3,013 research outputs found

    Saliency maps on image hierarchies

    Get PDF
    © 2015 Elsevier B.V. All rights reserved. In this paper we propose two saliency models for salient object segmentation based on a hierarchical image segmentation, a tree-like structure that represents regions at different scales from the details to the whole image (e.g. gPb-UCM, BPT). The first model is based on a hierarchy of image partitions. The saliency at each level is computed on a region basis, taking into account the contrast between regions. The maps obtained for the different partitions are then integrated into a final saliency map. The second model directly works on the structure created by the segmentation algorithm, computing saliency at each node and integrating these cues in a straightforward manner into a single saliency map. We show that the proposed models produce high quality saliency maps. Objective evaluation demonstrates that the two methods achieve state-of-the-art performance in several benchmark datasets.Peer ReviewedPostprint (author's final draft

    Automated Visual Fin Identification of Individual Great White Sharks

    Get PDF
    This paper discusses the automated visual identification of individual great white sharks from dorsal fin imagery. We propose a computer vision photo ID system and report recognition results over a database of thousands of unconstrained fin images. To the best of our knowledge this line of work establishes the first fully automated contour-based visual ID system in the field of animal biometrics. The approach put forward appreciates shark fins as textureless, flexible and partially occluded objects with an individually characteristic shape. In order to recover animal identities from an image we first introduce an open contour stroke model, which extends multi-scale region segmentation to achieve robust fin detection. Secondly, we show that combinatorial, scale-space selective fingerprinting can successfully encode fin individuality. We then measure the species-specific distribution of visual individuality along the fin contour via an embedding into a global `fin space'. Exploiting this domain, we finally propose a non-linear model for individual animal recognition and combine all approaches into a fine-grained multi-instance framework. We provide a system evaluation, compare results to prior work, and report performance and properties in detail.Comment: 17 pages, 16 figures. To be published in IJCV. Article replaced to update first author contact details and to correct a Figure reference on page

    STNet: Selective Tuning of Convolutional Networks for Object Localization

    Full text link
    Visual attention modeling has recently gained momentum in developing visual hierarchies provided by Convolutional Neural Networks. Despite recent successes of feedforward processing on the abstraction of concepts form raw images, the inherent nature of feedback processing has remained computationally controversial. Inspired by the computational models of covert visual attention, we propose the Selective Tuning of Convolutional Networks (STNet). It is composed of both streams of Bottom-Up and Top-Down information processing to selectively tune the visual representation of Convolutional networks. We experimentally evaluate the performance of STNet for the weakly-supervised localization task on the ImageNet benchmark dataset. We demonstrate that STNet not only successfully surpasses the state-of-the-art results but also generates attention-driven class hypothesis maps

    Hierarchical improvement of foreground segmentation masks in background subtraction

    Full text link
    A plethora of algorithms have been defined for foreground segmentation, a fundamental stage for many computer vision applications. In this work, we propose a post-processing framework to improve foreground segmentation performance of background subtraction algorithms. We define a hierarchical framework for extending segmented foreground pixels to undetected foreground object areas and for removing erroneously segmented foreground. Firstly, we create a motion-aware hierarchical image segmentation of each frame that prevents merging foreground and background image regions. Then, we estimate the quality of the foreground mask through the fitness of the binary regions in the mask and the hierarchy of segmented regions. Finally, the improved foreground mask is obtained as an optimal labeling by jointly exploiting foreground quality and spatial color relations in a pixel-wise fully-connected Conditional Random Field. Experiments are conducted over four large and heterogeneous datasets with varied challenges (CDNET2014, LASIESTA, SABS and BMC) demonstrating the capability of the proposed framework to improve background subtraction resultsThis work was partially supported by the Spanish Government (HAVideo, TEC2014-53176-R
    • …
    corecore