12,251 research outputs found

    ICA-based sparse feature recovery from fMRI datasets

    Get PDF
    Spatial Independent Components Analysis (ICA) is increasingly used in the context of functional Magnetic Resonance Imaging (fMRI) to study cognition and brain pathologies. Salient features present in some of the extracted Independent Components (ICs) can be interpreted as brain networks, but the segmentation of the corresponding regions from ICs is still ill-controlled. Here we propose a new ICA-based procedure for extraction of sparse features from fMRI datasets. Specifically, we introduce a new thresholding procedure that controls the deviation from isotropy in the ICA mixing model. Unlike current heuristics, our procedure guarantees an exact, possibly conservative, level of specificity in feature detection. We evaluate the sensitivity and specificity of the method on synthetic and fMRI data and show that it outperforms state-of-the-art approaches

    Visual and interactive exploration of point data

    Get PDF
    Point data, such as Unit Postcodes (UPC), can provide very detailed information at fine scales of resolution. For instance, socio-economic attributes are commonly assigned to UPC. Hence, they can be represented as points and observable at the postcode level. Using UPC as a common field allows the concatenation of variables from disparate data sources that can potentially support sophisticated spatial analysis. However, visualising UPC in urban areas has at least three limitations. First, at small scales UPC occurrences can be very dense making their visualisation as points difficult. On the other hand, patterns in the associated attribute values are often hardly recognisable at large scales. Secondly, UPC can be used as a common field to allow the concatenation of highly multivariate data sets with an associated postcode. Finally, socio-economic variables assigned to UPC (such as the ones used here) can be non-Normal in their distributions as a result of a large presence of zero values and high variances which constrain their analysis using traditional statistics. This paper discusses a Point Visualisation Tool (PVT), a proof-of-concept system developed to visually explore point data. Various well-known visualisation techniques were implemented to enable their interactive and dynamic interrogation. PVT provides multiple representations of point data to facilitate the understanding of the relations between attributes or variables as well as their spatial characteristics. Brushing between alternative views is used to link several representations of a single attribute, as well as to simultaneously explore more than one variable. PVT’s functionality shows how the use of visual techniques embedded in an interactive environment enable the exploration of large amounts of multivariate point data

    Exploring Human Vision Driven Features for Pedestrian Detection

    Full text link
    Motivated by the center-surround mechanism in the human visual attention system, we propose to use average contrast maps for the challenge of pedestrian detection in street scenes due to the observation that pedestrians indeed exhibit discriminative contrast texture. Our main contributions are first to design a local, statistical multi-channel descriptorin order to incorporate both color and gradient information. Second, we introduce a multi-direction and multi-scale contrast scheme based on grid-cells in order to integrate expressive local variations. Contributing to the issue of selecting most discriminative features for assessing and classification, we perform extensive comparisons w.r.t. statistical descriptors, contrast measurements, and scale structures. This way, we obtain reasonable results under various configurations. Empirical findings from applying our optimized detector on the INRIA and Caltech pedestrian datasets show that our features yield state-of-the-art performance in pedestrian detection.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    Exact asymptotic distribution of change-point mle for change in the mean of Gaussian sequences

    Full text link
    We derive exact computable expressions for the asymptotic distribution of the change-point mle when a change in the mean occurred at an unknown point of a sequence of time-ordered independent Gaussian random variables. The derivation, which assumes that nuisance parameters such as the amount of change and variance are known, is based on ladder heights of Gaussian random walks hitting the half-line. We then show that the exact distribution easily extends to the distribution of the change-point mle when a change occurs in the mean vector of a multivariate Gaussian process. We perform simulations to examine the accuracy of the derived distribution when nuisance parameters have to be estimated as well as robustness of the derived distribution to deviations from Gaussianity. Through simulations, we also compare it with the well-known conditional distribution of the mle, which may be interpreted as a Bayesian solution to the change-point problem. Finally, we apply the derived methodology to monthly averages of water discharges of the Nacetinsky creek, Germany.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS294 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    t-Exponential Memory Networks for Question-Answering Machines

    Full text link
    Recent advances in deep learning have brought to the fore models that can make multiple computational steps in the service of completing a task; these are capable of describ- ing long-term dependencies in sequential data. Novel recurrent attention models over possibly large external memory modules constitute the core mechanisms that enable these capabilities. Our work addresses learning subtler and more complex underlying temporal dynamics in language modeling tasks that deal with sparse sequential data. To this end, we improve upon these recent advances, by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network parameters as latent variables with a prior distribution imposed over them. Our statistical assumptions go beyond the standard practice of postulating Gaussian priors. Indeed, to allow for handling outliers, which are prevalent in long observed sequences of multivariate data, multivariate t-exponential distributions are imposed. On this basis, we proceed to infer corresponding posteriors; these can be used for inference and prediction at test time, in a way that accounts for the uncertainty in the available sparse training data. Specifically, to allow for our approach to best exploit the merits of the t-exponential family, our method considers a new t-divergence measure, which generalizes the concept of the Kullback-Leibler divergence. We perform an extensive experimental evaluation of our approach, using challenging language modeling benchmarks, and illustrate its superiority over existing state-of-the-art techniques

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Semantic Image Retrieval via Active Grounding of Visual Situations

    Full text link
    We describe a novel architecture for semantic image retrieval---in particular, retrieval of instances of visual situations. Visual situations are concepts such as "a boxing match," "walking the dog," "a crowd waiting for a bus," or "a game of ping-pong," whose instantiations in images are linked more by their common spatial and semantic structure than by low-level visual similarity. Given a query situation description, our architecture---called Situate---learns models capturing the visual features of expected objects as well the expected spatial configuration of relationships among objects. Given a new image, Situate uses these models in an attempt to ground (i.e., to create a bounding box locating) each expected component of the situation in the image via an active search procedure. Situate uses the resulting grounding to compute a score indicating the degree to which the new image is judged to contain an instance of the situation. Such scores can be used to rank images in a collection as part of a retrieval system. In the preliminary study described here, we demonstrate the promise of this system by comparing Situate's performance with that of two baseline methods, as well as with a related semantic image-retrieval system based on "scene graphs.
    corecore