55,983 research outputs found

    Enhancing Exploration and Safety in Deep Reinforcement Learning

    Get PDF
    A Deep Reinforcement Learning (DRL) agent tries to learn a policy maximizing a long-term objective by trials and errors in large state spaces. However, this learning paradigm requires a non-trivial amount of interactions in the environment to achieve good performance. Moreover, critical applications, such as robotics, typically involve safety criteria to consider while designing novel DRL solutions. Hence, devising safe learning approaches with efficient exploration is crucial to avoid getting stuck in local optima, failing to learn properly, or causing damages to the surrounding environment. This thesis focuses on developing Deep Reinforcement Learning algorithms to foster efficient exploration and safer behaviors in simulation and real domains of interest, ranging from robotics to multi-agent systems. To this end, we rely both on standard benchmarks, such as SafetyGym, and robotic tasks widely adopted in the literature (e.g., manipulation, navigation). This variety of problems is crucial to assess the statistical significance of our empirical studies and the generalization skills of our approaches. We initially benchmark the sample efficiency versus performance trade-off between value-based and policy-gradient algorithms. This part highlights the benefits of using non-standard simulation environments (i.e., Unity), which also facilitates the development of further optimization for DRL. We also discuss the limitations of standard evaluation metrics (e.g., return) in characterizing the actual behaviors of a policy, proposing the use of Formal Verification (FV) as a practical methodology to evaluate behaviors over desired specifications. The second part introduces Evolutionary Algorithms (EAs) as a gradient-free complimentary optimization strategy. In detail, we combine population-based and gradient-based DRL to diversify exploration and improve performance both in single and multi-agent applications. For the latter, we discuss how prior Multi-Agent (Deep) Reinforcement Learning (MARL) approaches hinder exploration, proposing an architecture that favors cooperation without affecting exploration

    Clipped-Objective Policy Gradients for Pessimistic Policy Optimization

    Full text link
    To facilitate efficient learning, policy gradient approaches to deep reinforcement learning (RL) are typically paired with variance reduction measures and strategies for making large but safe policy changes based on a batch of experiences. Natural policy gradient methods, including Trust Region Policy Optimization (TRPO), seek to produce monotonic improvement through bounded changes in policy outputs. Proximal Policy Optimization (PPO) is a commonly used, first-order algorithm that instead uses loss clipping to take multiple safe optimization steps per batch of data, replacing the bound on the single step of TRPO with regularization on multiple steps. In this work, we find that the performance of PPO, when applied to continuous action spaces, may be consistently improved through a simple change in objective. Instead of the importance sampling objective of PPO, we instead recommend a basic policy gradient, clipped in an equivalent fashion. While both objectives produce biased gradient estimates with respect to the RL objective, they also both display significantly reduced variance compared to the unbiased off-policy policy gradient. Additionally, we show that (1) the clipped-objective policy gradient (COPG) objective is on average "pessimistic" compared to both the PPO objective and (2) this pessimism promotes enhanced exploration. As a result, we empirically observe that COPG produces improved learning compared to PPO in single-task, constrained, and multi-task learning, without adding significant computational cost or complexity. Compared to TRPO, the COPG approach is seen to offer comparable or superior performance, while retaining the simplicity of a first-order method.Comment: 12 pages, 8 figure

    Detecting Adversarial Directions in Deep Reinforcement Learning to Make Robust Decisions

    Full text link
    Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.Comment: Published in ICML 202
    corecore