11 research outputs found

    Sample-level CNN Architectures for Music Auto-tagging Using Raw Waveforms

    Full text link
    Recent work has shown that the end-to-end approach using convolutional neural network (CNN) is effective in various types of machine learning tasks. For audio signals, the approach takes raw waveforms as input using an 1-D convolution layer. In this paper, we improve the 1-D CNN architecture for music auto-tagging by adopting building blocks from state-of-the-art image classification models, ResNets and SENets, and adding multi-level feature aggregation to it. We compare different combinations of the modules in building CNN architectures. The results show that they achieve significant improvements over previous state-of-the-art models on the MagnaTagATune dataset and comparable results on Million Song Dataset. Furthermore, we analyze and visualize our model to show how the 1-D CNN operates.Comment: Accepted for publication at ICASSP 201

    Generative Autoregressive Networks for 3D Dancing Move Synthesis from Music

    Full text link
    This paper proposes a framework which is able to generate a sequence of three-dimensional human dance poses for a given music. The proposed framework consists of three components: a music feature encoder, a pose generator, and a music genre classifier. We focus on integrating these components for generating a realistic 3D human dancing move from music, which can be applied to artificial agents and humanoid robots. The trained dance pose generator, which is a generative autoregressive model, is able to synthesize a dance sequence longer than 5,000 pose frames. Experimental results of generated dance sequences from various songs show how the proposed method generates human-like dancing move to a given music. In addition, a generated 3D dance sequence is applied to a humanoid robot, showing that the proposed framework can make a robot to dance just by listening to music.Comment: 8 pages, 10 figure

    Motivic Pattern Classification of Music Audio Signals Combining Residual and LSTM Networks

    Get PDF
    Motivic pattern classification from music audio recordings is a challenging task. More so in the case of a cappella flamenco cantes, characterized by complex melodic variations, pitch instability, timbre changes, extreme vibrato oscillations, microtonal ornamentations, and noisy conditions of the recordings. Convolutional Neural Networks (CNN) have proven to be very effective algorithms in image classification. Recent work in large-scale audio classification has shown that CNN architectures, originally developed for image problems, can be applied successfully to audio event recognition and classification with little or no modifications to the networks. In this paper, CNN architectures are tested in a more nuanced problem: flamenco cantes intra-style classification using small motivic patterns. A new architecture is proposed that uses the advantages of residual CNN as feature extractors, and a bidirectional LSTM layer to exploit the sequential nature of musical audio data. We present a full end-to-end pipeline for audio music classification that includes a sequential pattern mining technique and a contour simplification method to extract relevant motifs from audio recordings. Mel-spectrograms of the extracted motifs are then used as the input for the different architectures tested. We investigate the usefulness of motivic patterns for the automatic classification of music recordings and the effect of the length of the audio and corpus size on the overall classification accuracy. Results show a relative accuracy improvement of up to 20.4% when CNN architectures are trained using acoustic representations from motivic patterns

    Deep Learning for Black-Box Modeling of Audio Effects

    Get PDF
    Virtual analog modeling of audio effects consists of emulating the sound of an audio processor reference device. This digital simulation is normally done by designing mathematical models of these systems. It is often difficult because it seeks to accurately model all components within the effect unit, which usually contains various nonlinearities and time-varying components. Most existing methods for audio effects modeling are either simplified or optimized to a very specific circuit or type of audio effect and cannot be efficiently translated to other types of audio effects. Recently, deep neural networks have been explored as black-box modeling strategies to solve this task, i.e., by using only input–output measurements. We analyse different state-of-the-art deep learning models based on convolutional and recurrent neural networks, feedforward WaveNet architectures and we also introduce a new model based on the combination of the aforementioned models. Through objective perceptual-based metrics and subjective listening tests we explore the performance of these models when modeling various analog audio effects. Thus, we show virtual analog models of nonlinear effects, such as a tube preamplifier; nonlinear effects with memory, such as a transistor-based limiter and nonlinear time-varying effects, such as the rotating horn and rotating woofer of a Leslie speaker cabinet

    Neural content-aware collaborative filtering for cold-start music recommendation

    Get PDF
    International audienceState-of-the-art music recommender systems are based on collaborative filtering, which builds upon learning similarities between users and songs from the available listening data. These approaches inherently face the cold-start problem, as they cannot recommend novel songs with no listening history. Content-aware recommendation addresses this issue by incorporating content information about the songs on top of collaborative filtering. However, methods falling in this category rely on a shallow user/item interaction that originates from a matrix factorization framework. In this work, we introduce neural content-aware collaborative filtering, a unified framework which alleviates these limits, and extends the recently introduced neural collaborative filtering to its content-aware counterpart. We propose a generative model which leverages deep learning for both extracting content information from low-level acoustic features and for modeling the interaction between users and songs embeddings. The deep content feature extractor can either directly predict the item embedding, or serve as a regularization prior, yielding two variants (strict and relaxed) of our model. Experimental results show that the proposed method reaches state-of-the-art results for a cold-start music recommendation task. We notably observe that exploiting deep neural networks for learning refined user/item interactions outperforms approaches using a more simple interaction model in a content-aware framework
    corecore