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Simulation-based solution of stochastic

mathematical programs with complementarity

constraints: Sample-path analysis

Ş. İlker Birbil† Gül Gürkan∗ Ovidiu Listeş∗
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Abstract

We consider a class of stochastic mathematical programs with complementarity con-
straints, in which both the objective and the constraints involve limit functions or
expectations that need to be estimated or approximated. Such programs can be used
for modeling “average” or steady-state behavior of complex stochastic systems. Re-
cently, simulation-based methods have been successfully used for solving challenging
stochastic optimization problems and equilibrium models. Here we broaden the appli-
cability of so-called the sample-path method to include the solution of certain stochas-
tic mathematical programs with equilibrium constraints. The convergence analysis of
sample-path methods rely heavily on stability conditions. We first review necessary
sensitivity results, then describe the method, and provide sufficient conditions for its
almost-sure convergence. Alongside we provide a complementary sensitivity result for
the corresponding deterministic problems. In addition, we also provide a unifying
discussion on alternative set of sufficient conditions, derive a complementary result
regarding the analysis of stochastic variational inequalities, and prove the equivalence
of two different regularity conditions.

Keywords: stochastic mathematical programs with complementarity constraints,
sample-path methods, simulation, stability, regularity conditions, mathematical pro-
grams with equilibrium constraints

1 Introduction

In the last decade, many researchers have studied solution methods for mathematical pro-
grams with complementarity constraints (MPCC’s). Primarily, these programs arise in
reformulations of important optimization problems such as mathematical programs with
equilibrium constraints (MPEC’s) (Luo et al. (1996)), generalized semi-infinite programs
(Still (1999)), or bilevel optimization problems (Bard (1998) and Dempe (2002)). Natu-
rally, the crucial role of the MPCC’s also attracted the attention of the practitioners, since

†Erasmus Research Institute of Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR
Rotterdam, The Netherlands.

∗CentER for Economic Research, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Nether-
lands. The research reported here was sponsored by the Netherlands Organization for Scientific Research
(NWO), grant 016.005.005.
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these mathematical programs are important modeling tools for numerous applications.
Among such applications we mention here Stackelberg games of mathematical economics,
congestion problems in transportation networks, or optimal design of mechanical systems;
see Luo et al. (1996), Ferris and Pang (1997), Bard (1998), and Dempe (2002) for other
applications.

When pursuing a realistic modeling approach, decision makers are usually faced with
uncertainty. For instance, costs in a transportation network or measurements in a me-
chanical system are liable to intrinsic uncertainty by the nature of the problem. In certain
cases, the uncertainty may be cast explicitly by means of random model parameters, an
approach which leads to a stochastic mathematical programming formulation. In the
present paper we focus on a particular formulation of stochastic mathematical programs
that involve complementarity constraints. Alongside a detailed analysis of this problem,
we also discuss a solution approach by a simulation-based method, so-called sample-path
optimization.

Roughly speaking, sample-path methods are concerned with solving a problem of opti-
mization and/or equilibrium, involving a limit function f∞ which is not observable. How-
ever, one can observe functions fn that almost surely converge pointwise to f∞ as n → ∞.
In the kind of applications we have in mind, f∞ could be a steady-state performance mea-
sure of a dynamic system or an expected value in a static system, and we use simulation
to observe the fn’s. In systems that evolve over time, we simulate the operation of the
system for, say, n time units and then compute an appropriate performance measure. In
static systems we repeatedly observe instances of the system and compute an average. In
both cases, to observe fn at different parameter settings we use the method of common
random numbers. Furthermore, in many cases derivatives or directional derivatives of the
fn can be obtained using well-established methods of gradient estimation such as infinites-
imal perturbation analysis (IPA); see Ho and Cao (1991) and Glasserman (1991). The key
point is the following: once we fix n and a sample point (using common random numbers),
fn becomes a deterministic function. Sample-path methods then solve the resulting de-
terministic problem (using fn with the fixed sample path selected), and take the solution
as an estimate of the true solution. Clearly, the availability of very powerful deterministic
solvers (both for optimization and for equilibrium problems) makes this approach very
attractive.

In general the results which provide theoretical support for sample-path methods are
based on the sensitivity analysis of the corresponding deterministic problems. This aspect
is illustrated in Robinson (1996) in the case of simulation optimization problems with
deterministic constraints as well as in Gürkan et al. (1999a) in the case of stochastic
variational inequalities. Following a similar argument, we build our sample-path analysis
of stochastic MPCC’s on the recent work of Scheel and Scholtes (2000), who set forth
important sensitivity results for deterministic MPCC’s.

In our view, the current paper makes the following contributions:

• It proposes a modeling structure for a class of stochastic MPCC’s in which the
expectations or limit functions must be approximated/estimated, for example by
using simulation.

• It presents sufficient conditions for the convergence of the sample-path method ap-
plied to the class of stochastic MPCC’s addressed.
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• It provides complementary sensitivity results for deterministic MPCC’s to those
presented by Scheel and Scholtes (2000), in terms of weaker sufficient conditions for
stability (by interpreting the approximating functions as non-parametric perturba-
tions of the true functions).

• It provides a discussion on the assumptions involved in the stability analysis of both
variational inequalities and MPCC’s. Along the way, a complementary result to the
main theorem of Gürkan et al. (1999a) dealing with stochastic variational inequalities
is provided.

The remainder of this paper is organized as follows. In Section 2, we specify the prob-
lem under consideration and provide some related background material. In Section 3, we
first restate some essential concepts, then use them in analyzing the sample-path solution
of stochastic MPCC’s. In Section 4, we provide a discussion on main results involved in our
analysis and different assumptions required. Finally, in Section 5 we give a summary and
conclude the paper. Our analysis uses some regularity conditions for generalized equations
and nonlinear programs. Since these conditions are rather technical, we deal with them
in Appendix 1. In addition, we often refer to the main theorem in Gürkan et al. (1999a);
for convenience this theorem is restated in Appendix 2.

2 Background material and sample-path methods

In this section we review some background material related to MPCC’s and sample-path
methods. We work with an open set Θ ⊆ R

n0 and twice differentiable functions f : Θ → R,
g : Θ → R

p, h : Θ → R
q, and F : Θ → R

m×l with m ≥ 1, l ≥ 2, and

F (z) =







F11(z) . . . F1l(z)
...

. . .
...

Fm1(z) . . . Fml(z)






·

Given these ingredients, the problem under consideration is the following mathematical
program with complementarity constraints:

MPCC min f(z)

s.t. min{Fk1(z), . . . , Fkl(z)} = 0 k = 1, . . . , m

g(z) ≤ 0

h(z) = 0

z ∈ Θ ,

as discussed in Scheel and Scholtes (2000). If z = (x, y) ∈ R
n1×R

n2 , l = 2, Fk1(x, y) = yk,
and Gk(x, y) := Fk2(x, y), then the constraints min{Fk1(z), Fk2(z)} = 0, k = 1, ..., m,
represent the parametric nonlinear complementarity problem

y ≥ 0, G(x, y) ≥ 0, y G(x, y) = 0, (1)

with parameter x and variable y. It is well known (see e.g., Harker and Pang (1990)) that
problem (1) is equivalent to solving a parametric variational inequality over the positive
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orthant R
n2

+ . Given a closed convex set C ⊆ R
n2 and a function G from R

n2 to itself, the
variational inequality problem, denoted by VI(G, C), is to find a point y0 ∈ C such that

G(y0)(y − y0) ≥ 0 for all y ∈ C. (2)

For any given parameter x, the problem (1) is then equivalent to VI(G(x, ·), Rn2

+ ). More-
over, problem (1) also includes, as a special case, the Karush-Kuhn-Tucker conditions of
parametric variational inequalities defined over sets described by smooth systems of in-
equalities (see e.g., Luo et al. (1996)). Therefore, the MPCC’s are indeed a very important
subclass of the mathematical programs with equilibrium constraints (MPEC’s), in which
the essential constraints are explicitly formulated as parametric variational inequalities of
the form “y solves VI(G(x, ·), Rn2

+ )”. In MPEC’s, x are usually referred to as the upper
level variables, while y denote the variables at the lower level (or the inner problem). For
details on the general MPEC problem as well as examples of interesting applications, we
refer to the monographs by Luo et al. (1996) and Outrata et al. (1998).

In this paper we address MPCC’s under uncertainty. More specifically, we are inter-
ested in a certain class of stochastic MPCC’s, in which potentially, all of the defining
functions f , F , g, or h (or some of their components) may represent a limit function or
an expectation and therefore, can not be directly observed. Formally, we are interested in
the following problem:

SMPCC min f∞(z)

s.t. min{F∞
k1 (z), . . . , F∞

kl (z)} = 0 k = 1, . . . , m

g∞(z) ≤ 0

h∞(z) = 0

z ∈ Θ ,

where any of f∞, F∞, g∞, or h∞ (or some of their components) may be unobservable. A
particular example in which expectations are involved in the objective function and in the
complementarity constraints is the following:

min Eω[f(x, y, ω)]

s.t. (x, y) ∈ Z (3)

y ≥ 0, Eω[F (x, y, ω)] ≥ 0

y Eω[F (x, y, ω)] = 0,

where Z = { (x, y) | g(x, y) ≤ 0, h(x, y) = 0 } and ω denotes the random element in
the model. This formulation deals with problems in which all decisions, that is, at both
upper and lower levels, must be made at once, before observing the random event ω.
From this point of view, the stochastic MPCC (SMPCC) under consideration here differs
from the stochastic programming extension of MPEC’s as formulated in Patriksson and
Wynter (1999), where the complementarity (or equilibrium) constraints are required to
hold individually for every realization of ω and the lower level decisions are taken after
the value of ω is observed. By analogy with some stochastic programming terminology,
Lin et al. (2003) call the latter situation a lower level wait-and-see problem with upper
level decisions x and lower-level decisions y. Lin et al. (2003) also discuss a different
variant, somewhat closer to ours, in which both x and y must be determined a priori to
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the random event ω. However, their variant makes use of a recourse variable depending
on ω and eventually, some “adjusted” complementarity constraints are yet required to
hold individually, for each ω. This second variant in Lin et al. (2003) is called a here-
and-now model. Our variant of SMPCC differs from either formulation above, in that it
does not impose individual realization constraints, but rather complementarity constraints
at an “average” level. For a more formal and detailed discussion on different SMPCC
formulations as well as some concrete examples we refer to our accompanying paper Birbil
et al. (2004).

We propose to solve problem SMPCC using the so-called sample-path method. The
basic case of sample-path optimization, concerning the solution of simulation optimiza-
tion problems with deterministic constraints, appeared in Plambeck et al. (1993, 1996)
and was analyzed in Robinson (1996). Plambeck et al. (1993, 1996) used infinitesimal
perturbation analysis (IPA) for gradient estimation. In the static case, a closely related
technique centered around likelihood-ratio methods appeared in Rubinstein and Shapiro
(1993) under the name of stochastic counterpart methods. The basic approach (and its
variants) is also known as sample average approximation method in the stochastic pro-
gramming literature; see for example Shapiro and Homem-De-Mello (1998), Kleywegt et
al. (2001), and Linderoth et al. (2002).

Gürkan et al. (1996, 1999a) extended the basic idea of using sample-path information
to solve stochastic equilibrium problems. They presented a framework to model such equi-
librium problems as stochastic variational inequalities and provide conditions under which
equilibrium points of approximating problems (computed via simulation and determinis-
tic variational inequality solvers) converge almost surely to the solution of the limiting
problem which can not be observed. Gürkan et al. (1999a) also considered a numerical ap-
plication about finding the equilibrium prices and quantities of natural gas in the European
market. This work was used further in Gürkan et al. (1999b) for establishing almost-sure
convergence of sample-path methods when dealing with stochastic optimization problems
with stochastic constraints.

In order to guarantee the closeness of solutions of the approximating variational in-
equalities to the solution of the real problem, a certain functional convergence of the data
functions should be imposed. The specific property required is called continuous conver-

gence and will be denoted by
C

−→; it is equivalent to uniform convergence on compact sets
to a continuous limit. For an elementary treatment of the relationship between different
types of functional convergence, see Kall (1986), and for a comprehensive treatment of
continuous convergence and related issues, see Rockafellar and Wets (1998). In particular,
Theorem 1 and Corollary 7 of Kall (1986), and Theorems 7.11, 7.17, and 7.18 of Rock-
afellar and Wets (1998) provide other equivalent notions of convergence or conditions that
imply continuous convergence. In the sequel we are going to employ the term continuous
convergence for the analysis of the problem SMPCC as well. For convenience we restate
the following definition.

Definition 1 A sequence fn of real-valued functions defined on R
k converges continuously

to a real-valued function f defined on R
k (written fn

C
−→ f) at x0 if for any sequence {xn}

converging to x0, one has fn(xn) → f(x0). If fn
C

−→ f at x for any x ∈ R
k, then we say

that fn converges to f on R
k and write fn

C
−→ f . A sequence of functions from R

k into
R

m converges continuously if each of the m component functions does so.
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The discussion above about variational inequalities and continuous convergence plays
an important role in our subsequent sections because the stationarity conditions for
MPCC’s may be expressed in terms of variational inequalities and moreover, these con-
ditions can be solved approximately to find estimates of the true solutions. In this case,
we can apply a similar argument as in Gürkan et. al. (1999a) and justify the validity of
the approximating solutions. However, although useful, continuous convergence by itself
guarantees neither the existence of such approximating solutions nor their convergence. To
guarantee these, one needs to impose an additional regularity condition. We will elaborate
this in the next section.

3 Solution of stochastic mathematical programs with com-

plementarity constraints

We focus in this section on solving the problem SMPCC, in which no explicit description
is available, in general, for any of the defining functions. For ease of notation, however,
the ∞ scripts in SMPCC are omitted from now on. We start by reviewing some useful
concepts pertaining to the framework of deterministic MPCC’s.

It is well known that, from the viewpoint of nonlinear programming, the complemen-
tarity constraints involving the function F are problematic, irrespective of the properties of
F , since no solution z can be a strictly feasible point (i.e. it is impossible for all the entries
of F (z) in one row to be positive). Consequently, the standard Mangasarian-Fromovitz
constraint qualification is violated at every feasible point and one needs to deal with the
complementarity constraints explicitly. In the next subsection we review some important
stationarity concepts for MPCC’s as discussed in Scheel and Scholtes (2000).

3.1 Constraint qualifications and stationarity concepts for MPCC’s

One can associate with an MPCC the following Lagrangian function:

L(z, Γ, λ, µ) = f(z) − F (z)Γ + g(z)λ + h(z)µ , (4)

where λ ∈ R
p, µ ∈ R

q, and Γ ∈ R
m×l are the corresponding Lagrange multipliers and

F (z)Γ =
∑

i

∑

j Fij(z)Γij is the inner product of the two m× l-matrices. We will refer in
the sequel to three constraint qualifications for MPCC’s, restated below in the form used
by Scheel and Scholtes (2000). At a feasible point z, the linear independence constraint
qualification (LICQ) for MPCC is said to be satisfied if the gradients

∇Fki(z) , (k, i) : Fki(z) = 0 ,

∇gr(z) , r : gr(z) = 0 ,

∇hs(z) , s = 1, ..., q

are linearly independent. The Mangasarian-Fromovitz constraint qualification (MFCQ)
holds when the gradients

∇Fki(z) , (k, i) : Fki(z) = 0 ,

∇hs(z) , s = 1, ..., q

6



are linearly independent and that there exists a vector v orthogonal to the these gradients
such that

∇gr(z)v < 0 , r : gr(z) = 0.

Finally, the strict Mangasarian-Fromovitz constraint qualification (SMFCQ) is said to be
satisfied if there exist Lagrange multipliers Γ, λ, and µ such that the gradients

∇Fki(z) , (k, i) : Fki(z) = 0 ,

∇gj(z) , j : λj > 0 ,

∇hs(z) , s = 1, ..., q

are linearly independent and there exist a vector v such that

∇Fki(z)v = 0 , (k, i) : Fki(z) = 0 ,

∇hs(z)v = 0 , s = 1, ..., q ,

∇gj(z)v = 0 , j : λj > 0 ,

∇gr(z)v < 0 , r : gr(z) = λr = 0.

It is well-known that LICQ implies SMFCQ, while SMFCQ implies MFCQ.
Scheel (1995) and Luo et al. (1996) proposed the local decomposition approach to

MPCC, in which the feasible region of the MPCC can be expressed locally as the union
of the feasible regions of certain nonlinear programs constructed using the problem data.
This approach is reviewed in Scheel and Scholtes (2000). Based on this argument, they
provide a thorough discussion on different stationarity concepts for MPCC’s and how they
relate to the local minima. A point z is called a weakly stationary point for MPCC if there
exist multipliers Γ, λ, and µ such that

∇zL(z, Γ, λ, µ) = 0

min{Fk1(z), . . . , Fkl(z)} = 0 k = 1, . . . , m

h(z) = 0

g(z) ≤ 0 (5)

λ ≥ 0

gr(z)λr = 0 r = 1, . . . , p

Fki(z)Γki = 0 k = 1, . . . , m, i = 1, . . . , l .

In general, a weakly stationary point may preserve this property for arbitrary local shapes
of the objective function. Nevertheless, under appropriate assumptions, the multipliers
associated with a weakly stationary point can provide valuable information about the local
geometry of the problem. Moreover, weak stationarity provides the basis for the definition
of stronger stationarity concepts. A point z is called a C-stationary point for MPCC if, in
addition to (5), it holds moreover that

ΓkiΓkj ≥ 0 ∀ k ∀ (i, j) : Fki(z) = Fkj(z) = 0 . (6)

C-stationarity is a necessary optimality condition under the MFCQ. If in addition to (5),
it holds furthermore that

Γki ≥ 0 ∀ k ∀ i : ∃ j 6= i such that Fki(z) = Fkj(z) = 0 , (7)

7



then z is called a strongly stationary point for MPCC. Strong stationarity becomes a
necessary condition for optimality if SMFCQ is satisfied.

Scheel and Scholtes (2000) prove that under SMFCQ (or under the stronger condition
LICQ), a point z is a strongly stationary point for MPCC if and only if z is a B-stationary
point; that is, a feasible point of the MPCC for which ∇f(z)d ≥ 0 for every d satisfying

min {∇Fki(z)d | i : Fki(z) = 0 } = 0 ∀ k = 1, . . . , m

∇gr(z)d ≤ 0 ∀ r : gr(z) = 0 (8)

∇h(z)d ≤ 0 .

Thus, B-stationarity at z means that z is a local minimizer of the linearized MPCC which
is obtained by linearizing locally all data functions.

In the sequel we need one more definition. A solution (z, Γ, λ, µ) of (5) is said to satisfy
the upper level strict complementarity condition (ULSC) if Γki 6= 0 for every (k, i) with
the property that Fki(z) = Fkj(z) = 0 for some j 6= i. In the next subsection we set forth
the analysis of the sample-path method applied to problem SMPCC.

3.2 Solution of SMPCC’s using the sample-path method

As mentioned earlier, we consider the situation where we can not observe the functions
f , g, h, and F . However, suppose we can observe some sequences of functions {fn},
{gn}, {hn}, and {F n} for n ∈ N, which approximate f , g, h, and F , respectively. Then
we are concerned with sufficient conditions under which the solutions of SMPCC can be
approximated by the solutions of the sequence of MPCC’s of the following type:

MPCCn min fn(z)

s.t. min{F n
k1(z), . . . , Fn

kl(z)} = 0 k = 1, . . . , m

gn(z) ≤ 0

hn(z) = 0

z ∈ Θ .

Assuming that the functions {fn}, {gn}, {hn}, and {F n} are twice differentiable, the
weak stationarity conditions for MPCCn are of the form (5), where the true functions
are replaced by the approximating functions (and their derivatives). As these conditions
represent a system which approximates system (5), the strategy could be to solve such an
approximating system for n sufficiently large.

However, an important way of envisioning the approximating setup is to regard the
approximating functions as estimates of the true functions obtained from a simulation run
of length n. In this sense, the above setting may not be always achievable in applications.
In the context of option pricing, Gürkan et al. (1996) provide an example in which an
unobservable function f∞ is approximated by a sequence {fn : n ∈ N} of step functions.
Hence, each fn has a finite (but large) number of discontinuity points and a zero derivative
on the rest of the domain, which makes it extremely difficult to optimize. On the other
hand, the authors show that the derivative ∇f∞ of f∞ may be approximated by a sequence
gn of nicely behaved (smooth) functions. Clearly, in this example gn does not coincide with
∇fn (at the points where the latter is defined). Such examples indicate that in practise it
is important to work with assumptions as weak as possible. Therefore, we focus here on
a more general context as explained below.
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We assume that one can observe some sequences of functions {gn}, {hn}, {F n}, {an},
{bn}, {cn}, and {dn} for n ∈ N, which approximate g, h, F , ∇f , ∇g, ∇h, and ∇F
respectively. In the elaboration of our main result we will use the following notation:

J(z) = (∇f(z),∇g(z),∇h(z),∇F (z)) , (9)

Jn(z) = (an(z), bn(z), cn(z), dn(z)) , (10)

dLn(z, Γ, λ, µ) = an(z) − dn(z)Γ + bn(z)λ + cn(z)µ . (11)

In this setting, we are actually concerned with sufficient conditions under which the so-
lutions of (5) can be approximated by the solutions of the sequence of systems of the
following type:

dLn(z, Γ, λ, µ) = 0

min{Fn
k1(z), . . . , Fn

kl(z)} = 0 k = 1, . . . , m

hn(z) = 0

gn(z) ≤ 0 (12)

λ ≥ 0

gn
r (z)λr = 0 r = 1, . . . , p

Fn
ki(z)Γki = 0 k = 1, . . . , m, i = 1, . . . , l .

Notice that if bn = ∇gn, cn = ∇hn and dn = ∇Fn for every n ∈ N and if moreover, f
is approximated by a sequence of functions fn such that an = ∇fn for every n ∈ N, then
indeed, the approximating problem (12) represents the weak stationarity conditions for
an approximating program MPCCn of the type above. In the sequel we work in the more
general context as given by (12).

The following theorem contains our main result on existence and convergence of ap-
proximating solutions. Roughly speaking, it says that if the SMPCC defined by the limit
functions has a weakly stationary point z̄ satisfying a regularity condition, then for suffi-
ciently good approximations of the limit functions the approximating problems must have
weakly stationary points close to z̄.

Theorem 1 Let Θ be an open set in R
n0. Suppose that f , g, h, and F are functions from

Θ to R, R
p, R

q, and R
m×l respectively, which are twice differentiable and that J is defined

as in (9). Let z̄ ∈ Θ, Γ̄ ∈ R
m×l, λ̄ ∈ R

p, and µ̄ ∈ R
q. Suppose that {Jn | n = 1, 2, ...}

are random functions defined on Θ, as in (10), {dLn | n = 1, 2, ...} are random functions
defined as in (11), {gn | n = 1, 2, ...} are random functions from Θ to R

p, {hn | n = 1, 2, ...}
are random functions from Θ to R

q, and {F n | n = 1, 2, ...} are random functions from
Θ to R

m×l such that for all z ∈ Θ and all finite n the random variables Jn(z), gn(z),
hn(z), and F n(z) are defined on a common probability space (Ω,F , P ). Let L(z, Γ, λ, µ)
be defined as in (4) and assume the following:

1) With probability one, each Jn for n = 1, 2, ... is continuous and Jn C
−→ J .

2) With probability one, each gn for n = 1, 2, ... is continuous and gn C
−→ g.

3) With probability one, each hn for n = 1, 2, ... is continuous and hn C
−→ h.

9



4) With probability one, each F n for n = 1, 2, ... is continuous and F n C
−→ F .

5) (z̄, Γ̄, λ̄, µ̄) is a solution of (5) (that is, a weakly stationary point of the SMPCC).
6) ∇zL has a strong Fréchet derivative ∇2

zzL(z̄, Γ̄, λ̄, µ̄) at the point (z̄, Γ̄, λ̄, µ̄) and all
the matrices













∇2
zzL(z̄, Γ̄, λ̄, µ̄) −∇zFI(z̄)> ∇zgR(z̄)> ∇zh(z̄)>

∇zFI(z̄) 0 0 0

−∇zgR(z̄) 0 0 0

∇zh(z̄) 0 0 0













(13)

with

{(k, i) | Γ̄ki 6= 0} ⊆ I ⊆ {(k, i) | Fki(z̄) = 0} and ∀ k = 1, ..., m ∃ i ∈ {1, ..., l} : (k, i) ∈ I ,

and {r | λ̄r > 0} ⊆ R ⊆ {r | gr(z̄) = 0} ,

have the same nonvanishing determinantal sign.
Then, there exist compact subsets C0 ⊂ Θ containing z̄, U0 ⊂ R

m×l containing Γ̄,
V0 ⊂ R

p containing λ̄, and W0 ⊂ R
q containing µ̄, neighborhoods Y1 ⊂ Θ of z̄, U1 ⊂ R

m×l

of Γ̄, V1 ⊂ R
p of λ̄, and W1 ⊂ R

q of µ̄, a constant α > 0 and a set ∆ ⊂ Ω of measure
zero, with the following properties: for n = 1, 2, ... and ω ∈ Ω let

ξn(ω) := sup { ‖(dLn(ω, z, Γ, λ, µ), (gn, hn, Fn)(ω, z)) − (∇zL(z, Γ, λ, µ), (g, h, F )(z))‖ :

(z, Γ, λ, µ) ∈ C0 × U0 × V0 × W0 } ,

Zn(ω) := { (z, Γ, λ, µ) ∈ Y1 ×U1 ×V1 ×W1 | (z, Γ, λ, µ) solves (12) corresponding to ω } .

For each ω /∈ ∆ there is then a finite integer Nω such that for every n ≥ Nω the set Zn(ω)
is a nonempty, compact subset of B((z̄, Γ̄, λ̄, µ̄), α ξn(ω)).

Proof. Determine ∆ ⊂ Ω of measure zero such that off ∆ the properties listed in assump-
tions 1) – 4) hold for all n. We fix an ω /∈ ∆ and suppress ω from the rest of discussion.

The nonvanishing determinantal sign property in assumption 6) implies that LICQ
holds at z̄, so the multipliers Γ̄, λ̄, and µ̄ are unique. Define

I 6= = {(k, i) | Γ̄ki 6= 0} , IF (z̄) = {(k, i) | Fki(z̄) = 0} , In
F (z) = {(k, i) | F n

ki(z) = 0} ,

and I := { I | I 6= ⊆ I ⊆ IF (z̄) and ∀ k = 1, ..., m ∃ i ∈ {1, ..., l} : (k, i) ∈ I} .

Following a similar argument to Theorem 12 of Scheel and Scholtes (2000), we first show
that there exist a neighborhood Z∗ ⊂ Θ and an integer N ∗ ∈ N such that z ∈ Z∗ (together
with some multipliers) is a solution of (12) for n ≥ N ∗ if and only if z (together with some

10



multipliers) solves a problem of type

dLn(z, Γ, λ, µ) = 0

Fn
I (z) = 0

Fn
Ic(z) ≥ 0

ΓIc ≥ 0

Fn
ki(z)Γki = 0 ∀ (k, i) ∈ Ic (14)

hn(z) = 0

gn(z) ≤ 0

λ ≥ 0

gn
r (z)λr = 0 r = 1, . . . , p ,

with I ∈ I and Ic = {1, ..., m} × {1, ..., l} \ I is the complement of I. Note that if
problem (12) represented the weak stationarity conditions for an approximating program
MPCCn (see our remark above), then problem (14) would represent the stationarity condi-
tions of one of the nonlinear programs associated to the point z̄ in the local decomposition
approach to that MPCCn.

Take a neighborhood Z∗ ⊂ Θ of z̄ and an integer N ∗ ∈ N such that for every z ∈ Z∗

and every n ≥ N∗ the inclusion In
F (z) ⊆ IF (z̄) holds. If z together with some multipliers

Γ, λ, and µ satisfy (12) for a certain n, then (z, Γ, λ, µ) satisfy (14) for that n and for
I = In

F (z). If z is sufficiently close to z̄ and n is large enough then, in the view of LICQ,
the corresponding multipliers Γki (which satisfy (12) for the considered n) are close to Γ̄ki.
This can be seen by applying the classical implicit function theorem to the system of linear
equations ∇zL(z, Γ, λ, µ) = 0, in the variables (Γ, λ, µ). So, reducing Z∗ and increasing
N∗ if necessary, we may assume that I 6= ⊆ In

F (z) for all z ∈ Z∗ and all n ≥ N∗. Moreover,
since z satisfies (12), it follows that for every k ∈ {1, ..., m} there exists i ∈ {1, ..., l} such
that F n

ki(z) = 0. Hence we conclude that (z, Γ, λ, µ) solves (14) for some index set I from
the collection I.

To see the converse, suppose that (zI , ΓI , λI , µI) satisfy (14) for some n and for some
I from I. Then zI satisfies (12), since for every k there exists at least one index i with
Fn

ki(z) = 0. Moreover, the relations in (14) imply the relations in (12).
Now we are going to treat closer a partial problem of the form (14). Let I be an

arbitrary set from I. Since (z̄, Γ̄, λ̄, µ̄) satisfy (5), it follows that (z̄, Γ̄, λ̄, µ̄) also satisfy
the following conditions:

∇zL(z, Γ, λ, µ) = 0

FI(z) = 0

FIc(z) ≥ 0

ΓIc ≥ 0

Fki(z)Γki = 0 ∀ (k, i) ∈ Ic (15)

h(z) = 0

g(z) ≤ 0

λ ≥ 0

gr(z)λr = 0 r = 1, . . . , p .

11



Our next step is to examine the sufficient conditions under which a solution of (15) can
be approximated by the solutions of problems of type (14). Notice that (15) is equivalent
with the following generalized equation (see Appendix 1):

0 ∈













∇zL(z, Γ, λ, µ)
FI(z)
FIc(z)
−g(z)
h(z)













+ N
Rn0×R|I|×R

|Ic|
+

×R
p
+
×Rq













z
ΓI

ΓIc

λ
µ













. (16)

For a general introduction to generalized equations and their use in reformulating comple-
mentarity we refer to Robinson (1979). Similarly, (14) is equivalent with the generalized
equation:

0 ∈













dLn(z, Γ, λ, µ)
Fn

I (z)
Fn

Ic(z)
−gn(z)
hn(z)













+ N
Rn0×R|I|×R

|Ic|
+

×R
p
+
×Rq













z
ΓI

ΓIc

λ
µ













. (17)

Hence we regard (17) as an approximation to (16) and check in the sequel that for these
generalized equations (which are in turn equivalent to solving appropriate variational
inequalities) the assumptions of Theorem 2 in Gürkan et al. (1999a) are satisfied. For the
ease of reference, the last theorem is included as Theorem 5 in our Appendix 2.

Clearly, by our assumptions 1) – 4), the functions in (17) are continuous and converge
continuously to the corresponding functions in (16). Since (z̄, Γ̄, λ̄, µ̄) satisfy (15), it is
straightforward that (z̄, Γ̄, λ̄, µ̄) is a solution of (16). From our assumption 6) and the
twice differentiability of F , g, and h, we obtain that ∇L has a strong Fréchet derivative
∇2L(z̄, Γ̄, λ̄, µ̄) at the point (z̄, Γ̄, λ̄, µ̄). Moreover, for all the index sets K and R with
I ⊆ K ⊆ IF (z̄) and {r | λ̄r > 0} ⊆ R ⊆ {r | gr(z̄) = 0}, the matrices (13) have the
same nonvanishing determinantal sign. In Appendix 1 we show that this nonvanishing
determinantal sign condition is equivalent with the fact that the generalized equation (16)
is strongly regular at (z̄, Γ̄, λ̄, µ̄) in the sense of Robinson (1980), which, in turn, is equiv-
alent with the coherent orientation condition of Theorem 5 (for a detailed discussion of
the second equivalence, see the appendix in Gürkan et al. (1999a)).

Thus we can apply Theorem 5 to (16) and (17) and obtain that there exist compact
sets CI

0 ⊂ Θ containing z̄, U I
0 ⊂ R

m×l containing Γ̄, V I
0 ⊂ R

p containing λ̄, and W I
0 ⊂ R

q

containing µ̄, neighborhoods Y I
1 ⊂ Z∗ of z̄, U I

1 ⊂ R
m×l of Γ̄, V I

1 ⊂ R
p of λ̄, and W I

1 ⊂ R
q

of µ̄, a constant αI > 0 with the properties: for n = 1, 2, ... let

ξI
n = sup { ‖(dLn(z, Γ, λ, µ), (gn, hn, Fn)(z)) − (∇zL(z, Γ, λ, µ), (g, h, F )(z))‖ :

(z, Γ, λ, µ) ∈ CI
0 × U I

0 × V I
0 × W I

0 }

and
ZI

n := { (z, Γ, λ, µ) ∈ Y I
1 × U I

1 × V I
1 × W I

1 | (z, Γ, λ, µ) solves (17) } .

Then there is a finite integer N I
1 ≥ N∗ such that for each n ≥ N I

1 the set ZI
n is a nonempty,

compact subset of B((z̄, Γ̄, λ̄, µ̄), αI ξI
n).

Our last step is to construct the necessary sets mentioned in the conclusion of the
theorem based on the collection of the I sets (I ∈ I) we found above. For this, let

C0 =
⋃

I∈I

CI
0 , U0 =

⋃

I∈I

U I
0 , V0 =

⋃

I∈I

V I
0 , W0 =

⋃

I∈I

W I
0 ,
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Y1 =
⋂

I∈I

Y I
1 , U1 =

⋂

I∈I

U I
1 , V1 =

⋂

I∈I

V I
1 , W1 =

⋂

I∈I

W I
1 ,

and α = max{αI | I ∈ I }. Let I be an index set from I. As ξI
n → 0 for n → ∞, it follows

that there is an integer N I
2 ≥ N I

1 such that ZI
n ⊂ Y1 ×U1 × V1 ×W1 for n ≥ N I

2 . Now let
N = max{N I

2 | I ∈ I }. Then for n ≥ N we have that the set Zn defined in the statement
of the theorem can be expressed as Zn =

⋃

{ZI
n | I ∈ I }. This relation together with

the definition of ξn lead us to the conclusion that for n ≥ N the set Zn is a nonempty,
compact subset of B((z̄, Γ̄, λ̄, µ̄), α ξn).

If we are concerned with the approximation of C-stationary or strongly stationary
points of the SMPCC, the question arises if one can strengthen the approximating prob-
lem (12) by imposing the additional constraints

ΓkiΓkj ≥ 0 ∀ k ∀ (i, j) : F n
ki(z) = F n

kj(z) = 0 (18)

or respectively,

Γki ≥ 0 ∀ k ∀ i : ∃ j 6= i such that F n
ki(z) = F n

kj(z) = 0 . (19)

This can be done if assumption 6) in Theorem 1 is strengthen with the ULSC as shown
by the following result.

Theorem 2 Assume the setting of Theorem 1 and assume that conditions 1)– 5) hold.
Moreover, assume the following:

6 ′) The ULSC holds at (z̄, Γ̄, λ̄, µ̄) and all the matrices













∇2
zzL(z̄, Γ̄, λ̄, µ̄) −∇zFI(z̄)> ∇zgR(z̄)> ∇zh(z̄)>

∇zFI(z̄) 0 0 0

−∇zgR(z̄) 0 0 0

∇zh(z̄) 0 0 0













(20)

with I = {(k, i) | Fki(z̄) = 0} and {r | λ̄r > 0} ⊆ R ⊆ {r | gr(z̄) = 0}, have the same
nonvanishing determinantal sign.

1◦. If Γ̄ satisfies (6) (that is, z̄ is a C-stationary point of the SMPCC), then the
conclusions of Theorem 1 hold with

Zn(ω) := {(z, Γ, λ, µ) ∈ Y1 × U1 × V1 × W1 | (z, Γ, λ, µ) solves (12) corresponding to ω,

together with (18) }.

2◦. If Γ̄ satisfies (7) (that is, z̄ is a strongly stationary point of the SMPCC), then
the conclusions of Theorem 1 hold with

Zn(ω) := {(z, Γ, λ, µ) ∈ Y1 × U1 × V1 × W1 | (z, Γ, λ, µ) solves (12) corresponding to ω,

together with (19) }.

Proof. As above, we start by determining a subset ∆ ⊂ Ω of measure zero such that off
∆ the properties listed in assumptions 1) – 4) hold for all n. We fix again an ω /∈ ∆ and
suppress ω from the rest of discussion.
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Again, we initially follow an argument similar to Theorem 11 of Scheel and Scholtes
(2000). The nonvanishing determinantal sign property in assumption 6′) implies that
LICQ holds at z̄, so the multipliers Γ̄, λ̄, and µ̄ are unique. Moreover, given the LICQ,
if (z, Γ, λ, µ) satisfy (12) for n large enough, then the multipliers (Γ, λ, µ) are close to
(Γ̄, λ̄, µ̄). Hence, in the view of ULSC, (z, Γ, λ, µ) satisfy (12) for z close to z̄ and n large
enough if and only if

dLn(z, Γ, λ, µ) = 0

Fn
ki(z) = 0 (k, i) : Fki(z̄) = 0

hn(z) = 0

gn(z) ≤ 0 (21)

λ ≥ 0

gn
r (z)λr = 0 r = 1, . . . , p

Γki = 0 (k, i) : Fki(z̄) > 0 .

Conditions (21) are in fact conditions (14) with I = {(k, i) | Fki(z̄) = 0}. Obviously,
(z̄, Γ̄, λ̄, µ̄) satisfy in this case the conditions

∇Lz(z, Γ, λ, µ) = 0

Fki(z) = 0 (k, i) ∈ I

h(z) = 0

g(z) ≤ 0 (22)

λ ≥ 0

gr(z)λr = 0 r = 1, . . . , p

Γki = 0 (k, i) ∈ Ic ,

that is, conditions (15) with I as defined above. Basically, due to the ULSC, the situation
here corresponds to the situation from the proof of Theorem 1 where the collection of
index sets I reduces to just one element I = { I }. The conclusion follows then from a
similar argument as in the proof of Theorem 1. Moreover, for z close to z̄ and n large
enough we have that

{ (k, i) | F n
ki(z) = 0} ⊆ { (k, i) | Fki(z̄) = 0}

and the following can be asserted:
1◦. Suppose that Γ̄ satisfies (6). Since ULSC holds at (z̄, Γ̄, λ̄, µ̄) and Γ is close to Γ̄,

it follows that Γ satisfies (18).
2◦. Similarly, suppose that Γ̄ satisfies (7). Again Γ is close to Γ̄ and this together with

ULSC imply that Γ will satisfy (19) for such n.

The ULSC condition has been used by Scheel and Scholtes (2000) in order to guarantee
the local uniqueness of the (weakly) stationary point of a parametric MPCC as the pa-
rameter varies. Besides uniqueness, this condition also makes sure that strong stationarity
and C-stationarity are preserved under small perturbations of the problem.

In general, without an additional condition such as ULSC, the conclusion of Theorem 2
fails. This can be seen by considering the SMPCC and the approximating MPCCn’s of
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the same form as in Example 10 part (2) of Scheel and Scholtes (2000), corresponding to
the values t∞ = 0 and tn = 1/n, respectively. Then the origin is a strongly stationary
(B-stationary) point for the SMPCC. However, for any n ∈ N, the origin is only a weakly
stationary point for the approximating program MPCCn and this program has no C-
stationary points close to the origin. Clearly, in this case the limit program satisfies the
weaker condition mentioned above at the origin, but not the stronger ULSC.

The example mentioned above also shows that the conclusion of Theorem 2 also fails in
general if the ULSC is replaced by the weaker condition that at least one of the multipliers
Γki is positive for those (k, i) with the property that Fki(z) = Fkj(z) = 0 for some j 6= i.

4 Discussion

We have established in Section 3 the convergence of the sample-path method for stochastic
MPCC’s based on sample-path convergence for stochastic variational inequalities. Here we
provide a more detailed discussion on the sufficient conditions that guarantee almost-sure
convergence.

We denote by N
∞ = N ∪ {∞} the one point compactification of N, organized as a

topological space with the topology τ = P(N) ∪ {N∞ \ {1, 2, ..., n} : n ∈ N}, where P(N)
is the collection of all subsets of N (i.e., the discrete topology on N); see for example page
183 of Munkres (1975). First we state the following auxiliary result.

Lemma 1 Let g : N
∞ × R

k → R be a real function defined on the product topological
space N

∞ × R
k and let x0 ∈ R

k be an arbitrary point. Then the following statements are
equivalent:

a) g is continuous at the point (∞, x0).
b) The partial function g(∞, ·) is continuous at x0 and the partial functions g(n, ·)

converge continuously to g(∞, ·) at the point x0 as n → ∞.

The next result follows immediately through the application of Theorem 2.1 from
Robinson (1980).

Theorem 3 Let Θ be an open subset of R
k, x0 a point in Θ, C ⊆ R

k a closed convex set,
and f : Θ → R

k a function which has a Fréchet derivative ∇f defined on Θ. Moreover,
let { fn | n ∈ N } be a sequence of random functions from Θ to R

k, such that for all finite
x ∈ Θ and all finite n the random variables fn(x) are defined on a common probability
space (Ω,F , P ). Suppose that the following conditions are satisfied:

1) With probability one, each function fn for n = 1, 2, ... has a Fréchet derivative ∇fn

defined on Θ.

2) With probability one, fn
C

−→ f at x0 and ∇fn
C

−→ ∇f at x0.
3) x0 is a solution of the generalized equation

0 ∈ f(x) + NC(x). (23)

4) The generalized equation (23) is strongly regular at x0.

Then there exist a neighborhood W of x0, a scalar α > 0 and a set ∆ ⊂ Ω of measure
zero, with the following properties: for n ∈ N and ω ∈ Ω let

ξn(ω) = ‖fn(ω, x0) − f(x0)‖
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and
Xn(ω) := {x ∈ C ∩ W | 0 ∈ fn(ω, x0) + NC(x) }.

Then for each ω /∈ ∆ there is a finite integer Nω such that for every n ≥ Nω the set Xn(ω)
is a singleton contained in B(x0, α ξn(ω)).

Proof. First we determine ∆ of measure zero such that off ∆ the properties in hypotheses
1) and 2) hold for all n. We fix an ω /∈ ∆ and suppress ω from here on.

We apply Theorem 2.1 from Robinson (1980) with the following setting: P = N
∞,

p0 = ∞, f : N
∞ × Θ → R

k with f(∞, x) = f(x), f(n, x) = fn(x) for any n ∈ N and
∇f(∞, x) = ∇f(x), ∇f(n, x) = ∇fn(x) is the partial Fréchet derivative of f with respect
to x. Given the hypotheses 1) and 2), it follows from Lemma 1 that both f(·, ·) and
∇f(·, ·) are continuous at the point (∞, x0). Suppose that λ is the Lipschitz constant
associated with the strong regularity property of assumption 4). Thus we obtain that for
every ε > 0 there exist an Nε ∈ N and a neighborhood Wε of x0, and a single-valued
function x : N

∞ \ {1, 2, ..., Nε − 1} → Wε such that for every n ∈ N
∞ \ {1, 2, ..., Nε − 1},

xn is the unique solution in Wε of the generalized equation

0 ∈ fn(x) + NC(x) . (24)

Further, for any p, q ∈ N
∞ \ {1, 2, ..., Nε − 1} one has

‖xp − xq‖ ≤ (λ + ε)‖fp(xq) − fq(xq)‖ . (25)

Clearly, x∞ = x0 by our assumption 3). Hence, (25) implies in particular that for every
n ∈ N, n ≥ Nε one has

‖xn − x0‖ ≤ (λ + ε)‖fn(x0) − f(x0)‖ = (λ + ε)ξn , (26)

that is, xn ∈ B(x0, (λ + ε)ξn).
Now, if we choose for example ε = 1, we obtain that there exist a finite integer N := N1

and a neighborhood W := W1 of x0 as well as a positive constant α := λ + 1 such that for
each n ∈ N, n ≥ N the generalized equation (24) has a unique solution xn ∈ W , that is,
the set Xn = {xn} reduces to a singleton. Moreover, one has that xn ∈ B(x0, α ξn).

Thus, such a convergence result for the sample-path method applied to variational
inequalities defined on arbitrary closed convex sets can be obtained with little effort by
employing a special case of the main result in Robinson (1980). In particular, under
the assumptions in Theorem 3, not only are the existence and the convergence of ap-
proximate solutions guaranteed, but also the local uniqueness of these solutions can be
established. However, as noted by the example of Gürkan et al. (1996), in some applica-
tions the assumptions on the existence and the continuous convergence of the derivatives

∇fn
C

−→ ∇f at x0 may prove to be quite strong.
In contrast with assumptions 1) and 2) of Theorem 3, Theorem 5 in Appendix 2 (a

restatement of Theorem 2 in Gürkan et al. (1999a)) makes no explicit assumption on the
derivatives of the functions fn, but only on the continuity and the continuous convergence
of these approximating functions. In Gürkan et al. (1999a), variational inequalities over
polyhedral convex sets were considered. By employing degree theoretic concepts and nor-
mal maps techniques, the existence and convergence of the approximating solutions was
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established, but the local uniqueness of these solutions is no longer guaranteed. Conse-
quently, in order to guarantee convergence of the approximate solutions, the continuous

convergence fn
C

−→ f is required to hold on the whole domain Θ (or at least on some
neighborhood of the point x0). Nevertheless, as already noted by Gürkan et al. (1999a),
for computational purposes one may typically need more with respect to the derivatives of
the approximating functions fn. In this sense, Theorem 3 and Theorem 5 could be viewed
as complementary results on the convergence of the sample-path method for stochastic
variational inequalities.

Similar to Theorem 3, if one is willing to make the strong assumptions with respect to
the existence and (local) continuous convergence of both first and second order derivatives
of the data functions f , F , g, and h, then utilizing the one point compactification concept
leads to discrete versions of the stability results of Scheel and Scholtes (2000) for the
stochastic MPCC’s, such as the one below.

Theorem 4 Let Θ be an open set in R
n0. Suppose that f , F , g, and h are functions

from Θ to R, R
m×l, R

p, and R
q, respectively, which are twice differentiable. Let z̄ ∈ Θ,

Γ̄ ∈ R
m×l, λ̄ ∈ R

p, and µ̄ ∈ R
q. Suppose that {fn}, {F n}, {gn}, and {hn}, n ∈ N, are

sequences of random functions defined from Θ to R, R
m×l, R

p, and R
q, respectively, such

that for all z ∈ Θ and all finite n the random variables fn(z), F n(z), gn(z), and hn(z)
are defined on a common probability space (Ω,F , P ). Let L(z, Γ, λ, µ) be defined as in (4)
and assume the following:

1) With probability one, each of the functions fn, Fn, gn, and hn, for n ∈ N, is twice
differentiable on Θ.

2) With probability one, the sequences {F n}, {gn}, and {hn} converge continuously to
F , g, and h, respectively, at the point z̄;

3) With probability one, the sequences {∇fn}, {∇F n}, {∇gn}, and {∇hn} converge
continuously to ∇f , ∇F , ∇g, and ∇h, respectively, at the point z̄;

4) With probability one, the sequences {∇2fn}, {∇
2Fn}, {∇2gn}, and {∇2hn} converge

continuously to ∇2f , ∇2F , ∇2g, and ∇2h, respectively, at the point z̄.
5) (z̄, Γ̄, λ̄, µ̄) is a weakly stationary point of SMPCC.
6) All the matrices













∇2
zzL(z̄, Γ̄, λ̄, µ̄) −∇zFI(z̄)> ∇zgR(z̄)> ∇zh(z̄)>

∇zFI(z̄) 0 0 0

−∇zgR(z̄) 0 0 0

∇zh(z̄) 0 0 0













with

{(k, i) | Γ̄ki 6= 0} ⊆ I ⊆ {(k, i) | Fki(z̄) = 0} and ∀ k = 1, ..., m ∃ i ∈ {1, ..., l} : (k, i) ∈ I ,

and {r | λ̄r > 0} ⊆ R ⊆ {r | gr(z̄) = 0} ,

have the same nonvanishing determinantal sign.
Then, there exist neighborhoods Y of z̄, U of Γ̄, V of λ̄, and W of µ̄, a constant

α > 0 and a set ∆ ⊂ Ω of measure zero, with the following properties: for n ∈ N and
ω ∈ Ω let

ξn(ω) := ‖(dLn(ω, z̄, Γ̄, λ̄, µ̄), (gn, hn, Fn)(ω, z̄)) − (∇zL(z̄, Γ̄, λ̄, µ̄), (g, h, F )(z̄))‖ ,
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Zn(ω) := { (z, Γ, λ, µ) ∈ Y ×U×V ×W | (z, Γ, λ, µ) weakly stationary for MPCCn(ω)} .

For each ω /∈ ∆ there is then a finite integer Nω such that for every n ≥ Nω the set Zn(ω)
is a nonempty, finite subset of B((z̄, Γ̄, λ̄, µ̄), α ξn(ω)).

Theorem 4 is a discrete correspondent to Theorem 12 in Scheel and Scholtes (2000), in
the sense that the perturbations given by a continuous parameter in the latter are replaced
in the former by sequences of approximations (or alternatively, discrete perturbations). An
immediate proof for this theorem is almost identical to the proof of Theorem 1 apart from
using Theorem 3 instead of Theorem 5. Alternatively, it may be proven as Theorem 12
in Scheel and Scholtes (2000), with using a discrete correspondent of the existence and
uniqueness result for certain nonlinear programs, namely their Theorem 9. As stated in
Scheel and Scholtes (2000), Theorem 9 in turn is a version of results of Robinson (1980) and
Kojima (1980) (cf. Scholtes (1994)). In this case, the set of stationary points is guaranteed
to be finite, which may not be true under the weaker assumptions of Theorem 1.

A discrete correspondent to Theorem 11 in Scheel and Scholtes (2000) can also be
stated similarly and proven based on the additional assumption that ULSC holds at the
solution point. Again, in this case the local uniqueness of stationary points can be also
guaranteed, which may not be the case under the weaker assumptions of Theorem 2.

In summary, the (local) non-uniqueness of the aprroximating solutions in Theorem 1
results both from relaxing the ULSC and from the assumptions in Theorem 5. In Theo-
rem 2, the non-uniqueness relates to the assumptions only on the data functions themselves
instead of assumptions involving second order derivatives as suggested by Theorem 3.

Finally, we note that the stability results in Scheel and Scholtes (2000) focus on the
piecewise smoothness of the stationary points as functions of continuous perturbations of
the deterministic problem, whereas the discrete situations discussed here provide sequen-
tial estimates of the approximation errors, which are of main interest when solving the
stochastic problem with a simulation-based method, such as sample-path optimization.

5 Summary and conclusions

In this paper we have provided theoretical support for extending the applicability of a
simulation-based method, known as sample-path optimization, to an important class of
stochastic mathematical programs with complementarity constraints. The type of mathe-
matical programs studied here are suitable for modeling “average” or steady-state behavior
of complex stochastic systems. By including unobservable limit functions or expectations
in both the objective and the constraints, this class of programs differs from any of the
existing stochastic formulations of MPCC’s known to us. In particular, we deal with
the situation in which the functions do not have an analytic form, but may be approxi-
mated/estimated by using simulation. For such problems, we have provided the conver-
gence analysis as well as an extensive discussion on sufficient conditions and regularity
concepts involved in using the sample-path method.

The analysis presented in this paper follows a similar strategy as in Robinson (1980) or
Gürkan et al. (1999a,1999b), in the sense that the existence and convergence of solutions of
the approximating problems is proven under a set of sufficient conditions. From this point
of view, our work complements the results presented by Patriksson and Wynter (1999)
and Lin et al. (2003), even though they both deal with different classes of stochastic
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mathematical programs with complementarity constraints than the one we considered.
Patriksson and Wynter (1999) are concerned exclusively about existence issues, whereas
Lin et al. (2003) assume the existence and convergence of some approximating solutions
and study their asymptotic behavior.

We have striven for a self-contained paper that uses several concepts from the recent
work by Scheel and Scholtes (2000) concerning the sensitivity analysis for deterministic
mathematical programs with complementarity constraints. Moreover, we worked in a
setting involving some weaker conditions for stability in terms of the available higher
order information for the problem functions. The approximating/estimating functions in
this setting can be also interpreted as slight (non-parametric) perturbations of the true
functions. In this respect, we believe that the kind of results we have presented here can
be seen as complementary to the sensitivity results in Scheel and Scholtes (2000).

In order not to overburden, the present paper does not illustrate the discussed method-
ology on an application. In the accompanying paper Birbil et al. (2004), which targets
mainly the practitioners who would be interested in using the on-going methodology for
specific applications, we provide details on several practical issues. There we discuss in fur-
ther detail our SMPCC formulation, thoroughly compare it with other stochastic MPEC
models from the literature, and outline a generic algorithm to implement the sample-
path method for SMPCC’s. Moreover we illustrate how uncertainty may be modeled in
two applications: taxation in natural gas market and toll pricing in traffic networks. We
then present numerical results on the latter problem by using the current state-of-the-art
software for deterministic MPCC’s.

In addition, in Appendix 1 we have shown that the nonvanishing determinantal sign
condition guarantees coherent orientation. We established this result by proving the equiv-
alence between the nonvanishing determinantal sign condition and the strong regularity
conditions given by Robinson (1980). However, our algebraic proof does not give a clear
geometrical meaning to the condition itself. A direct link between the nonvanishing de-
terminantal sign condition and the coherent orientation could provide some interesting
additional insight.

Appendix 1: Regularity conditions for generalized equations

and nonlinear programs

For a closed convex set C ⊆ R
k and a function f from an open set Ω ⊆ R

k to R
k, the

variational inequality determined by f and C can be expressed in an equivalent way as a
generalized equation; that is, an inclusion of the form

0 ∈ f(x) + NC(x), (27)

where NC(x) denotes the normal cone of C at x:

NC(x) :=

{

{ y ∈ R
k | y(c − x) ≤ 0 for all c ∈ C } if x ∈ C,

∅ if x /∈ C.

Now suppose that x0 is a solution of (27) and that f is Fréchet differentiable at x0. Then
the generalized equation (27) is called strongly regular at x0 if there are neighborhoods X
of x0 and Y of the origin in R

k with the property that the linearized generalized equation

y ∈ f(x0) + ∇f(x0)(x − x0) + NC(x) (28)
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defines a single-valued, Lipschitzian map x(y) from Y to X, such that for each y ∈ Y ,
x(y) is the unique solution in X of (28). The property of strong regularity was introduced
by Robinson (1980) and its equivalence to another well-known property called coherent
orientation was established in the appendix of Gürkan et al. (1999a).

Robinson (1980) showed how strong regularity can be applied to the standard nonlinear
programming problem

min f(x)

s.t. g(x) ≤ 0

h(x) = 0 ,

(29)

where f , g, and h are twice Fréchet differentiable functions from some open set Θ ⊆ R
n into

R, R
p, and R

q, respectively. We summarize these findings as follows. Let L(x, u, v) :=
f(x) + u>g(x) + v>h(x) denote the Lagrangian with multipliers u ∈ R

p and v ∈ R
q

associated with the problem (29). The first order necessary optimality conditions for (29)
are

∇xL(x, u, v) = 0

g(x) ≤ 0

h(x) = 0

u ≥ 0

u>g(x) = 0 .

(30)

These conditions can be written as the following generalized equation

0 ∈





∇xL(z, u, v)
−g(x)
h(x)



 + NRn×R
p
+
×Rq





x
u
v



 . (31)

Suppose that (x̄, ū, v̄) is a solution of (31). Then we can partition the vectors g(x̄) and ū
into some smaller vectors corresponding to the following index sets:

I+ = { i | gi(x̄) = 0, ū > 0 },

I0 = { i | gi(x̄) = 0, ū = 0 },

I− = { i | gi(x̄) < 0, ū = 0 }.

Thus, we denote by gI+ , gI0 , and gI− the partial functions constructed with the com-
ponents of g corresponding to I+, I0, and I−, respectively. Given this notation, Robin-
son (1980) showed that the generalized equation (31) is strongly regular at the solution
point (x̄, ū, v̄) if and only if the matrix







∇2
xxL(x̄, ū, v̄) ∇xh(x̄)> ∇xgI+(x̄)>

∇xh(x̄) 0 0

−∇xgI+(x̄) 0 0






(32)

is nonsingular and the matrix

[

∇xgI0(x̄) 0 0
]







∇2
xxL(x̄, ū, v̄) ∇xh(x̄)> ∇xgI+(x̄)>

∇xh(x̄) 0 0

−∇xgI+(x̄) 0 0







−1




∇xgI0(x̄)>

0
0



 (33)
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has all its principal minors positive (i.e. it is a P -matrix). Clearly, when I0 is vacuous,
then the strong regularity condition reduces to the nonsingularity of the matrix (32).

In the sequel, we assume that I0 is not vacuous and we show that the two conditions
above are equivalent with the following condition used by Scheel and Scholtes (2000): for
all index sets I with

{ i | ūi > 0 } = I+ ⊆ I ⊆ I+ ∪ I0 = { i | gi(x̄) = 0 },

the matrices






∇2
xxL(x̄, ū, v̄) ∇xh(x̄)> ∇xgI(x̄)>

∇xh(x̄) 0 0

−∇xgI(x̄) 0 0






(34)

have the same nonvanishing determinantal sign. This equivalence follows immediately
from the following elementary results from linear algebra.

Lemma 2 Let m and r be positive integers and A be an (m + r) × (m + r) matrix of the
form

A =

[

X Y >

−Y 0

]

,

where X is a nonsingular m × m matrix. Then det(A) = det(X) det(Y X−1Y >).

The formula in Lemma 2 is a special case of a more general algebraic result; see for
example page 46 of Lancaster and Tismenetsky (1985).

Proposition 1 Let X be an m×m matrix and Y be an r×m matrix. Then the following
two statements are equivalent:

1) X is nonsingular and Y X−1Y > has all principal minors positive.
2) All the matrices

AR =

[

X Y >
R

−YR 0

]

with R ⊆ {1, ..., r} and YR the sub-matrix of Y formed with the rows in R, have the same
nonvanishing determinantal sign.

Proof. Notice that if we take R = ∅ in 2), then Y∅ is vacuous and hence X = A∅. Thus,
both 1) and 2) assume that X is nonsingular. Now let R ⊆ {1, ..., r}, R 6= ∅ be an arbitrary
index set. Then, according to Lemma 2, we have that

det(AR) = det(X) det(YRX−1Y >
R ).

But YRX−1Y >
R is the principal minor of the matrix Y X−1Y > determined by rows i and

columns i with i ∈ R. Given the determinantal relation in Lemma 2, it is straightforward
that det(YRX−1Y >

R ) > 0 if and only if det(AR) and det(X) have the same nonvanishing
sign. As this holds for an arbitrary R, the equivalence between 1) and 2) follows then
immediately.
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The equivalence of the two regularity conditions can be seen immediately by applying
Proposition 1 with X being the matrix (32) and Y =

[

∇xgI0(x̄) 0 0
]

.
This algebraic proof provides a short way of bridging the two technical conditions for

regularity. However, it does not provide any insight into the geometrical interpretation of
strong regularity. To this end, we note that the nonvanishing determinantal sign condition
is in fact reminiscent of the coherent orientation condition, which has by definition a clear
geometrical meaning. For a thorough discussion on coherent orientation in the general
setting as well as its equivalence with strong regularity we refer again to the appendix of
Gürkan et al. (1999a).

Appendix 2: Sample-path solution of stochastic variational

inequalities

In order to make this paper self-contained and to ease the reference in Section 3, we restate
here Theorem 2 from Gürkan et al. (1999a).

Theorem 5 Let Θ be an open subset of R
k and let C be a polyhedral convex set in R

k.
Let x0 be a point of Θ, and suppose f is a function from Θ to R

k. Let {fn | n = 1, 2, . . . }
be random functions from Θ to R

k such that for all x ∈ Θ and all finite n the random
variables fn(x) are defined on a common probability space (Ω,F , P ). Let z0 = x0 − f(x0)
and assume the following:

1) With probability one, each fn for n = 1, 2, . . . is continuous and fn
C

−→ f .
2) x0 solves the variational inequality defined by f and C.
3) f has a strong Fréchet derivative df(x0) at x0, and df(x0)K(z0) is coherently oriented.
Then the restriction of fC to a neighborhood of z0 has an inverse that is Lipschitzian

with some modulus λ. Further, there exist a compact subset C0 ⊂ C ∩ Θ containing x0, a
neighborhood Θ1 ⊂ Θ of x0, a scalar β > 0, and a set ∆ ⊂ Ω of measure zero, with the
following properties: for n = 1, 2, . . ., ω ∈ Ω, and y ∈ R

k with ‖y‖ ≤ β, let

ξn(ω) = sup
x∈C0

‖fn(ω, x) − f(x)‖,

and
Xn(ω, y) := {x ∈ C ∩ Θ1 | for each c ∈ C, (fn(ω, x) − y)(c − x) ≥ 0}.

For each ω /∈ ∆ there is then a finite integer Nω such that for each n ≥ Nω the set Xn(ω, y)
is a nonempty, compact subset of B(x0, λ(ξn(ω) + ‖y‖)).
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[2] Ş. İ. Birbil, G. Gürkan, and O. Listeş. Simulation-based solution of stochastic math-
ematical programs with complementarity constraints: Applications. Working paper,
Tilburg University and Erasmus University Rotterdam, The Netherlands, 2004.

22



[3] S. Dempe. Foundations of Bilevel Programming. Kluwer Academic Publishers, Dor-
drecht, 2002.

[4] M. C. Ferris and J. S. Pang. Engineering and economic applications of complemen-
tarity problems. SIAM Review, 39:669–713, 1997.

[5] P. Glasserman. Gradient Estimation via Perturbation Analysis. Kluwer, Norwell,
MA., USA, 1991.
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[8] G. Gürkan, A. Y. Özge, and S. M. Robinson. Solving stochastic optimization problems
with stochastic constraints: An application in network design. In D. T. Sturrock,
P. A. Farrington, H. B. Nembhard, and G. W. Evans, editors, Proceedings of the
1999 Winter Simulation Conference, pages 471–478, 1999b.

[9] P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and nonlinear
complementarity problem: A survey of theory, algorithms and applications. Mathe-
matical Programming, 48:161–220, 1990.

[10] Y. C. Ho and X. R. Cao. Perturbation Analysis of Discrete Event Dynamical Systems.
Kluwer, Norwell, MA., USA, 1991.

[11] P. Kall. Approximation to optimization problems: An elementary review. Mathemat-
ics of Operations Research, 11:9–18, 1986.

[12] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal of Optimization,
12:479–502, 2001.

[13] M. Kojima. Strongly stable stationary solutions in nonlinear programming. In S. M.
Robinson, editor, Analysis and Computation of Fixed Points, pages 93–138. Academic
Press, New York, 1980.

[14] P. Lancaster and M. Tismenetsky. The Theory of Matrices with Applications. Com-
puter Science and Applied Mathematics. Academic Press, San Diego, California, U.S.,
1985.

[15] G. H. Lin, X. Chen, and M. Fukushima. Smoothing implicit programming ap-
proaches for stochastic mathematical programs with linear complementarity con-
straints. Technical Report, Department of Applied Mathematics and Physics, Kyoto
University, Japan, 2003.

[16] J. T. Linderoth, A. Shapiro, and S. J. Wright. The empirical behavior of sampling
methods for stochastic programming. Optimization Technical Report 02-01, Com-
puter Sciences Department, University of Wisconsin-Madison, Madison, WI, USA,
2002.

23



[17] Z. Q. Luo, J. S. Pang, and D. Ralph. Mathematical Programs with Equilibrium
Constraints. Cambridge University Press, Cambridge, U.K., 1996.

[18] J. R. Munkres. Topology: A First Course. Prentice Hall, Englewood Cliffs, New
Jersey, 1975.

[19] J. V. Outrata, M. Kocvara, and J. Zowe. Nonsmooth Approach to Optimization
Problems with Equilibrium Constraints: Theory, Applications and Numerical Results.
Kluwer Academic Publishers, Boston, MA, 1998.

[20] M. Patriksson and L. Wynter. Stochastic mathematical programs with equilibrium
constraints. Operations Research Letters, 25:159–167, 1999.

[21] E. L. Plambeck, B. R. Fu, S. M. Robinson, and R. Suri. Throughput optimization
in tandem production lines via nonsmooth programming. In J. Schoen, editor, Pro-
ceedings of 1993 Summer Computer Simulation Conference, pages 70–75. San Diego,
CA: Society for Computer Simulation, 1993.

[22] E. L. Plambeck, B. R. Fu, S. M. Robinson, and R. Suri. Sample-path optimization
of convex stochastic performance functions. Mathematical Programming, 75:137–176,
1996.

[23] S. M. Robinson. Generalized equations and their solutions, Part I: Basic theory.
Mathematical Programming Study, 10:128–141, 1979.

[24] S. M. Robinson. Strongly regular generalized equations. Mathematics of Operations
Research, 5:43–62, 1980.

[25] S. M. Robinson. Analysis of sample-path optimization. Mathematics of Operations
Research, 21(3):513–528, 1996.

[26] R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer-Verlag, Berlin,
1998.

[27] R. Y. Rubinstein and A. Shapiro. Discrete Event Systems: Sensitivity Analysis and
Stochastic Optimization by the Score Function Method. Wiley, Chichester and New
York, 1993.

[28] H. Scheel. Ein Straffunktionsansatz für Optimierungsprobleme mit Gleich-
gewichtsrestriktionen, Diploma Thesis. Institut für Statistik und Mathematische
Wirtschaftstheorie, Universität Karlsruhe, 76128 Karlsruhe, Germany, 1995.

[29] H. Scheel and S. Scholtes. Mathematical programs with complementarity con-
straints: stationarity, optimality and sensitivity. Mathematics of Operations Research,
25(1):1–22, 2000.

[30] S. Scholtes. Introduction to piecewise differentiable equations, Habilitation Thesis.
Institut für Statistik und Mathematische Wirtschaftstheorie, Universität Karlsruhe,
76128 Karlsruhe, Germany, 1994.

[31] A. Shapiro and T. Homem-De-Mello. A simulation-based approach to two-stage
stochastic programming with recourse. Mathematical Programming, 81:301–325, 1998.

24



[32] G. Still. Generalized semi-infinite programming: theory and methods. European
Journal of Operational Research, 119:301–303, 1999.

25



Publications in the Report Series Research� in Management 
 
ERIM Research Program: “Business Processes, Logistics and Information Systems” 
 
2004 
 
Smart Pricing: Linking Pricing Decisions with Operational Insights 
Moritz Fleischmann, Joseph M. Hall and David F. Pyke 
ERS-2004-001-LIS 
http://hdl.handle.net/1765/1114 
 
Mobile operators as banks or vice-versa? and: the challenges of Mobile channels for banks 
L-F Pau 
ERS-2004-015-LIS 
http://hdl.handle.net/1765/1163 
 
Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis 
S. Ilker Birbil, Gül Gürkan and Ovidiu Listeş 
ERS-2004-016-LIS 

                                                 
�  A complete overview of the ERIM Report Series Research in Management: 

https://ep.eur.nl/handle/1765/1 
 
 ERIM Research Programs: 
 LIS Business Processes, Logistics and Information Systems 
 ORG Organizing for Performance 
 MKT Marketing 
 F&A Finance and Accounting 
 STR Strategy and Entrepreneurship  

http://hdl.handle.net/1765/1114
http://hdl.handle.net/1765/1163
https://ep.eur.nl/handle/1765/1

	Titelblad ERS 2004 016 LIS.pdf
	ERIM Report Series reference number
	Publication
	February 2004
	Number of pages
	25
	Email address corresponding author
	sbirbil@few.eur.nl
	Address
	
	
	Rotterdam School of Management / Rotterdam School of Economics
	Phone: +31 10 408 1182


	Fax:+31 10 408 9640

	Bibliographic data and classifications

	overzicht LIS 2004 screen.pdf
	ERIM Research Program: “Business Processes, Logis


