1,308 research outputs found

    Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can be used for modeling \\average" or steady-state behavior of complex stochastic systems. Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models. Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints. The convergence analysis of sample-path methods rely heavily on stability conditions. We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence. Alongside we provide a complementary sensitivity result for the corresponding deterministic problems. In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.simulation;mathematical programs with equilibrium constraints;stability;regularity conditions;sample-path methods;stochastic mathematical programs with complementarity constraints

    Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints: Sample-Path Analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated.Such programs can be used for modeling average or steady-state behavior of complex stochastic systems.Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models.Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints.The convergence analysis of sample-path methods rely heavily on stability conditions.We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence.Alongside we provide a complementary sensitivity result for the corresponding deterministic problems.In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.stochastic processes;mathematics;stability;simulation;regulations;general equilibrium

    Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can be used for modeling \\average" or steady-state behavior of complex stochastic systems. Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models. Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints. The convergence analysis of sample-path methods rely heavily on stability conditions. We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence. Alongside we provide a complementary sensitivity result for the corresponding deterministic problems. In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions

    Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions

    Full text link
    We prove existence and uniqueness of stochastic representations for solutions to elliptic and parabolic boundary value and obstacle problems associated with a degenerate Markov diffusion process. In particular, our article focuses on the Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate, elliptic partial differential operator whose coefficients have linear growth in the spatial variables and where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to terminal/boundary value or obstacle problems for the parabolic Heston operator correspond to value functions for American-style options on the underlying asset.Comment: 47 pages; to appear in Transactions of the American Mathematical Societ

    Simulation-based solution of stochastic mathematical programs with complementarity constraints: sample-path analyis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can be used for modeling "average" or steady-state behavior of complex stochastic systems. Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models. Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints. The convergence analysis of sample-path methods rely heavily on stability conditions. We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence. Alongside we provide a complementary sensitivity result for the corresponding deterministic problems. In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions
    corecore