387 research outputs found

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Automated highway systems : platoons of vehicles viewed as a multiagent system

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2005-2006La conduite collaborative est un domaine lié aux systèmes de transport intelligents, qui utilise les communications pour guider de façon autonome des véhicules coopératifs sur une autoroute automatisée. Depuis les dernières années, différentes architectures de véhicules automatisés ont été proposées, mais la plupart d’entre elles n’ont pas, ou presque pas, attaqué le problème de communication inter véhicules. À l’intérieur de ce mémoire, nous nous attaquons au problème de la conduite collaborative en utilisant un peloton de voitures conduites par des agents logiciels plus ou moins autonomes, interagissant dans un même environnement multi-agents: une autoroute automatisée. Pour ce faire, nous proposons une architecture hiérarchique d’agents conducteurs de voitures, se basant sur trois couches (couche de guidance, couche de management et couche de contrôle du trafic). Cette architecture peut être utilisée pour développer un peloton centralisé, où un agent conducteur de tête coordonne les autres avec des règles strictes, et un peloton décentralisé, où le peloton est vu comme une équipe d’agents conducteurs ayant le même niveau d’autonomie et essayant de maintenir le peloton stable.Collaborative driving is a growing domain of Intelligent Transportation Systems (ITS) that makes use of communications to autonomously guide cooperative vehicles on an Automated Highway System (AHS). For the past decade, different architectures of automated vehicles have been proposed, but most of them did not or barely addressed the inter-vehicle communication problem. In this thesis, we address the collaborative driving problem by using a platoon of cars driven by more or less autonomous software agents interacting in a Multiagent System (MAS) environment: the automated highway. To achieve this, we propose a hierarchical driving agent architecture based on three layers (guidance layer, management layer and traffic control layer). This architecture can be used to develop centralized platoons, where the driving agent of the head vehicle coordinates other driving agents by applying strict rules, and decentralized platoons, where the platoon is considered as a team of driving agents with a similar degree of autonomy, trying to maintain a stable platoon

    Formation control of autonomous vehicles with emotion assessment

    Get PDF
    Autonomous driving is a major state-of-the-art step that has the potential to transform the mobility of individuals and goods fundamentally. Most developed autonomous ground vehicles (AGVs) aim to sense the surroundings and control the vehicle autonomously with limited or no driver intervention. However, humans are a vital part of such vehicle operations. Therefore, an approach to understanding human emotions and creating trust between humans and machines is necessary. This thesis proposes a novel approach for multiple AGVs, consisting of a formation controller and human emotion assessment for autonomous driving and collaboration. As the interaction between multiple AGVs is essential, the performance of two multi-robot control algorithms is analysed, and a platoon formation controller is proposed. On the other hand, as the interaction between AGVs and humans is equally essential to create trust between humans and AGVs, the human emotion assessment method is proposed and used as feedback to make autonomous decisions for AGVs. A novel simulation platform is developed for navigating multiple AGVs and testing controllers to realise this concept. Further to this simulation tool, a method is proposed to assess human emotion using the affective dimension model and physiological signals such as an electrocardiogram (ECG) and photoplethysmography (PPG). The experiments are carried out to verify that humans' felt arousal and valence levels could be measured and translated to different emotions for autonomous driving operations. A per-subject-based classification accuracy is statistically significant and validates the proposed emotion assessment method. Also, a simulation is conducted to verify AGVs' velocity control effect of different emotions on driving tasks

    Activity Report: Automatic Control 2013

    Get PDF

    Security of Vehicular Platooning

    Get PDF
    Platooning concept involves a group of vehicles acting as a single unit through coordination of movements. While Platooning as an evolving trend in mobility and transportation diminishes the individual and manual driving concerns, it creates new risks. New technologies and passenger’s safety and security further complicate matters and make platooning attractive target for the malicious minds. To improve the security of the vehicular platooning, threats and their potential impacts on vehicular platooning should be identified to protect the system against security risks. Furthermore, algorithms should be proposed to detect intrusions and mitigate the effects in case of attack. This dissertation introduces a new vulnerability in vehicular platooning from the control systems perspective and presents the detection and mitigation algorithms to protect vehicles and passengers in the event of the attack

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years
    • …
    corecore