ρ and �θ . However, we opted out of
this, because it would increase the number of equations too
much and we would have to solve a prohibitively large sys-
tem of linear equations. The solution of this system of equa-
tions was obtained by applying the least-squares method.
The Householder orthogonalisation method [27], which is a
numerically useful procedure in order to solve mean square
value problems for cases where the condition number of the
matrix of coefficients is large [28], was also tested for our
reconstruction problem. However, the results we obtained
were identical with the results we obtained using the least-
squares method. Moreover, it must be noted that since the
residual we computed by using the least-squares method was
not large when compared with the solution vector, there was
no need to use the Cholesky method [4]. The reconstruction
results are shown in Fig. 3(a). For the sake of comparison,
Fig. 3(b) depicts the respective electric fields that were ob-
tained by using directly the governing Coulomb’s law.

In order to test the effectiveness of the sampling bounds
that we propose in this paper, we ran three more sets of ex-
periments without imposing the derived upper bounds for
�ρ and �θ in the sampling of the measurement geome-
try. More specifically, for the second set of experiments we
chose �ρ = 1 and �θ = 2◦. It is obvious, from (47), that
such a selection for sampling step �ρ is a clear violation of
the criterion we derived in Sect. 3. The above choice for pa-
rameter values resulted in having 6 samples for the radial pa-
rameter and 180 samples for the angular parameter. Hence,
the system of equations consisted of 1080 (= 6 × 180)

equations. In the third set of experiments, vector field re-
covery was carried out by using uniform sampling in the
Radon domain and selecting for sampling steps �ρ = 0.5
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Fig. 3 Simulation results for the case when the proposed sampling cri-
teria are met (�ρ = 0.7 and �θ = 3◦) and the location of the source
of the electric field was (from top to bottom) at (19,−19), (−16,21),
(12.5,30), and (−19,−40): (a) the recovered vector field; (b) the the-
oretical electric field as computed from Coulomb’s law

and �θ = 4◦. Hence, it is sampling step �θ , this time, the
one that does not fulfil the sampling requirements worked
out in this paper (equation (47)). This selection of parameter
values resulted in having 11 samples for the radial parame-
ter and 90 samples for the angular parameter. Hence, the
linear system consisted of 990 (= 11 × 90) equations. Fi-
nally, for the last set of experiments we chose �ρ = 1 and

�θ = 4◦. Hence, both proposed criteria were not satisfied
(equation (47)). This choice of sampling steps resulted in
having 6 samples for the radial parameter and 90 samples for
the angular parameter. Hence, the linear system consisted of
540 (= 6 × 90) equations. It must be noted that the number
of linear equations was about the same for the four sets of
experiments, apart from the last one where it was inevitable
to have a reduced number of linear equations. The relative
magnitude reconstruction error plots (i.e., the plots of the
absolute values of the differences between the magnitudes
of the reconstructed fields and the theoretical ones divided
by the theoretical magnitude) and the absolute angular re-
construction error plots (i.e., the plot of the absolute angu-
lar differences (in degrees) between the reconstructed vec-
tor field values and the theoretical ones) for the four sets of
experiments can be seen in Fig. 4 and Fig. 5, respectively.
We notice from these figures that the case where the de-
rived sampling criteria were met outperforms the other three
cases where we had a violation of these criteria, even when
the number of equations used in the other cases was larger
than the number of equations used when the sampling crite-
ria were satisfied.

To appreciate better the degradation in the performance
of the proposed algebraic reconstruction method by not im-
posing the upper sampling bounds for �ρ and �θ , in Fig. 6
and Fig. 7 we present the histograms of the errors in each
case. By close examination of these figures, we may see that
the violation of the lower bounds for the sampling rates of
the radial and angular parameters resulted in having recon-
structions of lower quality. In particular, it was found that
the average difference in the vector field orientation mea-
sured in degrees was 35% higher, when the upper bound
on sampling interval �θ was not imposed, as opposed to
the case where both sampling criteria were met, whereas the
average error in the magnitude was higher by 24%. Sim-
ilarly, it was found that the average difference in the vec-
tor field orientation measured in degrees was 24% higher,
when the upper bound on sampling interval �ρ was not im-
posed, as opposed to the case where both sampling criteria
were met, whereas the average error in the magnitude was
higher by 10%. The corresponding differences in the angu-
lar and magnitude errors for the case where both the lower
bounds on sampling rates of parameters ρ and θ were not
imposed, over the case of fulfilling the derived upper sam-
pling bounds, were 38% and 26%, respectively.

5 The Effect of the Sampling Rate on Resilience
to Noise

An important issue when solving inverse problems is the
sensitivity of the solution to noise. In this section we inves-
tigate the effect of the sampling rate of the Radon domain
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Fig. 4 The relative magnitude
error plots for the cases when:
(a) the proposed sampling
criteria were met (�ρ = 0.7 and
�θ = 3◦); (b) the proposed
sampling criterion about the
radial parameter was not
fulfilled (�ρ = 1 and �θ = 2◦);
(c) the proposed sampling
criterion about the angular
parameter was not fulfilled
(�ρ = 0.5 and �θ = 4◦);
(d) both proposed sampling
criteria about the radial and
angular parameters were
violated (�ρ = 1 and �θ = 4◦).
The location of the source of the
electric field was (from top to
bottom) at (19,−19), (−16,21),
(12.5,30), and (−19,−40)

Fig. 5 As in Fig. 4, but here the
errors in vector field orientation
are plotted
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Fig. 6 The histograms of the
relative magnitude errors for the
cases when: the proposed
sampling criteria were met
(�ρ = 0.7 and �θ = 3◦) (left
column); the proposed sampling
criterion about the radial
parameter was not fulfilled
(�ρ = 1 and �θ = 2◦) (second
column); the proposed sampling
criterion about the angular
parameter was not fulfilled
(�ρ = 0.5 and �θ = 4◦) (third
column); both proposed
sampling criteria about the
radial and angular parameters
were violated (�ρ = 1 and
�θ = 4◦) (fourth column). The
location of the source of the
electric field was (from top to
bottom) at (19,−19), (−16,21),
(12.5,30), and (−19,−40). We
note that the histograms of the
last three columns have heavier
tails towards higher values,
when compared with the
histograms of the first column

parameters on robustness against noise. In all experiments
reported in the previous section, the measurement taken by
each sensor was exactly the value predicted by Coulomb’s
law. In a practical system, however, some of the sensor mea-
surements are expected to have inaccuracies. To emulate
these effects, we considered the following:

(i) A noise value was added to a measurement as a frac-
tion of the true value, with random sign. For exam-
ple, 2% noise means that the sensor measurement was
changed by 2% of the value dictated by Coulomb’s law.
The change was either incremental or decremental, the
choice made at random for each sensor.

(ii) A sensor was moved away from its true position by a
fraction of the true position. For example, if accord-

ing to the theory, a sensor should be placed at position
(x, y), and we consider a 2% error, then, the coordi-
nates of this sensor were shifted by 2% the correspond-
ing correct values, with a positive or negative sign cho-
sen at random.

(iii) Both the above errors were considered simultaneously.

We performed four series of experiments by perturbing,
by the three types of noise described above, (a) only 25% of
the sensors; (b) 50% of the sensors; (c) 75% of the sensors;
(d) all sensors. In order to evaluate the robustness of the pro-
posed sampling bounds against noise, we examined for each
series of experiments, the four cases of Sect. 4: (a) when
the proposed sampling criteria were met (�ρ = 0.7 and
�θ = 3◦); (b) when the proposed sampling criterion about
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Fig. 7 As in Fig. 6, but here the
histograms of the errors in
vector field orientation are
plotted. Again, we note that the
histograms of the last three
columns have heavier tails
towards higher values, when
compared with the histograms
of the first column

the radial parameter was not fulfilled (�ρ = 1 and
�θ = 2◦); (c) when the proposed sampling criterion about
the angular parameter was not fulfilled (�ρ = 0.5 and
�θ = 4◦); (d) when both proposed sampling criteria about
the radial and angular parameters were violated. For every
noise value (of each noise type, sampling rate and percent-
age of perturbed sensors), fifty simulations were performed
and the average reconstruction errors in relative magnitude
and absolute vector field orientation were obtained. The
source for all the simulations was located at (19,−19).

The results of these experiments are shown in Figs. 8–11.
We observe that the employment of a measurement geome-
try that satisfies the sampling bounds, derived in Sect. 3, in-
creases the resilience to all three types of noise, when com-
pared with the cases where one or both of the proposed sam-
pling criteria were not imposed.

6 Discussion and Conclusions

Vector field tomography is a field that has substantial po-
tential for many applications. Solving, therefore, the inverse
problem in vector field tomography has many advantages.
The problem has been shown to be unsolvable in the con-
tinuous domain [3, 16, 18]. However, it has recently been
demonstrated [21] that in the discrete domain, the recov-
ery of all components of a 2-D band-limited vector field
at the sampling points of a 2-D digitised bounded domain,
based only on a discrete number of line-integral data, may
be achieved.

Solving the reconstruction problem in the discrete do-
main requires the uniform sampling of the continuous
Radon domain parameter space. In this paper we use sam-
pling theory for deterministic band-limited signals to ad-
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Fig. 8 The comparison of the
reconstruction performance in
noisy environments for the four
cases of sampling rates of
Figs. 4–7: (a), (b) Errors in
vector field orientation and
magnitude, when noise was
added to the measurements of
25% of the sensors, as a
percentage of the true value.
(c), (d) Errors in vector field
orientation and magnitude,
when small perturbations in the
sensor positions were added.
Position perturbations were a
percentage of the true positions.
(e), (f) Errors in vector field
orientation and magnitude,
when both sensors’
measurements and positions
were changed by a percentage
of their true values. In all cases,
25% of the sensors were
perturbed

Fig. 9 As in Fig. 8, but here
50% of the sensors were
perturbed
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Fig. 10 As in Fig. 8, but here
75% of the sensors were
perturbed

Fig. 11 As in Fig. 8, but here
all sensors were perturbed
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dress sampling issues. The sampling requirements, which
must be imposed on the distances of the parameter domain
variables in order not to lose boundary integral information,
are derived. Evidence that shows the favourable behaviour
of the proposed sampling bounds towards vector field recon-
struction accuracy is provided by presenting an example. It
is also shown that the implication of using a measurement
geometry that violates the derived lower bounds is a degra-
dation in the performance of the algebraic reconstruction
method. This is expected, since, by not sampling the Radon
parameters densely enough, the information content of the
line-integral measurements is inadequate, and the aliasing
problems that occur have an effect on the reconstruction
quality.

An important issue when solving inverse problems is the
sensitivity of the solution to noise. In the case of this prob-
lem, there are two possible sources of noise: inaccuracies in
the sensor measurements and inaccuracies in the positions
of the sensors. It is very encouraging, therefore, that more
resilience to noise was observed when the sampling bounds,
proposed in this paper, were imposed.
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