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Sample-Path Solution
of Stochastic Variational Inequalities
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Tilóurg, The Netherlands.
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Sample-path optimization is a simulation-based method for solving op-
timization problems that azise in the study of complex stochastic sys-
tems. In this paper we broaden its applicability to include the solution
of stochastic vaziational inequalitiea. This formulation can model equilib-
rium phenomena in physics, economics, and operations reseazch. We de-
scribe the method, provide general conditions for convergence, and present
numerical results of an application of the method to a stochastic economic
equilibrium model of the European natural gas market. We alsa point out
some current ]imitations of the method and indicate azeas in which re-
search might help to remove those limitations.
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orientation, strong regulazity

1 Introduction

In this paper we present a method for solving a variational inequality de-
fined by a polyhedral convex set C and a function f~ that is an almost-sure
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limit of a computable sequence of random functions f,,. Such a situation com-
monly arises in simulation optimization and stochastic economic equilibrium
problems involving expectations or steady-state functions. The method is a
modification of sample-path optimization proposed by Plambeck et al. [23,24]
and analyzed in [29]. That method, in turn, is closely related to M-estimation
[15,16,38,39] and to the stochastic counterpart method [32]; for additional ref-
erences see [29]. As in the original version, the functions f„ may be outputs of
a simulation run of length n: from observing the f„ and making appropriate
computations with them, we hope to find an approximate solution of the vari-
ational inequality defined by C and f~. The approach we present here was
outlined without proofs in the proceedings paper [9].

In our view, the present work makes the following contributions:

- To propose a modeling structure for stochastic variational inequalities in
which the expectation or limit functions must be estimated by simulation,

- To present conditions under which the approximating problems can be
shown to have solutions with probability 1, provided the simulation run
length is sufficiently long,

- To provide bounds for the closeness of those solutions to solutions of the
limit problem, in terms of the goodness of approximation,

- To present nnmerical experiments on problems of moderate size to show
that the technique can be implemented aiid to illustrate its performance.

In the process of establishing these points, we hope to show also that by using
simulation - together with gradient estimation techniques - one may provide
an effective alternative to discrete scenario representations of uncertainty with
their associated data management problems (see [20] for example).

The deterministic variational inequality problem has been much used since
its origins in the middle 1960s, for which see e.g. [11,36]. Its application to
the modeling of economic equilibrium in the Project Independence study dur-
ing the 1970s generated great interest; see Hogan [14]. Harker and Pang [10]
present an excellent survey of the developments in the subject up to 1990,
whereas Ferris and Pang [6] examine a large number of applications of com-
plementarity problems in engineering and economics.

Josephy [17] introduced a variant of the Newton method for numerical solution
of generalized equations, which are teformulations of variational inequalities.
Since then, much progress has been made in globalizing the Newton idea and
making it more robust. One of the best current production software packages
embodying this idea is the PATH solver of Dirkse and Ferris [3], a stabilized
Newton method based on a generalization of the line search idea.

As far as we are aware, the idea of using stochastic variational inequalities to
model uncertainty in equilibrium phenomena has not been extensively used.
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Exceptions are the works of Haurie et al. [12] and De Wolf and Smeers [2].
Haurie et al. used a dynamic stochastic model to find the equilibrium price and
quar~tity of the natural gas to be traded in the European market. However,
their model contained an affine price~demand relation that resulted in an
irztegrable model: that is, one which reduces to an optimization problem. In
Section 4, we extend their model to incorporate a different price~demand
relationship, resulting in a non-integrable model, and introduce a different
stochastic structure. In particular, while the model of [12] employed a scenario
representation of uncertainty with a scenario tree of only four branches, we
propose using simulation to observe a large rrumber of instances of the random
pararneters, averaging their effects, and solving the resulting problem.

Of course, these ideas are not new in the case ofoptimization: see [23,24,29,34].
Shapiro considers similar questions in [33], where the asymptotic behavior
of solutions of simulation optimization problems is studied. The conditions
developed there differ from those we provide here in two main respects; first,

our conditions apply to general variational inequalities, not just those arising
from optimization problems; second, we prove the existence and convergence
of solutions of the approximating problems, whereas Shapiro assumes tlrem.
In order to obtain these stronger results we make stronger assumptions than
does Shapiro: in particular, we use a coherent orientation condition that is
equivalent to the wPll-known condition of strong regularity, for which see e.g.
[5,22,25].

The remainder of this paper is organized in four sections. In Section 2, we for-
nurlate the problem and describe the method that we propose. We also provide
the necessary background on variational inequalities including definitions and
discussions of the normal map, critical cone, normal manifold, coherent ori-
entation, and continuous convergence. In Section 3, we analyze the method

using the concepts explained in Section 2. In Section 4, we present the results

of numerical experiments applying the method to an energy planning problem

in the European natural gas market. We solve two versions of this problem,

rnodeling uncertainty with discrete and with continuous probabílity distribu-
tions. Finally, in Section 5 we summarize the work we have presented and
suggest sorne directions for future research.

2 Background and Formulation

In this section we define tlre variational inequality formulation that we shall
use, explain some general aspects of the methodology, and present definitions
of certain concepts from analysis that will be needed in what follows. These
indude a generalization of nonsingularity that is of particular importance to
our method.
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For a closed convex set C(in general, a subset of a Hilbert space, but }rere a
subset of IIFk) and a function f from an open set O C]Rk to ]Rk, the variational
inequality problem is to find a point xo E C fl 9, if any exists, satisfying

for each x E C, (x - xo,f(xo)) ~ 0, (1)

where ( y, z) denotes the inner product of y and z. Geometrically, ( 1) means
that f( xo) is an inward normal to C at xo. Many problems from applica-
tions involve polyhedral sets C, and in this paper we restrict our attention
to such sets. Two immediate examples are a system of k nonlinear equa-
tions in k unknowns, and the first-order necessary optimality conditions for
a nonlinear-programming problem with continuously differentiable objective
and constraint functions.

Naturally, not all variational inequality problems arise from optimization. In
some economic equilibrium models the lack of certain symmetry properties
results in a model that is said to be non-integraóle. In such a model, it is
not possible to find the equilibrium prices and quantities by substituting an

associated optimization problem for the variational inequality. For discussion

of an actual model of this type that was heavily used in policy analysis, see

[14]. The theory that we shall develop here does not require any symmetry

properties, so it applies tu nan-integrahle, models. In fact, the application to

the European gas market given in Section 4 required the solution u[ a non

integrable stochastic economic equilibrium model.

Our method works with a vector-valued stochastic process { f„(w, x) ~ n-

1, 2, .. .} and a vector-valued function f~(x) with x E 1LPk. For all n 1 1 and

x E 1[Yk, the random variables f„(w,x) are defined on a common probability

space (52,.~, P), and for almost all w the f„(w, .) converge pointwise to f~( .).
The method seeks a point xo solving (1) with f- foo; it works by fixing a
large n and a sample point w, solving the deterministic variational inequality

with f(.)- fn(w, .), and taking the solution x„(w) as an estimate of xo.

In Section 3 we give conditions ensuring that with probability 1, when n is

suH'iciently large the xn(w) exist and are close to xp.

One way of envisioning this setup is to regard fn(w,x) as an estimate of the

function value f~(x) obtained from a simulation run of length n, where x is the

decision vatiable and w represents the random element, i.e., the random num-

ber streams used in the simulation. One can use the method of common ran-

dom numbers to evaluate f„(w, x) for different values of x. Furthermore, exact

values for the derivatives or directional derivatives of the f„ can be obtained
using well-established methods of gradient estimation such as infinitesimal
perturbation analysis; see [8,13,37]. The method proposed here thus inherits
most of the advantages of sample-path optimizatiori, such as the ability to use
deterministic teclmiques to solve the variational inequality.
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In the particular case of an unconstrained optimization problem the method
takes a special form. If we write the first order optimality conditions for the
problem, we obtain k nonlinear equations in k unknowns. Then solving the
associated variational inequality would amount to finding a zero of the gradient
of the objective funetion. In the stochastic context the approximate solution
of this problem will be an estimate of a critical point of this objective ftmction.
Such a point may not be an optimizer unless certain second-order conditions
are satisfied. However, when the objective function is known to be locally
convex (or locally concave, depending on the sense of optimization), around
the critical point, the solution point will be an optimizer. See [9] for an actual
implementation in that case.

At this point it may be helpful to correct a possible misconception about this
formulation. One might think, because we use an expectation or limit function
in the variational inequality that we try to solve, that this method is some
variant of the so-called "expected value method" in stochastic optimization,
in which a random variable is replaced by its expected value before solution
(thereby producing an incorrect formulation). This is not so, as one can see
by considering the simple example of minimizing (in x) the function ~(x) :-
E~~(x, ~), where

3a(~ - x)2 if ~ c x,
~lx, ~) -

3Q(~ - x)2 if l; ~ x.

Here we suppose that 0 C ,0 C a, and that ~ is uniformly distributed on [0,1].

This model formulates the problem of selecting x to estimate an uncertain

quantity ~, with a quadratic loss whose magnitude depends on whether one

has overestimated or underestimated ~.

A computation shows that

Qx3 -}~ Q(1 - x)3, if x G 0,

~(2) - IX23 -~ a(1 - 2)3, lf 2 E[~, 1],

az3 -}- a(1 - a)3, lf 2 i 1,

so that ~ is convex and C2; its minimizer is

i :- (IX - p)-l[(aQ)'~z - Q].

To illusttate our approach on this simple problem, we note that ~ satisfies
the conditions for interchange of derivative and expectation, so that we can
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express the necessary and sufficient optimality condition

fi - dx~(x) - áxE~~(x,~)

as

fi - E{dx~(x,~).

Our method would then proceed to approximate Et ás ~(x, l;) by simulation and
to find a zero of the resulting function. This procedure would approximate the
correct minimizer. By contrast, if we replaced the random variable l; by its
expectation of 1~2, we would obtain the function

3a(.5 - x)~ if x ? .5,
~(x) -~(x, E~) -

3Q(.5 - x)z if x C.5,

whose minimizer is evidently x- .5, a point that does not minimize ~(x)
unless a - ~3.

tteturning to the descriptinn nf 4ur method, we note that in order to guarantee

the closeness of the estimate x„(w) to the true solution xo we need to impose
certain functional convergence properties on the sequence { f„}. The specific
property we require is called continuous convergence; it is equivalent to uniform
convergence to a continuous limit on compact sets [18], and is defined as
follows:

Definition 1 A sequence f„ of extended-real-valued functions defined on IItk

converges continuously to an extended-renl-valued function f~ defined on IItk

(wrtitten f„ ~ f~) if for any x E IIYk and any sequence {x„} converging to x,
one has fn(2n) -~ f~(x). A sequence of functions from Eik into 1Rm converges
continuously if each of the m component functions does so.

To understand the rationale for requiring continuous convergence, consider
a sequence of functions f„ and of points x„ such that for each n, x„ solves
the variational inequality defined by f„ and C, and x„ -~ x as n -i oo.

Now if f„ ~ f~ then the limit point x is a solution of the limit variational
inequality defined by f~ and C. Therefore we might reasonably use solutions
of the former as estimates of the limit problem. However, although this result

is useful, it unfortunately guarantees neither the existence of the solutions x„
nor their convergence.

To guarantee such existence and convergence we need to impose a certain gen-
eralized nonsingularity condition. We begin with several definitions required
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to explain this condition. The first is that of the normal map associated with
(1). This map is used to convert a variational inequality defined by f and C
to a single-valued equation; it is defined by fc(z) - f( IIc(z)) f z- IIc(z),
where IIc is the Euclidean projectot on C. If xo solves ( 1) then zo - xo - f(xo)
satisfies fc(zo) - 0. Further,if zo is a zero of Jc then xo - IIc(zo) solves (1);
see [28] for example.

Next, we define the normal cone Nc(x) of C at x to be the set

{y" ~ for each c E C, (y`, c- x) c 0}

provided that x E C, and to be empty otherwise. An equivalent way of ex-
pressing (1) is then the generalized equation

0 E f (xo) } Nc(xo)- (2)

If x E C then the tangent cone of C at x, written Tc(x), is the polar of Nc(x):
that is, the set of all y such that (y`, y) C 0 for each y' E Nc(x). The criticnl
cone defined by C and a given point z E IItk (not necessarily in C) is then
defined by

K(z) - Tc(nc(z)) n {y' E~k ~(y', z- IIc(z)) - 0}.

Now fix any z and write K- K(z). As K is polyhedral it has only finitely

inany faces; for each nonempty face F the normal cone of K takes a constant

value, say NF, on the relative interior of F. Then the set oF - F-~ NF is

a nonempty polyhedral convex set of dimension k in IIYk. The collection NK

of all these aF for nonempty faces F of K is called the normal manifold

of K; see [27]. In each of these oF the projector IIK reduces to an affine

map (generally different for different oF). If A is a linear transformation from

1Rk to ][8k, then we say that the normal map AK is coherently oriented if

in each aF the determinant of the affine map obtained by restricting AK

to aF has the same nonzero sign. As a simple illustration of this property,

we can consider the case in which K happens to be a subspace ( the "strict
complementary slackness" situation in the optimization literature). Then the

coherent orientation requirement reduces to nonsingularity of the section of A

in K: that is, the linear map from K to IC given by IIk- o(A~K). In particular,

if C-]Ltk ( the case of nonlinear equations), then K(z) - II8k fot each z E]LPk,

and then NK~~I has only one cell, namely IIik itself. Then AK is coherently

oriented exactly when A is nonsingular. In general, the coherent orientation

condition is a way of generalizing nonsingularity to the case of a nontrivial set

C.
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3 Solution of Stochastic Variational Inequalities

In this section we discuss the solution of stochastic variationa] inequalities
via the sample-path method. The main result, Theorem 5, shows that under
mild regularity conditions on the limit function f and on a solution xo of the
original problem (1), for any continuous sample function f„ that is sufficiently
close to f the variational inequality

find x E C such that ( f„(x), c- x) 1 0 for all c E C,

has a solution close to xo. We first prove a few auxiliary technical results,
then proceed with the main convergence result, and finally comment on its
implications.

Theorem 2 Let f 6e a continuous function from an open set 9 in ]l~k to II2k

having an inverse that is Lipschitzian on f(9) with modulus a ~ 0. Let x,

6e a point of 6 such that f(x,) - 0. Then there is a positive number ao with

B(x„ ao) C 6 such that for any a E (0, ao] and any continuous function

g: B(x„ a) -~ IItk satisfying

ry:- suP IIf (x) - 9( x)II c a'a,
xEB(x.,a)

the functiora g has at least one zero, and ear.h such zero lies in B(x„ ary).

(3)

PROOF. f(O) is open by invariance of domain ([4], Prop. 7.4); hence it is a

neighborhood of the origin in II2k. Continuity of f then implies that there is a

positive ao such that B(x„ ao) C 6 and

f(B(x., ao)) f~-laoB C f(e), (4)

where B is the unit ball. Fix a E(0, ao] and observe that (4) still holds if we
substitute a for ao. For brevity write B, - B(x„ a). Let g be a function from
B. to IIYk with the properties listed in the statement of the theorem. Then for
each x E B, and each t E [0, 1] we have

(} - t)g(x) ~- tf(x) - f(x) t (I - t)[s(x) - f(x)1
c f(B.) f a-'aB c f(e).

Therefure H(x, t) - f -1[(1 - t)g(x) f tf (x)] is a well defined and continuous

function from B, x[0, 1] into lltk.
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Observe that for each x on the boundary of B, and any t E [0,1], H(x, t) ~ x..
Otherwise, for some such x and t we would have

f(x.) - f(x) - (1 - t)[g(x) - f(x)].

But then

a'a - a-111x. - xII c II f(x.) - f(x)II c ry c~'a,

and we reach a contradiction.

Now let i be the identity of B,. Applying the homotopy invariance principle
([21], Th. 6.2.2), we find that

deg(f-~ og,intB.,x.) - deg(i,intB„x,) - 1.

Accordingly, there must be at least one point i in B, such that f-1(g(i)) - x,:
that is, such that g(i) - f(x,) - 0.

Next, let x belong to B, but with IIx - x.II ~~7~ Since

Ilf-'[(1- t)g(x) f tf(x)1- f-'[f(x)]II ~ all(1- t)[g(x) - f(x)111
C (1 - t)ary,

we must have

II H(x, t) - x.ll ? Ilx - x.ll - Ilf-'[(1- t)g(x) t tf(x)J - f-'[f(x)lll
? IIx - x.II - (1- t)ary. (5)

Taking t - 0 we find that f-~ [g(x)] ~ x, and therefore g(x) ~ 0. Hence each
zero of g lies in B(x,,.~ry). ~

The next result is a simple corollary of Theorem 2 that investigates the be-

havior of approximate solutions of the function g in that theorem.

Corollary 3 Let f, 9, a, x., and aa be as in Theorem 2, and let a E(0, ao].

Get h be a continuous junction from B(x., a) to IIYk and y n point oj ]Ltk such

that

~ - SuP IIf(x) - h(x)II,
xE B(x. ,a)

~l f IIyII c a-'a.

Then lhe function h- y has nt least one zero, and each such zem lies in

B(x., a(n ~ IIyII)).
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PROOF. In Theorem 2 take g- h- y, noting that then ry C r) t IIyII. 0

In order to exhibit a class of functions to which the foregoing analysis ap-
plies, we put together some known results to obtain a simple inverse-function
theorem for normal maps.

Theorem 4 Let C be a polyhedral convex set in IIfk, zo be a point of IIYk and
xo 6e the Euclidean projection of zo on C. Let f be a function from an open
set 9 containing xo to IIFk. Suppose that fc(zo) - 0, and let K 6e the critical
cone defined by C and zo, i.e.,

K- Tc(~o) n {v E llPk I(f (yo), v) - 0}.

Assume that f has a strong Fréchet derivative df (xo) at ~o, and that df (so)x
is coherently oriented. Then there is an open set U containing zo such that fc
is well defined on U, fc(U) is open, and fcI U has a Lipschitzian inverse on
fc(U).

PROOF. The normal map fc is well deflned on the open set TI~I(6), which
contains zo. Define a function L from Htk to Htk by L(x) - f(xo) t d j(xo)(x -
zo), and note that Lc(zo) - fc(0) - 0. By applying Proposition 4.1 of [26]
to the function F(x, y) - j(x) - y we find that for each y E 1[Yk Lc strongly
approximates F( ., y)c(z) at ( zo, y) with respect to the variable x. Flrrther, by
Theorem 5.2 of [27], Lc is a local Lipschitzian homeomorphism at zo. It follows
that Lc carries a neighborhood N of zo onto a neighborhood of the origin in
IItk, and on the latter neighborhood L~l is Lipschitzian with some modulus
ao. Now apply Theorem 3.2 of [26] to conclude that for each a~ ao there are
neighborhoods Uo of zo and Vo of the origin, and a map z : Vo -~ Uo that is
Lipschitzian with modulus a, such that for each y E Vo, z(y) is the unique
solution in Uo of F(. , y)c(z) - 0 ( í.e., of fc(z) - y). As z is continuous there
is an open subset V of Vo such that 0 E V and z(V )-: U C int Uo. It is then
straightforward to show that U is open, that fc(U) - V, and that zIV is the
inverse of fclU. O

The proof oF Theorem 4 shows how the Lipschitz modulus for f~~ can be
estimated, via that of L~~, if it is desired to do so.

Note again that if K happens to be a subspace (the "strict complementary
slackness" situation), then the coherent orientation requirement reduces to
nonsingularity of the section of df(xo) in K. In particular, if C- IItk (the
case of nonlinear equations), then K - 1Rk and the requirement is that df (xo)
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be nonsirrgular, as one would expect. In that case a can be taken to be any
number greater than Ildf(xo)-'II.

We next prove the main result of the paper. Roughly speaking, it says that
if the variational inequality defined by the limit function has a solution xo
satisfying a generalized nonsingularity condition, then for sufficiently good
approximations of the limit function the approximating problems must have
solutions close to xo.

Theorem 5 Le.t A 6e an open subset of IItk and let C be n polyhedral convex
set in ]E~k. Let xo 6e a point of 6, and suppose f is a function from A to 1Rk.
Let { fn I n- 1, 2, ...} be random functions from 9 to IIYk such that for all
x E 6 and all ftnite n the random variables fn(x) nre defined on a common
probnbility space (S2, .F, P). Let zo - xo - f(xo) and assume the following:

(a) With probability one, each fn for n- 1, 2, ... is continuous and fn ~ f.

(b) xo solves the variationai inequality defined 6y f and C.

(cJ f has a strong Fréchet derivative df (xo) nt xo, and df (xo)K is coherently
oriented, where K is as defined in Theorem 4.

Then the restriction of fc to a neighborhood of zo has an inverse that is Lips-

chitziara with some modulus a. Further, there exist a compact subset Co C Cfl9
containing xo, n neighborhood 61 C 6 of xo, a scalar Q~ 0, and a set 0 C 52

of ineasure zero, with the following properties: for n- 1, 2, ..., w E S2, and

y E]Rk with IIyII c Q, let

~n(w) - SnP I~fn(w,x) - f(x)~I,
xECo

and

Xn(w, y) :- {x E C fl 91 I for each c E C, ( fn(w, x) - y, c- x) ? 0}.

For each w~ 0 there is then a finite integer NW such that for each n 1 Nw

the set Xn(w, y) is a nonempty, compact subset of B(xo, ~(~n(w) f IIyII)).

PROOF. Determine 0 having measure zero so that off ~ the properties

listed in hypothesis ( a) hold for all n. Let w~ 0. We suppress w from here

on. Note that continuous convergence is equivalent to uniform convergence on

compacts to a continuous limit [18], so f is continuous. We next show that

(Ín)c ~ fc- Suppose xn -i xo. Then

(fn)C(xn) - fC(xo) - [fn(~C(xn)) - f(nC(xo))]

t [(xn - ~C(xn)) - ( x0 - I~IC(xo))]'

11



The first terrn in brackets approaches zero by the continuous convergence
of fn ( hypothesis (a)) and the continuity of IIc; the second approaches zero
because of the continuity of IIc. Therefore (fn)c ~r fc. Next, use hypotheses
(b) and ( c) together with Theorem 4 to conclude that the restriction of the
function fc to some open neighborhood U C II~'(9) of zo has an inverse that
is Lipschitzian on fC(U) with some modulus a. Apply Theorem 2 to fC on U
to produce an ao with the properties listed in that theorem.

The Minty map M(z) -(IIC(z), z- IIc(z)) is a Lipschitzian homeomorphism
from II2k onto Nc, and we know that M(zo) -(xo, -f (xa)) -: wo. Choose posi-
tive numbers ~, r~, and e so that the balls 61 - B(xo, ~) and Yl - B(- f( xo), r))
satisfy the following conditions: ( 1) Ba :- B(zo,ao) ~ M-1(W), where W
is the neighborhood Nc n (61 x Yl) of wo in Nc; (2) -f(9i) C Yl; (3)
~{- r~ -F e c ao. Now choose a positive a so that a c min{ao, ae} and
NI-'(W) ~ B(zo,a) -: Bl. Let Co - IIc(Bo). First note that for any n,
(fn)c(z) - fc(z) - fn(nc(z)) - Ï(nc(z)), so that

~n :- SnP Ilfn(x) - f(x)II - SnP II(fn)C(z) - IC(z)II.
rECo zEBo

Choose Q ~ a-' ~~, y with IIyII ~ i~~ and N large enough so that if n 1 N then

~n}IIyII~a `a.

For n~ N, Corollary 3 tells us that ( fn - y)C has a zero in Bl. But the
projection onto C of any point of BI lies in C fl Al, so the projection of this
zero onto C lies in C fl Ol and solves the variational inequality for fn - y
and C. Therefore Xn is nonempty; it is compact because fn is continuous
and Xn C A~. Now suppose that some point x;, E 61 solves the variational
inequality for fn - y and C. Then xR E C. Let zR - x;, - fn(x;,) f y. Then

(fn - y)c(zn) - 0. Flrrther,

Ilzn - zOII ~ Ilxn - xoll f III(xn) - f(~0)II -~ Ilfn(xn) - f(xn)II -~ IIyII
s~fnf~n}IIyII.

But ~ n ~- IIJII ~ a-`a ~ E, so z;, belongs to Bo. But then Corollary 3 tells us
that in fact

Ilzn - zOII s a(SllP II(in)C(z) - tC(z)II ~- IIyII) - a(~n } IIyII),
zEBo

and noaexpansivity of the projection implies IIx;,-xoll S IIz;,-zoll. Therefore
.ln C B(xo, a(~n t IIyII)). o
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In Theorem 5 we could have considered a random limit function f instead
of a deterministic one, in which case a, Co, 9i, and xo would depend on the
sample point c.~. However, in most problems for which we think the method
might be useful, f is a deterministic function, (for example, the gradient of
a steady-state performance measure in a stochastic system). The form of the
theorem is very general in that it allows us to work not only with the f„
but also with small perturbations of the f,,. This is important when using a
numerical method having finite precision to solve the variational inequality
defined by f„ and C.

Also note that the conditions derived in Theorem 5 are directly applicable to
a special case of stochastic variational inequalities: namely, mixed complemen-
tarity problems involving expectations or steady-state performance functions.
Wlien the original problem to be solved is a constrained stochastic optimiza-
tion problem, the coherent orientation condition reduces to strong regularity
of the generalized equation expressing the first order necessary optimality
conditions. In the unconstrained case, this condition is equivalent to the non-
singularity of the Hessian at the solution point. For applications to simulation
optimization, see [22].

4 Numerical Example

In this section we illustrate an application of the foregoing methodology to a
model of the European natural gas market. We describe the problem, explain
briefly the procedure used, and finally present numerical results. Theoretically,
the method we propose is capable of handling both discrete and continuous
probability distributions; by considering both types of uncertainties in the gas
market problem we illustrate its practical utility as well.

The problem is to find the market price and quantity of natural gas to be pro-
duced and shipped to various markets from various producers. We adopt the
model and partially the notation of Haurie et al. [12], modifying several param-
eters and functional relations. In particular, we use a different price~demand
relation that results in a non-integrable model. As was done in [12], we con-
sider a decomposition of the European gas market into the producers and the
consumers of natural gas. This is a simple preliminary model in the sense that
it does not take into account the possibility of the transmission companies'
and~or distributors' acting as players as well.

The model has m players ( producers and exporters ofnatural gas), each player
controlling a set of production units, n markets, and T time periods. Let U; be

the set of production units controlled by the ith producer, for i- 1, ..., m.

For each Q E U;, j - 1, ..., n, and t- 1, ..., T, the variables are defined as
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follows:

R~ - remaining reserves at beginning of period t(Ri is given).

Ké - available capacity at beginning of period t(Ki is given).

q~~ - annual production that is shipped to market j during period t.

D~ - annual domestic production of market j during period t (given).

QL - total annual quantity available on market j during period t: that is,i
m

Qi - Di ~ ~ ~ 9i~.
i-1 LEU;

(6)

Il - physical capacity invested in during period t for use in period t f 1.
Investment is assumed to take place in one lump sum at the end of period t.

c~~ - constant marginal transportation cost for shipping from production unit
2 to market j during period t.

yt - number of years in period t. We used y, - 5 for .g - 1, 2, 3 and y4 - 20.

r - the (yearly) interest rate in effect; we used r - 0.10.

During each period, each producer incurs a ( constant) annual cash flow for
every year in that period. To compute the present value of these cash flows
we use a factor f~ expressing the time value of money: for period t,

fe -[(1 t r)y~ - 1]~[r(1 -~ r)~,-~ y~].

The investment costs are linear with marginal cost I'i ~ 0, whereas marginal
production costs follow a curve that has a reverse L shape in order to ensure
that the unit production cost is approximately constant when away from the
production capacity but goes to infinity at the capacity limit; see [19]. There-
fore the production cost function is taken to be G~(a) - a~x - bi ln(Xi - x),
where a~ and 6~ are parameters, x represents the quantity produced, and X~
is the capacity limit. Let P~(Q) be the price of natural gas in market j during
period t when the amount available in that market is Q.

In contrast to the affine demand law used in [12], we use the following:

pj(Q) -t~Vj(Q,q~j)l,e~, (7)

where N0~ and q0~ are base prices and base demands respectively and e~ is the
price elasticity of demand for natural gas in market j during period t. Unlike
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the affine demand law, (7) is generally non-integrable, so that the equilibrium
condition cannot be expressed as an optimization problem.

We now develop the model itself, beginning with calculation of the net present
value (NPV) of a producer's profit. In each year of period t, the revenue from
shipments to market j from unit P is qtjP~ ( Qj), and the corresponding shipping
cost is c`tjqeji while the yearly production cost for unit P is Gt(~?-1 qttj). The
investment cost paid at the end of period t for unit P is I'tl~. Therefore the
NPV of profit for producer i is

F;(qij, Ii) - ~ ~ [ÍeS ~(P~ ( Q~) - c(tj~4tj - Gt(~ 9éj) 1t-1lEU, 1j-1 j-1

- CtI~(1 t r)- ~~-~v' J .

For each i and each P E U;, reserves satisfy

n
R~ti - R~ ~ t

t t - y~ 9tj,
j-1

and we require

(8)

(9)

Ret' ~ 0, t- 1,..., T; (10)

recall that R~ is given. Similarly, the capacities satisfy

Ki}` - K~ f li, t - 1,...,T, (11)

and
n

Ki - ~ y~9ij ? 0, t - 1, . . . , T. (12)
j-1

In addition to these, we have the quantity balance equation (6), and we require

that the decision variables q~j and Ii be nonnegative.

The producers are the USSR (the former Soviet Union), the Netherlands,
Norway, and Algeria. Among those Norway has two producing units, whereas
all the others have one each. There are six markets: UK, the Netherlands,
FRGer (the former West Germany), Be1Lux (Belgium~Luxembourg), Italy,
aud France.

In each period, we consider a shutdown possibility in Algeria which results
in an interruption of production~transportation of natural gas in the current
period and in all future periods. Define ~it to be 0 if Algeria interrupts its pro-
duction in period t and 1 otherwise; then this induces a change in the reserve
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constraints for Algeria in the following fashion (Algeria has one production
unit; hence B - 1):

6
R~f~ - R~ ~ ~

i i~~ - ye4i~. (13)

This should not be regarded as a physical change in the reserves; it is imposed
only to guarantee that no natural gas is traded between Algeria and the rest
of Europe.

Our next step is to formulate the first-order necessary conditions for an equi-
librium as a variational inequality in the variables q~~ and Ié. We begin by
discarding the auxiliary variables Q~, Rl, and Ki and rewriting the reserve
depletion constraints by replacing (9) and (10) by

[ n
R~ -~ y, ~ qi~ 1 0, P E U;, i- 1, ... 4, t - 1, ..., 4, (14)

9-1 j-1

and replacing (11) and (12) by

t-1 n
Ki~~Ié-~ycqi~~0, PEU„ i-1,...4, t-1,...,4,

s-i ~-i (15)

with the standard convention that ~o is vacuous.

The ith producer wishes to maximize F;(q~~, I~), given by (8) with Q~ replaced

by the right-hand side of (6), subject to the constraints (14) and (15). These
individual maximization problems are coupled by the presence in each problem
of the production quantity decisions of all the other producers. For an equilib-
rium we wish to find values of the decision variables q~~ and li so that these
maximizations take place simultaneously. We therefore write the first-order
necessary optimality conditions for each producer's problem of maximizing
(8) subject to the constraints (14) and (15) as well as nonnegativity of the
decision variables qi~ and IL, and try to solve these simultaneously. Note that
with the demand law (7), the objective function is not generally convex, so
the first-order necessary conditions may not always be sufficient.

To write these conditions we regard the left-hand sides of (14) and (15) as
vectors of dimension ry;, where ry; - 4 for i- 1, 2, 4 and ry3 - 8(since Norway

has two producing units, whereas all the others have one each), and we denote
these vectors by -g; and -g; respectively. We then associate dual variables

ui and uz, also of dimension ry;, with the constraints -g; ~ 0 and -g; ~ 0
respectively. We write the quantities q~~ for producer i (that is, for P E U; and
for all t and j) as a vector a; of dimension a;, where a; - 4 x 6- 24 for
i- 1, 2, 4 and a3 - 2 x 4 x 6- 48. Similarly, we write the physical capacity
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investments I~ for 2 E U; as a vector z; of dimension ,lj;, where Q; - 3 for
i-1,2,4andQ3-6.

As the constraints are affine, no constraint qualification is needed, and simul-
taneous satisfaction of the first-order conditions for all producers can then be
expressed by the following generalized equation: for ti - 1, ..., 4 find nonneg-
ative vectors x;, z;, u„ and u; such that

0 E-~ fu'1 tu?~ fN x)8x; i 8x; ~ 8x; Rt' ( s
s

0 E-e tu; e9 fNR}:(z;)

0 E -9i ~Nrtt (ui)

0 E -9z fNett (uz)

(16)

Note again that the instances of (16) for different i are coupled by the quantity
decisions, so that (16) is actually a single variational inequality containing 175
variables: 120 quantities qi~, 15 investment decisions IL, and a total of 40 dual
variables.

The parameters used in the experiments are in Tables 1-3; subscripts Q are
omitted. Prices are in 1983 dollars and quantities are in mtoe (million tons of
oil equivalent).

Table 1
Cost coefficients and pazameters for production units

Producer a 6 Il' Kl Rl I' cl c~ c3 c"
USSR 1.606 51 80 3750 3750 0.0 0.58 0.56 0.55 0.55

Netherlands 1.212 67 80 1900 1900 0.0 0.14 0.13 0.13 0.12

Norwayl 1.507 85 80 300 300 0.0 0.35 0.34 0.34 0.33

Norway2 1.507 85 80 0 1936 0.5 0.35 0.34 0.34 0.33

.Algeria 2.102 96 80 3087 3087 0.0 0.70 0.69 0.64 0.62

For each period t, we assumed ~~ to be 0 with probability 0.40. After sampling
from the uniform distribution and generating sequences ~i , we computed the
sample functions f„ by averaging the constraints (13). To compute the limiting
distribution will generally not be possible for more complicated distributions;
however in this case we can solve the variational inequality with f~ and com-
pare the solution with the results of the simulations. Table 4 shows the results

for different simulation lengths, n- 20, n- 200, n- 1000, n- 15000, and
n- 100000, as well as for the limit function, n- oo. To model the problem
we used GAMS [1], and in the solution we used the PATH solver [3J that is
implemented in GAMS.
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Table 2
Base prices and base demands in mazkets, p0 and q0

Market Period 1 Period 2 Period 3 Period 4

BelLux 5.12 7.8 2.56 9.4 3.41 9.4 5.12 9.5

FRGer 5.27 40.7 2.64 46.2 3.52 46.5 5.27 44.6

France 5.25 23.6 2.62 28.3 3.50 29.8 5.25 28.5

Italy 5.15 25.3 2.57 34.9 3.43 37.5 5.15 37.2

Netherlands 5.16 28.9 2.58 29.9 3.44 32.2 5.16 29.7

UK 4.54 43.8 2.27 50.3 3.03 56.4 4.54 53.7

Table 3
Price elasticities and domestic production in mazkets, e and D

Mazket Period 1 Period 2 Period 3 Period 4

BelLux -1.07 0.00 -1.26 0.00 -1.34 0.00 -1.42 0.00
FRGer -1.46 13.70 -I.58 13.80 -1.68 13.80 -1.79 13.80
France -O.BI 4.80 -1.19 2.90 -1.57 3.00 -2.O1 3.00

[taly -1.15 10.40 -1.36 10.00 -I.45 10.00 -1.54 10.40

Netherlands -0.94 22.93 -1.13 20.96 -1.29 24.11 -I.45 23.90

UK -0.61 33.70 -0.87 35.00 -1.10 37.00 -1.30 38.00

Table 4
Prices and quantities for Period 4(when shutdown is uncertain)

Market n- 20 n- 200 n - ]000 n- 15000 n- I00000 n- o0
Be1Lux S.19 9.31 5.26 9.15 5.29 9.07 5.27 9.11 5.27 9.13 5.27 9.12

FRGer 9.77 53.28 4.83 52.17 4.86 51.64 4.84 51.94 4.84 52.02 4.84 52.01

France 4.82 33.77 4.88 32.95 4.91 32.56 4.90 32.78 4.69 32.69 9.89 32.83

Italy 4.87 40.50 4.93 39.77 4.96 39.92 4.94 39.62 4.94 39.67 4.9A 39.66

Netherlands 5.99 23.90 5.99 23.90 5.99 23.90 5.99 23.90 5.99 23.90 5.99 23.90

UK 4.53 53.79 4.58 53.06 4.61 52.71 4.59 52.91 4.59 52.96 4.59 52.95

The solution is a very detailed report containing prices of natural gas in every
rnarket and the amount each producer ships to each market. Since the values of

these quantities in different periods exhibited similar convergence behavior, we

report in Table 4 only the price and quantity information for the last period.

For each n, the number of iterations and the number of function evaluations

required by PATH were 12 and 16 respectively.

Table 4, incidentally, shows that we get quite close to the true solution with a
simulation run length as small as 200 random numbers. That table also shows
that the prices in the Netherlands are the same for each value of n. This is

due to the fact that the Netherlands does not import natural gas and hence
its market price is not affected by the shutdown in Algeria.

~Ve also considered a different version of this problem in which there is no
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Table 5
Pazameters for model with uncertain oil price

t nt ~e ~i ~i

1 -0.10 30 16 34

2 -0.12 15 12 18

3 -0.24 30 24 36

4 -0.36 35 28 42

shutdown in Algeria but in which the prices and demands for natural gas
depend on the uncertain price of oil, and therefore are themselves uncertain.
In this model the demand law (7) is replaced by

P~(Q) -Pj(Q~4~)i~~', (17)

where

Pj -í~`j(aPel~t), - 90j(opt~~e)~`-

Here opt is a random oil price taken to be uniformly distributed on [~r~ ,~r~ ],

ort is a fixed reference price for oil, and ~7t, is an elasticity relating the relative

demand for natural gas to the relative price of oil. The values of r~t, vi~t, ni ,
and ~ri are given in Table 5.

For approximate solution of the limit variational inequality, we sampled from
the uniform distribution at each realization, then averaged the resulting func-
tions to obtain the f„ for the approximating variational inequality. Table 6
presents the results for Period 4 for simulation lengths n- 20, n- 200,
n- 1000, and n- 20000.

For comparison purposes, we then computed the expectation of the quantity
~~,(q~)l~e~ and solved the variational inequality with the limit function; the

solution is given in the column corresponding to n- oo in Table 6. The PATH

solver required the same numbers of iterations and function evaluations as in

the previous model. In both versions, we observed that the amount of time

required to solve the variational inequality did not vary much with the length
of the simulation runs.

For illustrative purposes we formulated these two example problems so that
we could compute the limit functions exactly and could thereby verify the
accuracy of the computed results. In practice, of course, this would not be
possible (otherwise one would not need to use simulation), and it is in no way
necessary for application of the method we have described. Two application
areas in which this method has been successfully used and in which the limit
function is not computable are option pricing [9] and network design [22].
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Table 6
Prices and quantities for Period 4(with demand law (17) in effect)

Market n- 20 n- 200 n- 1000 n- 20000 n- o0
Be1Lux 5.17 9.28 5.18 9.28 5.19 9.31 5.19 9.31 5.19 9.30
FRGer 4.75 53.03 4.76 53.07 4.77 53.27 4.77 53.24 4.77 53.23
France 4.80 33.58 4.81 33.62 4.82 33.78 4.82 33.75 4.82 33.74
Italy 4.85 40.34 4.86 40.36 4.87 40.48 4.87 40.46 4.87 40.46

Netherlands 5.95 23.90 5.97 23.90 5.99 23.90 5.99 23.90 5.99 23.90

UK 4.51 53.65 4.52 53.66 4.53 53.77 4.53 53.75 4.53 53.75

5 Conclusion

In this paper we have shown how to extend a simulation-based method,
sample-path optimization, to solve stochastic variational inequalities. We have
justified the method by exhibiting sufficient conditions for convergence, and we
have presented the results of a small numerical experiment on a non-integrable
economic equilibrium model of the European natural gas market. These results
indicate that the method is implementable. However, we have not presented
any analysis of fts speed of convergence, nnr have we shown how to obtain
confidence regions for the computed results. These questions are the focus of

current research.

One important practical aspect of the method concerns the approximating

functions f,,. For the theory these need only be continuous and converge con-

tinuously to a relatively nice limit f~. However, for computational purposes

more is needed. For example, in the European gas market problem of Section
4 we used the GAMS modeling language for computational solution. To be

able to use GAMS we need a closed form expression for the f,,; the automatic
differentiation capability of GAMS then is used to evaluate gradients of these
functions in order to apply an efficient solution algorithm. This means that
for this example we needed the f„ to be expressible in closed form and dif-
ferentiable; in fact, the underlying theory for the PATH solver requires some
additioc~al conditions on the derivatives [3].

The requirement for a closed-form expression arose because we wanted to use
the automatic diffetentiation capability of GAb4S, so this is not really a basic
requirement. However, most efficient methods for solving variational inequal-

ities will require numerical evaluation of both the f„ and their derivatives. To

avoid this, one might resort to techniques that do not require derivative values,
such as the resolvent method (see [30,31] for example), but the performance of
snch methods is usually considerably worse than that of inethods that utilize
gradient information. In addition, except in special cases it may be difficult
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or impossible to compute the resolvent. An alternate approach when evaluat-
ing exact gradients of the f„ is not possible might be to use approximations
of these gradients in the solution of the variational inequality. Josephy [17]
provides conditions for local convetgence of such solutions. However, we are
not aware of any systematic use of this idea for practical computation, and
therefore we cannot assess its numerical effectiveness.

The model presented in Section 4 is static; uncertaínty enters via one or more
parameters appearing in the model. In such situations it is often realistic to
expect to be able to obtain closed-form expressions for the f,,. There are other
situations in which this can be considerably more difficult. One example of
such a problem is the option-pricing application of [9]. This was a problem
of unconstrained optimization, so f~ was the gradient of a function ~~ and
the problem was to find a zero of d~~. Unfortunately, it was not possible to
find well-behaved approximating functions ~„ whose gradients could be used
as the f,,. Instead, the f„ were obtained by applying methods of perturbation
analysis from [7] and [35] to obtain estimators that could then be averaged to
construct the f,,.

A difbcult case in general appears to be that in which one is modeling a
dynamic system and the f„ relate to performance nf the system as observed
over some time interval, say one of length n. If the underlying problem is
one of optimization and we are solving a variational inequality derived from

the first order optimality conditions, then the f„ will contain gradients of the

objective function, presumably a function related to system performance, and

possibly also gradients of nonlinear constraints (constraints that are entirely

linear can be subsumed in the definition of C). Although it is often possible

to obtain numerical values for such gradients - and hence for the f„ - by
using general methods of perturbation analysis [8,13], at present we know of

no generally applicable method for obtaining derivatives of the f„ in this case.

However, methods are available for some special cases; for example, see [40]

for results for the system times of customers as a function of the parameters

of the service time distributions in a GI~GI~1 queue.

In summary, if the f„ are differentiable and have closed-form expressíons,
then one can conveniently apply modeling languages, such as GAMS, having
automatic differentiation capabilities. When the underlying system is static,
as in the option pricing problem of [9], one may be able to use methods of
perturbation analysis to find closed-form expressions for suitable f„ and their
gradients. When the underlying system is dynamic, the f„ may not have closed
forms, but again one may use perturbation analysis to evaluate them. How to
evaluate their gradients in this case is, however, still largely an open question;
existing methods are tailor-made to specific systems. This seems to be an
important area for further research.
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