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Whenever someone asks me if reinforcement learning can solve their problem,
I tell them it can’t. I think this is right at least 70% of the time.

Alex Irpan (2018)
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Abstract
A Deep Reinforcement Learning (DRL) agent tries to learn a policy maximizing a
long-term objective by trials and errors in large state spaces (Sutton and Barto, 2018).
However, this learning paradigm requires a non-trivial amount of interactions in the
environment to achieve good performance. Moreover, critical applications, such as
robotics (OpenAI et al., 2019), typically involve safety criteria to consider while de-
signing novel DRL solutions. Hence, devising safe learning approaches with efficient
exploration is crucial to avoid getting stuck in local optima, failing to learn properly,
or causing damages to the surrounding environment (Garcıa and Fernández, 2015).

This thesis focuses on developing Deep Reinforcement Learning algorithms to foster
efficient exploration and safer behaviors in simulation and real domains of interest,
ranging from robotics to multi-agent systems. To this end, we rely both on standard
benchmarks, such as SafetyGym (Ray et al., 2019), and robotic tasks widely adopted
in the literature (e.g., manipulation (Gu et al., 2017), navigation (Tai et al., 2017)).
This variety of problems is crucial to assess the statistical significance of our empirical
studies and the generalization skills of our approaches (Henderson et al., 2018).

We initially benchmark the sample efficiency versus performance trade-off between
value-based and policy-gradient algorithms. This part highlights the benefits of us-
ing non-standard simulation environments (i.e., Unity (Juliani et al., 2018)), which
also facilitates the development of further optimization for DRL. We also discuss the
limitations of standard evaluation metrics (e.g., return) in characterizing the actual
behaviors of a policy, proposing the use of Formal Verification (FV) (Liu et al., 2019)
as a practical methodology to evaluate behaviors over desired specifications.

The second part introduces Evolutionary Algorithms (EAs) (Fogel, 2006) as a gradient-
free complimentary optimization strategy. In detail, we combine population-based and
gradient-based DRL to diversify exploration and improve performance both in single
and multi-agent applications. For the latter, we discuss how prior Multi-Agent (Deep)
Reinforcement Learning (MARL) approaches hinder exploration (Rashid et al., 2018),
proposing an architecture that favors cooperation without affecting exploration.
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Chapter 1

Introduction

Life forms on earth are born inheriting character and behavioral traits, yet they do
not know how to behave effectively in their native environment. For example, in
the human race, a child must learn to walk, a teenager to drive, and a parent to
care for children. Meanwhile, they must also learn how to interact safely with their
surroundings because changing the environment to avoid hazards is not always possible
(e.g., covering the edges of furniture for children).

Decision-making is thus the foundation brick that enables life forms, including artifi-
cial ones, to explore and learn novel behaviors. Deciding how to act also represents
the common factor for all the situations where a subject acquires and uses a particular
skill while avoiding hazards. In addition, every decision influences the surrounding
environment either with short or long-term consequences, and the multitude of ac-
tions coming from different individuals cause the scenario to be uncertain. Hence,
collecting and adapting past experiences to unseen situations is crucial for achieving
the objective without risks.

Drawing inspiration from behaviorist psychology, Reinforcement Learning (RL) mod-
els decision-making problems using agents that act in an environment to learn a policy,
solving a specific task. Hence, agents simulate the typical behavior of biological (or
artificial) subjects, interacting with the environment in a trial and errors fashion to
maximize a long-term objective called return (Sutton and Barto, 2018). Consequently,
the typical issues we raised in the context of life forms (i.e., exploring efficiently to
learn robust behaviors while fostering safety) are also two critical challenges in modern
RL.

Due to the tremendous performance of non-linear function approximators to deal
with large state-action spaces, research in the Reinforcement Learning area recently
focused on using Deep Neural Networks (DNNs). This field of research known as
Deep Reinforcement Learning (DRL) has recently driven astonishing progress in a
wide variety of domains, ranging from robotics (OpenAI et al., 2019; Gu et al., 2017;
Tai et al., 2017; Tan et al., 2018) to games (Silver et al., 2018a; Mnih et al., 2013a;
Vinyals et al., 2019). The peculiar ability to generalize the decision-making process
in unseen situations makes this learning framework suitable for high-dimensional se-
quential problems. A key example is the ability of DRL to outclass prior supervised
and unsupervised learning paradigms, attaining superhuman performance in Chess,
Shogi, and Go within a single self-play system that mastered these games at a super-
human level (Silver et al., 2018b). However, despite the impressive successes, Deep
Reinforcement Learning suffers from the issues of decision-making systems and intro-
duces other limitations associated with the use of DNNs (e.g., convergence to local
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optima). Moreover, the large amount of environment interactions required to learn
makes sample efficiency and safety the crucial problems in recent research for practi-
cal applications. Hence, devising safer learning approaches that efficiently explore the
environment to learn robust behaviors represents one of the core issues that hinder a
broader application of Deep Reinforcement Learning-based techniques to real-world
problems.

1.1 Contributions

This thesis focuses on improving exploration and safety of learned behaviors by aug-
menting standard gradient-based optimization with Evolutionary Algorithms (EAs)
(Fogel, 2006; Montana and Davis, 1989) and Formal Verification (FV) (Liu et al.,
2019; Singh et al., 2019) techniques. We begin by summarizing the challenges we
address that contain the main body of our work.

1.1.1 Benchmarking Exploration

The non-trivial number of interactions with the environment required by Deep Re-
inforcement Learning algorithms to achieve human (or superhuman) performance is
one of the main factors that hinder its applicability outside of research demos (Pathak
et al., 2017; Ostrovski et al., 2017). For example, the first algorithm capable of out-
performing average human performance on all the suite of 57 Atari games required
several orders of magnitude more iterations than the ones of a human player (Badia
et al., 2020). This inefficiency intuitively becomes more evident in the context of
multi-agent applications, where the cardinality of the state-action space to explore
grows exponentially in the number of agents.

The sample efficiency problem and how we collect and re-use past samples represent
the first challenge in our work. In more detail, recent Deep Reinforcement Learning
literature for robotic control mainly focuses on policy-gradient (or actor-critic) algo-
rithms with continuous action spaces. However, it is well-known that value-based al-
gorithms with discrete action spaces offer a better sample efficiency, possibly resulting
in shorter training times. We summarize such efficiency in Figure 1.1 that highlights
a clear distinction in terms of sample efficiency among the variety of Reinforcement
Learning techniques.

Figure 1.1: Schematic overview of Reinforcement Learning sample
efficiency according to Dorner (2021).

In this direction, we benchmark (on-policy) policy-gradient and (off-policy) value-
based Deep Reinforcement Learning approaches in robotic applications to show their
efficiency and discuss how the experience collection and management process can be
improved to increase the performance of existing algorithms.
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Moreover, we note that the typical evaluation of a DRL system relies (possibly) on
non-informative metrics (e.g., cumulative reward or success rate). Hence, we argue
that such evaluations do not guarantee the desired behaviors of the trained policies
in scenarios involving safety or high-cost equipment (e.g., robotics). To this end,
we employ Formal Verification (Corsi et al., 2021) to characterize the Deep Neural
Network’s decision-making process.

1.1.2 Enhancing Exploration

Improving the way samples are collected, memorized, and retrieved can drastically
improve performance. However, Deep Reinforcement Learning algorithms also suffer
from convergence to local optima due to the typical non-linear nature of Deep Neural
Networks and the lack of diverse exploration when operating in high-dimensional
spaces. While local optima are intrinsic to using these function approximators, the
latter is an active topic of interest.

Several studies address the lack of exploration relying on sensitive domain-specific
hyper-parameters (e.g., curiosity-driven and count-based exploration (Pathak et al.,
2017; Ostrovski et al., 2017)). The sensitivity to such hyper-parameters, however,
represents a significant issue for Deep Reinforcement Learning as it typically results
in brittle convergence properties and poor performance in practical tasks (Haarnoja
et al., 2018; Henderson et al., 2018).

Conversely, Evolutionary Algorithms (Fogel, 2006) have been recently employed as
a promising gradient-free optimization alternative over gradient-based DRL. The im-
plicit redundancy of these population-based approaches has the advantages of enabling
diverse exploration and improving robustness, leading to a more stable convergence.
In particular, Genetic Algorithms (GAs) (Montana and Davis, 1989) achieved compet-
itive returns compared to gradient-based Deep Reinforcement Learning (Such et al.,
2017), and are characterized by lower computational cost (see Figure 1.2 for the gen-
eral flow of a standard GA). These gradient-free approaches, however, struggle to solve
high-dimensional problems having poor generalization skills and, as shown in Figure
1.1, are significantly less sample efficient than gradient-based methods. In more de-
tail, genetic approaches do not use gradient information to guide the learning process.
Hence they require a higher number of interactions to match standard DRL returns.
However, the lack of gradient computation also makes Genetic Algorithm interactions
significantly faster.

In contrast to this dual perspective that uses either gradient-based Deep Reinforce-
ment Learning or gradient-free Evolutionary Algorithms, we follow an emergent re-
search direction that proposes the combination of the two families of approaches. This
combination takes inspiration from the physical world, where evolution and learning
cooperate in assimilating the best of both solutions (Simpson, 1953). In this direction,
we discuss the design of novel frameworks that merges the beneficial aspects of GAs
with (possibly) any DRL algorithm.

Moreover, we extend our discussion to the Multi-Agent (Deep) Reinforcement Learn-
ing (MARL) domain, where value decomposition algorithms represent a recent re-
search direction to improve performance and favor cooperative behaviors (Sunehag
et al., 2018; Rashid et al., 2018, 2020; Son et al., 2019). In this context, enhancing the
exploration skills of the agents is crucial as the typical non-stationarity environment



4 Chapter 1. Introduction

Figure 1.2: Typical flow of a Genetic Algorithm. After creating an
initial population, a GA evaluates and selects the best individuals in
the population according to a specified criteria. Individuals are then
combined via evolutionary operators (i.e., crossover and mutation) to
form a new population. This process repeats until a convergence cri-

teria is met.

makes it harder to explore the environment and foster cooperative behaviors effi-
ciently. Hence, we discuss the design of value decomposition algorithms and propose
an evolutionary search to enhance performance further.

1.1.3 Fostering Safer Behaviors

Learning how to interact within the surrounding environment safely is the crucial
component that allows life forms to grow and evolve while learning novel behaviors.
Fostering a safer interaction with the environment is vital to avoid causing damages
to the surroundings, nearby subjects, or the agent itself. Safe Deep Reinforcement
Learning is thus a crucial research area, complementary to the issues related to explo-
ration that we have to address for promoting broader applicability of DRL systems
to real-world scenarios.

In this direction, several learning paradigms incorporate auxiliary objectives, similar
to the reward function, to model safe (or unsafe) situations (Garcıa and Fernández,
2015) and maintain safety specifications separate from the task objective (e.g., the
return). Such additional signal, which the literature typically refers to as cost, is then
exploited to foster safety using different techniques.

For example, Multi-Objective (Deep) Reinforcement Learning (MORL) aims at learn-
ing policies to optimize the different criteria simultaneously (Liu et al., 2015; Yang
et al., 2019). Hence, it is possible to change the underlying optimization process to
minimize the additional cost function. However, explicitly learning behaviors over
multiple preferences (i.e., optimizing multiple signals) is challenging, and prior work
either converges to an average policy over the objectives or presents poor scalability
to high-dimensional spaces (Roijers et al., 2014; Vamplew et al., 2011).
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Conversely, a recent Safe Deep Reinforcement Learning trend employs constrained
processes (Altman, 1999; Stooke et al., 2020) to incorporate the safety signal in the
optimization process via constraints. The idea here is to minimize the additional cost
signal (that models unsafe behaviors) while maximizing the return (Chow et al., 2018;
Liu et al., 2020). However, constraints hinder exploration and cause a significant trade-
off in performance as the goal of such approaches is to limit the cost accumulation at
the expense of low returns, which in practice result in poorly learned behaviors (Ray
et al., 2019).

A different approach aims at estimating the probability of incurring into unsafe states
(i.e., a failure), given the current state-action pair, by training a so-called Safety
Critic (Thananjeyan et al., 2020; Bharadhwaj et al., 2021; Thananjeyan et al., 2021).
However, these additional estimators could return misleading information, especially
in the early stages of the training where the critics are pre-trained on offline data
that should cover a wide variety of undesired behaviors to ensure correct estimations.
In addition, computing the probability of failure at each step causes non-negligible
overhead in the action sampling process. The decision-making of Deep Reinforcement
Learning systems must exhibit a tractable computational demand to avoid hindering
the application to real-world physical platforms that require high-frequency control
(e.g., robotics).

We investigate the Safe DRL field under a different perspective by employing existing
Formal Verification techniques to characterize the decision-making process of a Deep
Neural Network over desired specifications (Liu et al., 2019), which are typically pro-
vided in a safety-critical context. We initially benchmark the performance of Deep
Reinforcement Learning algorithms over this additional aspect. Hence, we discuss
the design of novel evolutionary operators and training processes that exploits FV to
complement existing DRL approaches and foster safer behaviors.

1.1.4 Summary of the Contributions

In summary, the following points highlight the contribution that this thesis makes to
the state-of-the-art:

1. In the context of benchmarking exploration:

• We develop novel robotic simulation environments based on Unity (Juliani
et al., 2018),1 showing that this game engine offers significantly lower train-
ing times over traditional simulators such as Gazebo, a standard choice for
robotic platforms controlled with the Robot Operating System (ROS).2 We
use two practical tasks:

(a) Trajectory generation for a manipulator (Gu et al., 2017).

(b) Mapless navigation for a mobile robot (Tai et al., 2017).

These real-world inspired tasks are used to show that it is possible to trans-
fer the model trained in Unity on Gazebo and on real robotic platforms
(using Robot Operating System). Crucially, this is possible without addi-
tional tuning or training.

1www.unity.com
2www.ros.org
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• We benchmark policy-gradient, actor-critic, and value-based approaches in
the practical mapless navigation domain, which is a widely adopted bench-
mark in recent Deep Reinforcement Learning literature for robotics (Tai
et al., 2017; Zhang et al., 2017; Kretzschmar et al., 2016; Wahid et al.,
2019; Chiang et al., 2019). Our results show that value-based DRL ap-
proaches with discrete action spaces are a more sample efficient alternative
over policy-gradient algorithms while resulting in comparable or better per-
formance in tasks that employ physical control. We further enhance the
results of these approaches (i.e., returns and training time) using asyn-
chronous parallel training phases and multi-batch memories to employ the
visited samples efficiently.

• We leverage Formal Verification to show that standard evaluation metrics
(e.g., success rate) do not provide guarantees on the actual behavior of
the trained policies. In this direction, we also show that optimizing the
training process with, for example, scaling discount factors and supervised
exploration also leads to models with better behaviors (e.g., smoother tra-
jectories).

2. Regarding the exploration enhancement:

• We empirically evaluate prior combinations of Deep Reinforcement Learn-
ing and Evolutionary Algorithms in a navigation scenario with a discrete
action space. We exploit this evaluation to discuss why the combina-
tion of previous work (Khadka and Tumer, 2018; Bodnar, 2020; Pourchot
and Sigaud, 2019) with value-based algorithms leads to detrimental perfor-
mance, obtaining lower return than using the only value-based algorithm.

• We develop a general framework that allows the combination of EAs with
policy-gradient, actor-critic, and value-based algorithms, ensuring to match
the performance of the DRL approach in a worst-case scenario (i.e., avoid-
ing drawbacks on the return). Furthermore, we show that our framework
addresses the sensitivity of Deep Reinforcement Learning algorithms to
hyper-parameters, significantly improving the returns in settings that re-
sult in pathological performance of the only DRL component (e.g., a specific
seed initialization).

• We extend the discussion to the Multi-Agent (Deep) Reinforcement Learn-
ing setting, where the environment complexity makes it challenging to ex-
plore the environment and foster cooperative behaviors efficiently. Further-
more, we discuss the limitation of prior MARL approaches and propose a
novel architecture that obtains superior performance and is compatible
with our combined approach.

3. Finally, to motivate our perspective on fostering safer behaviors:

• We use Formal Verification to evaluate the safety of policy-gradient and
value-based approaches over desired specifications that model safe behav-
iors. To this end, we use aquatic navigation as a highly challenging evalu-
ation task due to the non-stationary environment and the uncertainties of
the robotic platform. In this scenario, it is crucial to consider the safety
aspect by analyzing the behavior of the trained network.
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• We introduce a safe-oriented population-based framework characterized by
gradient-informed evolutionary operators that work on top of existing Deep
Reinforcement Learning algorithms to bias policies toward safety without
multi-objective or constrained optimization. Furthermore, we confirm the
benefits of our safety-oriented operators in biasing the policies, using For-
mal Verification.

• We propose to relax the formal guarantees of Formal Verification to analyze
the model behaviors tractably in the training loop. Hence, we integrate this
component in our safe-oriented evolutionary framework to introduce a form
of prior knowledge on safety (i.e., the desired specifications of FV) in the
training loop.

1.2 Thesis Outline

When taken together the above contributions pave the way towards the use of DRL
approaches in realistic scenarios (e.g., robotics applications). However, the main crit-
icism of Deep Reinforcement Learning is that despite the impressive successes in spe-
cific areas, it is known to be hard and does not always lead to valuable results (Alex
Irpan, 2018). For example, DRL generally overfits, it is typically unstable and relies
on reward functions that are difficult to design. Initialization with different random
seeds has thus a crucial role in DRL, and running enough experiments is the current
known way to address such issues (Henderson et al., 2018).

For this reason, before discussing the thesis outline, in what follows we clarify our vi-
sion on Deep Reinforcement Learning research that brings us to the current manuscript.
We initially focused on understanding the pros and cons of state-of-the-art Deep Re-
inforcement Learning approaches in widely considered benchmarks. This approach
helps to become familiar with the main concepts and terminology in DRL, focusing
on current algorithms to deeply understand their insights, applicability, and limita-
tions. Such extensive analysis naturally shifted our attention to considering the same
aspects for the environments where evaluation metrics are typically collected. In this
context, we broadly characterize the limitations of current benchmarks, designing
novel problem settings to make progress on them. Thus, among the wide range of
topics available in the literature (e.g., exploration, sim-to-real transfer, multi-agent),
we chose to push the boundaries of exploration, which is the crucial component re-
sponsible for the performance of (possibly) any Reinforcement Learning model. In
this direction, we explored novel ways to address the limitation of state-of-the-art
approaches, by proposing evolutionary approaches and novel value decomposition
methodologies. Hence, Safe Deep Reinforcement Learning represented the natural
path for our research due to its close connection with exploration, the critical impor-
tance in real-world applications (such as the ones investigated in the first part, i.e.,
robotic navigation in static and dynamic environments and manipulation) and, more
generally, the future of this research field.

Regarding the thesis outline, we begin with a review chapter that covers basic knowl-
edge of Deep Neural Network and Deep Reinforcement Learning which are necessary
to understand the following parts and lay the conceptual notations for the manuscript.
Therefore, we divide the thesis into three main parts that cover the contributions of
our work, which we briefly summarize in the following:
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Benchmarking Exploration

Part I focuses on the importance of choosing the appropriate approach for a partic-
ular task, benchmarking different DRL algorithms (i.e., value-based, policy-gradient,
and actor-critic) in robotics simulators. We propose further optimizations (i.e., asyn-
chronous parallel training, multi-batch memory, scaling discount factor) that improve
the overall return while reducing training time.

• Chapter 3 (Unity Simulation for Robotics) discusses state-of-the-art results in
Deep Reinforcement Learning applied to robotic platforms, that recent work
achieved mainly using ROS-based simulations and transferring the policy on
real platforms (Zhao et al., 2020; Ding et al., 2020). Hence, we present three
robotic environments:

1. Trajectory generation for a commercial manipulator (Section 3.3).

2. Mapless navigation for an indoor mobile robot (Section 3.4.1).

3. Navigation for an outdoor aquatic drone (Section 3.4.2).

These environments use novel simulation software, Unity (Juliani et al., 2018).
In particular, we show that it is possible to export a model trained in a Unity
environment, to a conventional ROS simulator (i.e., Gazebo and RViz) and the
real robot, without additional training. This work has previously been presented
in Marchesini et al. (2019); Marchesini and Farinelli (2020a).

• Chapter 4 (Benchmarking Sample Efficiency) presents an evaluation of exist-
ing Deep Reinforcement Learning algorithms and further optimizations into the
robotic scenarios. Our goal is to improve the performance of existing approaches
and highlight the importance of choosing a particular algorithm, depending on
task-related requirements (e.g., smoother navigation, shorter trajectories). In
particular, we show that value-based DRL could be a viable and more efficient
alternative over policy-gradient and actor-critic algorithms for tasks of practical
interest. This work has previously been presented in Marchesini and Farinelli
(2020a); Marzari et al. (2021).

• Chapter 5 (Evaluating Decision-Making) shows the limitations of standard eval-
uation parameters (e.g., cumulative reward), which are not informative enough
in evaluating the behaviors of a trained model. To this end, we discuss the
designing of formal metrics to measure the safety of Deep Neural Network using
prior Formal Verification approaches. This work has previously been presented
in Corsi et al. (2020); Pore et al. (2021).

Enhancing Exploration

Part II addresses the limitations of Deep Reinforcement Learning in the context of
achieving efficient exploration in single and multi-agent domains. To this end, we
discuss two different approaches:

1. We focus on Evolutionary Algorithms to complement prior gradient-based algo-
rithms with population-based approaches.

2. We propose a value decomposition solution to favor cooperative behaviors in
multi-agent settings.

In more detail:
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• Chapter 6 (Combining Deep Reinforcement Learning with Evolutionary Algo-
rithms) highlights the recent trend of merging the benefits of gradient-based
and gradient-free approaches. We discuss the current methodologies designed
in this field and, following the insights of Chapter 4, we highlight their signif-
icant performance trade-off when applied to value-based Deep Reinforcement
Learning algorithms.

• Chapter 7 (Genetic Soft Updates for Policy Evolution) presents our combined
framework that, in contrast to prior work, is compatible with any DRL approach.
We show that our population-based solution generates diverse experiences and
finds better policies, improving the robustness of the overall approach to detri-
mental initialization that would cause pathological performance to the only Deep
Reinforcement Learning algorithm. This work has previously been presented in
Marchesini and Farinelli (2020b); Marchesini et al. (2021).

• Chapter 8 (Global Dueling Q-Learning) extends our work to the Multi-Agent
(Deep) Reinforcement Learning domain. In detail, we discuss how current
MARL algorithms hinder exploration, proposing a Deep Neural Network ar-
chitecture to overcome such limitations. Moreover, we extend this approach
with our insights on the combination of DRL with Evolutionary Algorithms.
This work has previously been presented in Marchesini and Farinelli (2021a,b).

Exploring for Safer Behaviors

Part III analyzes the effects of prior Safe Deep Reinforcement Learning work (Ray
et al., 2019; Stooke et al., 2020; Liu et al., 2020; Thananjeyan et al., 2020) on explo-
ration, proposing a different perspective to foster safer behaviors using Evolutionary
Algorithms and Formal Verification.

• Chapter 9 (Quantifying Safe Behaviors) uses our evaluation metrics based on
FV to quantify the number of correct decisions that a trained Deep Neural
Network makes over desired specifications. We evaluate policy-gradient and
value-based approaches, along with their combination with EAs, in a complex
non-stationary scenario (i.e., aquatic navigation) to discuss the benefits of each
solution in the context of Safe Deep Reinforcement Learning. We also employ
FV to confirm further that our evolutionary framework biases the exploration
process in the direction of more robust policy regions with higher returns. This
work has previously been presented in Marchesini et al. (2021a); Corsi et al.
(2021).

• Chapter 10 (Safety-Oriented Search) proposes a different perspective to fos-
ter safety, using Evolutionary Algorithms with gradient-informed mutations de-
signed to explore safer behaviors. We also explore an approximated form of
Formal Verification to inject prior knowledge on desired safety specifications in
the training loop without significant overhead. This work has previously been
presented in Marchesini et al. (2021b); Corsi et al. (2020).

We conclude in Chapter 11 (Conclusions and Future Directions) with a broad dis-
cussion of progress and possible future research directions in the context of Deep
Reinforcement Learning exploration and safety.
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1.3 Related Work

In this section, we provide a high-level overview of the most related work to this thesis.
We seek to provide the reader with a general overview of the state-of-the-art while
clarifying our line of research. We refer to the individuals’ chapters for a much more
thorough review of related work.

State-of-the-art results in Deep Reinforcement Learning have been achieved mainly
using simulation and transferring the policy on real platforms (Juliani et al., 2018;
OpenAI et al., 2019; Zhao et al., 2020; Ding et al., 2020). For this reason, simu-
lation environments are the key component that allows the design and evaluation
of novel approaches. For example, Arcade Learning Environment (ALE) (Machado
et al., 2018) is still a widely adopted evaluation benchmark for value-based algo-
rithms (Mnih et al., 2013b; van Hasselt et al., 2016; Wang et al., 2016; Hessel et al.,
2018; Bellemare et al., 2017), while the MuJoCo (Todorov et al., 2012) physics-based
tasks are a benchmark for policy-gradient solutions (Lillicrap et al., 2016; Fujimoto
et al., 2018; Schulman et al., 2017; Haarnoja et al., 2018). However, benchmarking
environments are constrained by the limitations of the simulation platforms that can
not always provide meaningful challenges to novel learning systems. Hence, exploring
novel frameworks for the development of testing environments is crucial (Juliani et al.,
2018). Despite the significant progresses achieved in simulation, several works (Mania
et al., 2018; Henderson et al., 2018; Colas et al., 2019) criticized the importance of
choosing benchmarks to evaluate DRL research. It is well known that reproducibility,
proper experimental techniques, and reporting procedures for the results are crucial,
yet often underestimated points in recent literature.

The lack of diverse exploration in high-dimensional spaces is one of the core issues in
Deep Reinforcement Learning that brings together the problems related to robust eval-
uations and broader applications to more complex scenarios. Moreover, Multi-Agent
(Deep) Reinforcement Learning tasks aggravate the space dimensionality issue further,
introducing other problems related, for example, to the cooperation/competition of
the agents and their credit assignment (Sunehag et al., 2018; Rashid et al., 2018).
Standard exploration strategies (e.g., ϵ-greedy action selection (Sutton and Barto,
2018), noisy networks (Fortunato et al., 2017), stochastic policies (Schulman et al.,
2017)) are inadequate when considering sparse reward or action/observation spaces
that are too large. Intrinsic motivation approaches have been adopted to encour-
age better exploration (Hong et al., 2018; Ostrovski et al., 2017; Conti et al., 2018;
Pathak et al., 2017). However, such methods typically rely on sensitive task-specific
hyper-parameters that hinder convergence properties and reproducibility further. In
contrast, Evolutionary Algorithms (Fogel, 2006; Montana and Davis, 1989) naturally
offer diverse and robust exploration due to their population-based formulation. For
this reason, EAs have been adopted to complement gradient-based Deep Reinforce-
ment Learning, merging the benefits of both solutions (Khadka and Tumer, 2018;
Khadka et al., 2019; Pourchot and Sigaud, 2019; Colas et al., 2018).

Hence, we focus on the field of Safe DRL, where exploration and safety evaluations
are critical (Ray et al., 2019). In this context, we analyze how prior work based
on constrained approaches limits exploration, resulting in a significant performance
trade-off (i.e., reward versus safety) (Stooke et al., 2020; Chow et al., 2018; Achiam
et al., 2017; Liu et al., 2020). We propose a novel direction to avoid constraints,
demonstrating the benefits of informed evolutionary operators devoted to safety while
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using recent verification techniques (Wang et al., 2018b,c) both to provide a formal
evaluation of the policy behaviors and to inject safety specifications into the agent.

1.4 Publications

Most of the contributions discussed in Section 1.1.4 appeared in top-level conferences
and journals. In more detail:

1. The content of Part I regarding Unity simulations (Chapter 3), benchmarking
Deep Reinforcement Learning algorithms and further optimizations (Chapter
4), and using different metrics to evaluate the trained models (Chapter 5), has
been published in Marchesini et al. (2019); Marchesini and Farinelli (2020a);
Marzari et al. (2021); Corsi et al. (2020); Pore et al. (2021).

2. The contributions of Part II, where we describe how to enhance exploration
combining DRL with Evolutionary Algorithm (Chapter 7), and its extension
to multi-agent systems (Chapter 8) instead have been published in Marchesini
et al. (2021); Marchesini and Farinelli (2020b, 2021a,b).

3. The contents of Part III regarding the use of Formal Verification as a bench-
mark evaluation metrics for Safe Deep Reinforcement Learning (Chapter 9), the
safe-oriented framework with gradient-informed evolutionary operators and FV
(Chapter 10) have been published, or currently under submission, in Marchesini
et al. (2021a); Corsi et al. (2021, 2020); Marchesini et al. (2021b).

The mentioned publications, as well as other contributions related to the field of
model-based planning under uncertainty (which we do not discuss in the thesis as it
is unrelated to the exploration and safety thematics), are listed in the following:

• E. Marchesini, D. Corsi, A. Farinelli, "Exploring Safer Behaviors for Deep Re-
inforcement Learning". AAAI Conference on Artificial Intelligence, 2022.

• E. Marchesini, A. Farinelli, "Enhancing Deep Reinforcement Learning Approaches
for Multi-Robot Navigation via Single-Robot Evolutionary Policy Search". IEEE
International Conference on Robotics and Automation (ICRA), 2022.

• L. Marzari, D. Corsi, E. Marchesini, A. Farinelli, "Enhancing Deep Reinforce-
ment Learning Mapless Navigation Using Curriculum Learning". ACM/SIGAPP
Symposium On Applied Computing (SAC), 2022.

• E. Marchesini, D. Corsi, A. Farinelli, "Genetic Soft Updates for Policy Evolu-
tion in Deep Reinforcement Learning". International Conference on Learning
Representations (ICLR), 2021.

• D. Corsi, E. Marchesini, A. Farinelli, "Formal Verification of Neural Networks
for Safety-Critical Tasks in Deep Reinforcement Learning". Conference on Un-
certainty in Artificial Intelligence (UAI), 2021.

• E. Marchesini, D. Corsi, A. Farinelli, "Formal Analysis of Decision-Making
Models for Aquatic Navigation using Combined Deep Reinforcement Learning".
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2021.
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• E. Marchesini, A. Farinelli, "Centralizing State-Values in Dueling Networks for
Multi-Robot Reinforcement Learning Mapless Navigation". IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2021.

• A. Pore, E. Marchesini, D. Corsi, D. Dall’Alba, A. Casals, A. Farinelli, P. Fiorini,
"Safe Reinforcement Learning using Formal Verification for Tissue Retraction
in Autonomous Robotic-Assisted Surgery". IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2021.

• D. Corsi, E. Marchesini, A. Farinelli, "Evaluating the safety of deep reinforce-
ment learning models using semi-formal verification". arXiv, 2021.

• A. Castellini, E. Marchesini, A. Farinelli, "Partially Observable Monte Carlo
Planning with State Variable Constraints for Mobile Robot Navigation". Engi-
neering Applications of Artificial Intelligence (EAAI), 2021.

• M. Zuccotto, M. Piccinelli, A. Castellini, E. Marchesini, A. Farinelli, "Learning
state-variable relationships in POMCP: a framework for mobile robots". Sub-
mitted at Frontiers, 2021.

• E. Marchesini and A. Farinelli, "Discrete Deep Reinforcement Learning for Map-
less Navigation". IEEE International Conference on Robotics and Automation
(ICRA), 2020.

• E. Marchesini and A. Farinelli, "Genetic Deep Reinforcement Learning for Map-
less Navigation". International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), 2020.

• E. Marchesini, D. Corsi, A. Farinelli, P. Fiorini, "Formal Verification for Safe
Deep Reinforcement Learning in Trajectory Generation". International Confer-
ence on Robotic Computing (IRC), 2020.

• A. Castellini, E. Marchesini, and A. Farinelli, "Explaining the influence of prior
knowledge on POMCP policies". European Conference on Multi-Agent Systems
(EUMAS), 2020.

• E. Marchesini, D. Corsi, A. Benfatti, A. Farinelli, and P. Fiorini, "Double Deep
Q-Network for Trajectory Generation of a Commercial 7DOF Redundant Ma-
nipulator". International Conference on Robotic Computing (IRC), 2019.
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Chapter 2

Background

This chapter lays the main concepts and provides key notation used in the following
parts of the thesis. In detail, we briefly introduce the use of non-linear function ap-
proximators such as Deep Neural Networks to handle high-dimensional spaces. Hence,
we frame the main components of a Reinforcement Learning and Deep Reinforcement
Learning problems. This part recalls the main concepts and formalization of seminal
works and courses in the field such as (Sutton and Barto, 2018; Goodfellow et al., 2016;
Silver, 2020; Levine, 2020; Achiam, 2021) and serves to provide a general overview of
the family of problems we consider. We continue by highlighting the field of Evolution-
ary Algorithms and giving a more detailed description of Genetic Algorithms, which
are then broadly employed in Part II and III of the thesis. We also provide a brief
overview of Formal Verification, focusing on reachability-based methods that are used
as a practical tool in our contributions. We conclude the chapter with an overview of
state-of-the-art methodologies that address exploration and safety problems in DRL,
which are the core challenges that we face in this manuscript.

2.1 Deep Neural Networks

Pivotal progress in a variety of open challenges such as autonomous driving (Codevilla
et al., 2019), Natural Language Processing (NLP) (Brown et al., 2020), and protein
folding (Jumper et al., 2021), have been driven by the advances of learning methods
based on Neural Networks (NNs).

These function approximators take inspiration from biological neural networks that
constitute the brain of life forms. Due to their similarity to biological neurons, a
Neural Network is a collection of neurons, which are interconnected units (typically)
organized in layers of parameterized non-linear transformations. Networks with more
layers are thus called Deep Neural Networks and can handle massive amounts of
data (Goodfellow et al., 2016). Moreover, the various layers may perform different
transformations on their inputs, based on the so-called activation function computed
in each neuron. Such activations are typically non-linear functions and Figure 2.1
shows three examples of common activations. Hence DNNs are referred to as non-
linear function approximators. In more detail, a given input signal flows from the
first layer (i.e., input layer) to the last one (i.e., output layer), usually after layers of
intermediate computations (i.e., hidden layers) (Goodfellow et al., 2016). Crucially,
each layer is parametrized by learnable parameters that serve to approximate the
function of interest.
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Figure 2.1: Graphical overview of three common non-linear activa-
tion functions.

This high-level description denotes standard Multi-Layer Perceptron (MLP), where
there are not backwards connections, typical of Recurrent Neural Networks (RNNs)
(Sepp Hochreiter, 1997) (which we discuss in Section 8 as a practical way to deal with
partial-observability in multi-agent applications), or application-specific architectures
such as Convolutional Neural Networks (CNNs) (Yann LeCun, 1995). The following
chapters mostly consider standard MLPs (or deep feedforward networks (Goodfellow
et al., 2016)) that we refer by the letter f with a subscript that refers to its parameters
θ, i.e., fθ.

2.1.1 Gradient Descent

Gradient Descent (GD) (Lemarechal, 2012) is the standard algorithm for learning such
parameters θ. As such, we briefly describe it in the following and depicts the general
idea in Figure 2.2.

Similarly to training any machine learning model, we first have to define a loss func-
tion L(fθ) (also referred to as a cost or objective function in the literature (Good-
fellow et al., 2016)). Such objective measures the overall performance of the DNN
by quantifying how "far" are the network’s outputs ŷ over the desired outputs y.
Given the differentiable (or piece-wise differentiable) nature of the non-linear function
approximator, GD consists in iteratively updating the parameters by following the

Figure 2.2: High-level overview of the Gradient Descent algorithm.
Courtesy of Clairvoyant.

https://blog.clairvoyantsoft.com/the-ascent-of-gradient-descent-23356390836f
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direction of the gradient of L(fθi). For example, in the case of Gradient Descent,
θi+1 = θi − α∇θiL(fθi), where α is the learning rate that controls the magnitude of
each update, and i represent the i − th iteration. Hence, by following the negative
(or positive) direction of such gradient, the function will minimize (or maximize) such
desired objective.

We note that in the context of training a Deep Neural Network, the stochastic approx-
imation of GD, namely Stochastic Gradient Descent (SGD) (Robbins, 2007) and its
variants (e.g., Adam (Diederik P. Kingma, 2015)), is the standard de-facto. However,
the choice of these algorithms (Zachary C. Lipton, 2018) is often uncertain as dis-
cussed in Chapter 7, where a different combination of our evolutionary gradient-free
component and the gradient-based algorithm leads SGD and Adam to quite different
performances.

2.2 Reinforcement Learning

Starting from the general definition of Reinforcement Learning in Chapter 1, where
an agent learns by trials and errors in its environment given a reward signal, we now
provide notations and theoretical fundamentals of this learning paradigm, summarized
in Figure 2.3.

A RL agent performs a sequential decision-making task in its environment to collect
data and learn the desired policy. In particular, at every step t, the agent observes
the current state of the environment st, deciding and executing an action at. This
mapping between observations and probabilities of performing a certain action is
called policy (denoted with π).1 A time step later, the agent receives a so-called
reward signal rt+1 as a consequence of its action, which indicates the quality of the
interaction. Hence, rewards are the main responsible for driving the learning process
(?). This continuous agent-environment interaction leads to a (so-called) trajectory
τ = (s0, a0, r1, s1, a1, . . . ).

The environment thus changes following its dynamics and due to the agent’s policy,
or to the presence of other (unobserved) agents’ policies (which typically cause non-
stationarity issues in Multi-Agent problems).

Figure 2.3: The typical agent–environment interaction in Reinforce-
ment Learning. Courtesy of Sutton and Barto (2018).

1Refer to Sutton and Barto (2018) for a more comprehensive definition.
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Formally, a Markov Decision Process (MDP) (Bellman, 1957) is the classical math-
ematical framework to shape this kind of sequential decision-making problems. In
more detail, a MDP is represented as a 5-tuple (S,A, R, P, γ), where:

• S is the set of possible states in the environment;

• A is the set of possible actions of the agent;

• R : S ×A → R is the reward function that returns the a scalar (i.e., immediate
reward) after transitioning from state s ∈ S with action a ∈ A.

• P : S ×A×S → [0, 1] is the transition probability to the next state s′ ∈ S given
the previous state s ∈ S and performed action a ∈ A.

• γ ∈ [0, 1) is a discount factor used to trade-off the importance between immedi-
ate and future rewards.

In the literature, there are different formalizations for a Markov Decision Process,
based on the nature of the task. For example, Chapter 8 considers a Multi-Agent
(Deep) Reinforcement Learning settings, where each agent receives only partial obser-
vations and acts in a decentralized decision-making paradigm. As such, the decentral-
ized partial-observable version of a MDP, namely a Decentralized Partially Observable
Markov Decision Process (POMDP) (Oliehoek and Amato, 2016), represents a natural
way of describing this class of problems.

Finally, the goal of a Reinforcement Learning agent is to maximize the cumulative
reward over many interactions, namely the return (Sutton and Barto, 2018). In the
simplest case, given the sequence of the agent’s rewards in a trajectory τ , we define
the return Gτ as a naive sum over the rewards:

Gτ = rt+1 + rt+2 + · · ·+ rT (2.1)

However, this notation applies only to episodic tasks, where the concept of final time
step T causes a reset of the environment to a specific initial state and conditions.
We refer to Chapter 3 for practical examples of the design of an environment and its
components.

In contrast, a typical real-world scenario does not naturally break into episodes, and
the return (2.1) could be infinite. For this reason, we introduce the discount factor
γ ∈ [0, 1) and the goal becomes to maximize the expected discounted return, defined
as:

Gτ =
∞∑
t=0

γtR(st, at) (2.2)

Discounting is thus a crucial component as if γ < 1, the return’s infinite sum has
value as long as the reward sequence is bounded. In more detail, if γ = 0, the agent
only cares about maximizing immediate rewards, being "myopic". Hence, the agent’s
objective is to learn how to act to maximize the immediate reward and maximize (2.2)
just by maximizing each immediate reward separately. However, maximizing the only
immediate reward can reduce access to future rewards so that the return may be (in
general) reduced. Conversely, as γ approaches 1, future rewards are more important,
and the agent becomes more "farsighted".
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2.2.1 Objective

So far, we generally discussed the agent’s goal of maximizing its expected return. In
the following, we formally detail this optimization problem.2 First, we express the
expected return over trajectories as:

Jπ = E
τ∼π

[Gτ ] (2.3)

where τ ∼ π indicates that the trajectory is distributed according to agent’s policy.
Our goal is to search for an optimal policy π∗ that maximizes Jπ (2.3). Formally:

π∗ = argmax
π∈Π

Jπ (2.4)

where Π represents the space of admissible policies. Hence, given a policy π and
a state s, we can measure the agent’s objective (i.e., the expected return) by using
value functions. There exists different value functions in the literature, but state-value
Vπ(s) and action-value functions Qπ(s, a) are the main responsible for quantifying how
good it is to be in a particular state (Vπ(s)) or perform the given action in that state
(Qπ(s, a)) and then following the policy. Formally:

Vπ(s) = E
τ∼π

[Gτ |s0 = s] = E
τ∼π

[ ∞∑
t=0

γtR(st, at)|s0 = s

]

Qπ(s, a) = E
τ∼π

[Gτ |s0 = s, a0 = a] = E
τ∼π

[ ∞∑
t=0

γtR(st, at)|s0 = s, a0 = a

] (2.5)

where the value of a terminal state, in the case of episodic tasks, is always zero.

Value functions thus define a partial ordering over the policies. As such, we can define
a policy π to be better than (or equal) another policy π′ whether its expected return
is greater than (or equal) to that of π′ ∀s ∈ S; formally:

π ≥ π′ ⇐⇒ Vπ(s) ≥ Vπ′(s) ∀s ∈ S (2.6)

Starting from Equation 2.4, we remark that the optimal policy may not be unique.
When this applies, optimal policies share the same value function(s), which are naively
referred to as optimal state-value or action-value functions. Formally:3

Vπ∗(s) = max
π∈Π

Vπ(s) ∀s ∈ S (2.7)

Qπ∗(s, a) = max
π∈Π

Qπ(s, a) ∀s ∈ S, a ∈ A (2.8)

Intuitively, state and action-value functions are deeply interconnected as the latter
represents the value of starting in a particular state s and performing an action a,
and then following a policy π. We can thus formalize the so-called advantage function

2Note that our concepts and notations follow the seminal work of Sutton and Barto (2018).
3We may omit parameters s, a for notation simplicity.
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Aπ(s, a) that describe the advantage (or disadvantage) of taking action a over sampling
an action from π (Wang et al., 2016). Formally:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.9)

State-of-the-art Deep Reinforcement Learning algorithms employ the advantage func-
tion to decompose action values (Wang et al., 2016; Hessel et al., 2018). We exploit
the insights of the advantage function in Chapter 8 to model our multi-agent network
architecture.

2.2.2 Algorithms

In this section, we provide a brief overview of the taxonomy of Reinforcement Learning
algorithms. Note that this is not an exhaustive taxonomy. We only discuss the main
concepts used throughout the thesis.

Value-based and Policy-gradient Methods

In the context of RL, we identify two distinct (but complementary) families of ap-
proaches, which we briefly summarize in the following:

• Value-based: this class of algorithms aims to build a value function used to
define a policy (e.g., Q-learning (Watkins and Dayan, 1992)).

• Policy-gradient: these methods directly optimize the task objective, such as the
expected return, by directly finding a policy using variants of SGD over the
policy parameters (e.g., REINFORCE (Sutton et al., 2000)).

Moreover, a policy-gradient algorithm typically requires an estimate of a value function
for the current policy. To this end, an actor-critic architecture consists of an actor that
models the policy and a critic that estimates a value function (Konda and Tsitsiklis,
2000).

Evolutionary Algorithms

Policy-gradient solutions belong to a broader class of policy-based methods that also
includes Evolutionary Algorithms (Fogel, 2006). EAs and in particular Genetic Al-
gorithms are a black-box optimization process inspired by Charles Darwin’s theory
of natural evolution. A GA reflects the process of natural selection, depicted in Fig-
ure 2.4 where the fittest individuals are selected for reproduction in order to produce
better offspring of the next generation.

In more detail, a Genetic Algorithm (Montana and Davis, 1989) (summarized in Al-
gorithm 1) evolves an initial population P of n individuals, each one represented by
a set of parameters θ (or genome). Each θi (i = {0, .., n − 1}) is then evaluated to
produce a per-individual fitness P-fitnessθi , used by a selection operator to choose the
best genome.4 The idea of the selection phase is thus to select the fittest individuals
to pass their behaviors to the next generation. After the selection, crossover and mu-
tation operators generate a diversified set of individuals to form the new population.
Such operators ensure to maintain diversity and prevent premature convergence. The

4We denote the fitness of the entire population as P-fitness.
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Figure 2.4: The typical flow of a Genetic Algorithm (Montana and
Davis, 1989).

entire process continues until the population has converged (does not produce off-
spring significantly different from the previous generation, or we matched the desired
performance).

Algorithm 1 Genetic Algorithm
1: P ← Initialize n individuals with random parameters θi (i = {0, . . . , n− 1})
2: while terminal condition is not met do
3: P-fitness ← Evaluate population P
4: P∗ ← Select the best individuals according to P-fitness
5: P ← Re-initialize the n individuals with evolutionary operators on P∗
6: end while

This class of algorithms has been recently employed as a promising gradient-free op-
timization alternative to Deep Reinforcement Learning. The redundancy of these
population-based approaches has the advantages of enabling diverse exploration and
improving robustness, leading to a more stable convergence. In particular, the same
naive Genetic Algorithm previously described has shown competitive results compared
to the more computationally complex gradient-based Deep Q-Network (Such et al.,
2017) and also presents the advantage of requiring a significantly lower computational
cost. However, these gradient-free approaches struggle to solve high-dimensional prob-
lems with poor generalization skills and are significantly less sample efficient than
gradient-based methods.

Off-policy and On-policy Learning

In the literature, Reinforcement Learning algorithms are further categorized according
to their use of the policies (Sutton and Barto, 2018):

• Off-policy: this class of methods evaluates or improves a policy different from
that used to generate the data, namely a behavior policy.

• On-policy: in contrast, these solutions evaluate (or improve) the same policy
used to make decisions.

Consequently, an off-policy setup makes it straightforward to learn from trajectories
that are not necessarily obtained under the current policy. Hence, an experience
replay allows re-using samples of the different behavior policies. On the contrary,
on-policy methods usually introduce a bias when used with trajectories that are not
obtained under the current policy (unless a correction mechanism, such as importance
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sampling, is used). Off-policy methods are thus more sample efficient as they use (and
re-use) any experience.

2.3 Deep Reinforcement Learning

The field of Deep Reinforcement Learning combines Reinforcement Learning and the
impressive performance of Deep Neural Networks, enabling to approximate decision-
making tasks characterized by high-dimensional state (or action) spaces.

The typical flow in the training of a Deep Reinforcement Learning model remains
the same of Figure 2.3, where an agent interacts in an environment to collect new
experiences (samples), that are used to learn either policies or value functions in an
on-policy or off-policy fashion. The insights for the actual learning process are the
same described in Section 2.1.

2.3.1 Deep Q-Network

One of the first Deep Reinforcement Learning algorithms is the off-policy Deep Q-
Network (DQN) (Mnih et al., 2013b). This represents the ideal example for explaining
the ideas behind DRL because it is the natural extension of classic tabular Q-learning
(Watkins and Dayan, 1992) with Deep Neural Networks. The idea is to expand the
tabular Q-Learning algorithm to the Deep Reinforcement Learning setup by replacing
the regular Q-table with a Deep Neural Network because high-dimensional state (or
action) spaces do not allow to store such table (or do it efficiently). Hence, rather
than mapping a state-action pair to action values, a neural network maps input states
to Q-values, denoted with Qθ(s, a).

The original DQN implementation is highlighted in Algorithm 2.5

Algorithm 2 Deep Q-Network
1: Initialize a replay buffer B to store samples
2: Initialize the network’s parameters θ with random weights
3: for epoch = 1 to ∞ do
4: for t = 1 to T do
5: With probability ϵ select a random action at, otherwise at = maxaQθ(st+1, a)
6: Execute at in the environment, observing reward rt and next state st+1

7: Store the sample (st, at, rt, st+1) in B
8: Randomly sample a minibatch b of samples (sk, ak, rk, s

′
k) from B

9: Set yk =

{
rk, for terminal s′k
rk + γmaxaQθ(s

′
k, a), for non-terminal s′k

10: Perform a gradient descent step on (yk −Qθ(sk, ak))
2

11: end for
12: end for

As in vanilla Q-Learning, the agent needs to update the model (i.e., the DNN) param-
eters in order to maximize the expected cumulative reward. To this end, the DQN
algorithm approximates the following form of Bellman’s equation:

5Note that different implementations of vanilla DQN typically use a target network to stabilize
the learning process. However, for notation simplicity, here we discuss the implementation that only
considers the replay buffer.
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Qθ(st, at) = (1− α)Qθ(st, at) + α(rt + γmax
a∈A

Qθ(st+1, a)) (2.10)

which tells the agent how to update the current perceived value (at time step t) with
the estimated optimal future reward, which assumes that the agent takes the best
current known action:

at = argmax
a∈A

Qθ(st, a) (2.11)

Hence, following the Deep Learning setup, we define the loss function to update the
weights in order to approximate Qθ(s, a)∀s ∈ S, a ∈ A following Equation 2.10.
In more detail, Deep Q-Network minimizes the loss function defined as the squared
difference between the target y = r + γmaxaQθ(s

′, a) (which is equal to the only
reward in the case of a terminal state) and the estimated value ŷ = Qθ(s, a). In
practice, such loss is averaged over a given a batch of samples b, where each sample
is a tuple (s, a, r, s′). Formally:

L(fθ) =
1

|b|

|b|∑
k=0

[(
(rk + γmax

a
Qθ(s

′
k, a))−Qθ(sk, ak)

)2
]

(2.12)

where s′k denotes the next state observed in the environment after performing action
ak in state sk. This notation is equivalent to st and st+1 for the state at time step t
and its next state, but refers to the k-th sample of the batch.

We finally note that several optimizations have been developed over the years to
improve the naive Deep Q-Network algorithm. Namely, Double DQN (van Hasselt
et al., 2016), Dueling DQN (Wang et al., 2016), Distributed DQN (Bellemare et al.,
2017), Noisy DQN (Fortunato et al., 2017). We discuss these enhancements and their
combination (i.e., the Rainbow algorithm (Hessel et al., 2018)) in more detail once
they are used in the manuscript.

2.4 Formal Verification

Formal verification for DNN involves checking whether desired input-output relation-
ships (properties) hold (Liu et al., 2019). For example, it is possible to examine the
neighborhood of a given input x0, to find the maximum possible disturbance ρ0 that
satisfy the following assertion:

x ∈ X ⇒ y = fθ(x) ∈ Y (2.13)

where X = {x : ∥x− x0∥2 ≤ ρ0} and Y is a feasible output set. This formalization,
however, encodes the input space of the properties as a hyperrectangle, limiting the
application of Equation 2.13 to general scenarios. This has been addressed as follows
to represent different geometries (e.g., polytopes):

If x0 ∈ [l0, u0] ∧ ... ∧ xn ∈ [ln, un]⇒ y ∈ [ly, uy] (2.14)
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where xi ∈ x (i = {0, . . . , n}) are the inputs of the DNN, and y ∈ y is an output.
We consider reachability methods (Wang et al., 2018b,c; Weng et al., 2018) to verify
properties in the form of Equation 2.14. This class of approaches computes an over-
approximation of the exact output reachable set propagating the domain X through
the network. In detail, the lower and upper bound propagation of each input (i.e.,
Ii = [li, ui]) is approximated first by computing the pre-activation bounds with the
following linear mapping, which is standard in the literature (Liu et al., 2019):

lnew = max(θ, 0) ∗ l +min(θ, 0) ∗ u
unew = max(θ, 0) ∗ u+min(θ, 0) ∗ l

(2.15)

then, the upper and lower bound of the activation are computed as follows by propa-
gating these values through the activation function, which assume having monotonic
activation function σ applied to an interval I = [l, u]:6

σ(I) =

{
[σ(l), σ(u)] if monotonically increasing
[σ(u), σ(l)] if monotonically decreasing

(2.16)

Equations 2.15, 2.16 are applied layer-by-layer and node-wise to compute the output
reachable set Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X}. Hence, a property in the form of
Equation 2.13 (or more generally Equation 2.14) is considered satisfied if it belongs
to the output set, i.e., Γ(X , fθ) ⊆ Y.

In particular, the following chapters employ Neurify (Wang et al., 2018b) and ProVe
(Corsi et al., 2021) as state-of-the-art reachability-based verification methods. We
note that this thesis considers Formal Verification tools as a practical way to evalu-
ate decision-making behaviors of DNNs. Hence, a detailed discussion of the various
verification approaches and their methodologies is out of scope for this manuscript.

2.5 Enhancing Exploration and Safety

Chapter 1 discusses the issues of gradient-based approaches related to exploration and
safety, highlighting the contribution that EAs and value decomposition could give to
the field of DRL. After Part I, where we discuss the pros and cons of different DRL
algorithms and further optimization, the benefits of combining EAs and gradient-
based DRL in the contexts of exploration and safety will cover most of our work.
In particular, both Part II and Part III propose a variety of optimizations based
on combining the two families of algorithms to enhance exploration towards policy
regions that achieve higher rewards and foster safer behaviors.

2.5.1 Deep Reinforcement Learning Exploration

The problem of exploration in RL is crucial as the absence of exhaustive information is
one of the issues behind the requirement of a considerable number of trials to achieve
good performance. Moreover, the lack of a diverse exploration in high-dimensional
spaces causes convergence to local optima and hinders the agent from discovering

6This is standard in verification literature (Zhang et al., 2018), as the most common activation,
e.g., ReLU, Tanh, are monotonic.
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novel behaviors that could lead to higher returns. The brittle convergence guarantee
of DRL algorithms, which is strongly related to the choice of initialization and hyper-
parameters, is also the main issue that limits a broader adoption of such learning
techniques to real-world scenarios (Henderson et al., 2018). Hence, devising robust
learning approaches while improving sample efficiency is the first challenge we address
enhancing existing solutions with EA (Chapters 6, 7).

Moreover, multi-agent domains typically require efficient exploration to cope with the
agents’ high-dimensional state and action spaces while favoring cooperative (or com-
petitive) behaviors. To this end, value decomposition algorithms have been recently
proposed as an efficient way to address these issues. However, the structural con-
straints used to guarantee the action value decomposition induce the agents to limit
their exploration abilities, which can hinder performance (Chapter 8).

2.5.2 Deep Reinforcement Learning Safety

However, exhaustive exploration is a typical problem in practical applications such as
the ones we consider in Chapter 3 because it is generally not possible to guarantee or
quantify safe behaviors. Intuitively, this lack of safety represents a crucial issue when
working with high-cost hardware or in a human-populated scenario.

Besides naive solutions that aim at fostering safety with simple penalties in the reward,
the use of Safety Critics (Thananjeyan et al., 2020; Bharadhwaj et al., 2021; Thanan-
jeyan et al., 2021) represents a recent research direction that relies on estimating the
probability of incurring into unsafe states, given a state-action pair. However, such
approaches could potentially return misleading information for policy improvement
when the Safety Critic estimator is not trained on a wide variety of unsafe behaviors
or rely on data collected by human supervision, which may be challenging to collect.

In contrast, a different direction formalizes the problem of Safe DRL through a Con-
strained Markov Decision Process (CMDP), where an auxiliary cost function, similar
to the reward, denotes unsafe states. The objective of a constrained DRL agent is
thus to maximize the long-term reward subject to constraints on the costs. How-
ever, constrained approaches have several drawbacks, such as the careful tuning of
the threshold for the constraints, where high values mean that they are too permis-
sive, or conversely, too restrictive (Garcıa and Fernández, 2015). Hence, constrained
DRL is also not devoid of short-term fatal consequences as empirical evidence shows
that they typically fail at satisfying the imposed constraints (Ray et al., 2019).

We further elaborate these Safe DRL directions and their formalization in Part III,
where we propose a different perspective on the problem that uses EAs and Formal
Verification to address their limitations.
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Part I

Benchmarking Exploration
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Chapter 3

Unity Simulation for Robotics

A key factor responsible for the significant advances in Deep Reinforcement Learning
research and algorithm design (Mnih et al., 2013b; Lillicrap et al., 2016; Schulman
et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018) is the increasing presence
of challenging and scalable simulation platforms (Juliani et al., 2018; Todorov et al.,
2012; Machado et al., 2018). However, reproducing the improvements offered by such
novel methods is seldom straightforward, and the non-determinism in benchmark
environments is one of the core factors that hinder reproducibility.

This chapter discusses the benefits of non-standard simulation software that offers
high-performing physics engines to ensure a realistic and informative simulation for
robotics. In this direction, we present three robotic environments that will be used
through the thesis to discuss our contributions and the current limitations of DRL
algorithms.

3.1 Introduction

State-of-the-art results in Deep Reinforcement Learning have been achieved mainly
using simulation and transferring the policy on real platforms (Juliani et al., 2018;
OpenAI et al., 2019; Zhao et al., 2020; Ding et al., 2020). Although the general dis-
cussion around simulation appears underdeveloped over the algorithmic counterpart,
simulation environments are the key component that allows the DRL community to
test and evaluate novel ideas. Mujoco (Todorov et al., 2012), for example, offers
physics-based simulation for a variety of tasks that range from video games to com-
plex locomotion and has been adopted to benchmark a variety of algorithms (Lillicrap
et al., 2016; Fujimoto et al., 2018; Schulman et al., 2017; Haarnoja et al., 2018). Hence,
the quality of environments is of critical importance.

However, benchmarking environments are constrained by the limitations of the sim-
ulators because they can not always provide meaningful challenges to novel learning
systems. It is also not obvious which properties of an environment make it a use-
ful benchmark. In this direction, recent game engines offer a robust yet flexible and
easy-to-use platform for unlimited environment creation, enabling the simulation of vi-
sually realistic worlds with complex physics and interactions between multiple agents.
Along this line, Unity has recently released a toolkit that enables rapid prototyping
and development of simulation environments (Juliani et al., 2018).1

1www.unity3d.com/company
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For these reasons, we investigate Unity as an alternative way to develop high-quality
environments, focusing our attention on the robotic domain, where the uncertainty
of the platforms and the environment dynamics represent a complex challenge for
modern for Deep Reinforcement Learning algorithms. To this end, our contributions
are as follows:

• We present three robotic environments:

1. Trajectory generation for the commercial manipulator Panda.2

2. Mapless navigation for the indoor mobile robot TurtleBot3.3

3. Navigation for the outdoor aquatic drone of the INTCATCH2020 European
project.4

• We show that it is possible to export a model trained in our Unity environments,
to conventional Robot Operating System simulators (i.e., Gazebo and RViz) and
the real robots, without additional training.

We begin our discussion by analyzing a set of desired properties important for de-
signing a robotic simulation environment. Then, we introduce popular simulation
platforms in DRL research and highlight their limitations.

3.2 Robotic Environments

We rely on the taxonomy and definitions of Juliani et al. (2018) to provide a general
understanding on the main components that are crucial do design a robotic environ-
ment. The term simulation environment refers to the scenario in which an agent (e.g.,
a robot) acts, influencing its surroundings and being influenced by its dynamics. In
robotics, the essential components that form the environmental complexity are mostly
related to sensors and physics, which we briefly discuss in the following.

Sensors: process large amounts of data coming from various sources (e.g., auditory,
visual) and theyr non-linear approximatio nature is the main responsible behind the
recent advances in the field of Deep Learning (Goodfellow et al., 2016). In particular,
visual and depth information are vital for many real-world decision-making problems
that range from self-driving cars to robotics (Zhu et al., 2017). It is thus crucial that
modern benchmark environments accurately simulate realistic sensors based on the
manufacturer’s specifications.

Physics: The uncertainty and the dynamics of an environment represent the other
key factor that drove many advances in the field of Deep Reinforcement Learning.
Complex interactions between the robot and the environment are strongly dependent
on the need for the simulation scenario to compute and replicate the real-world dy-
namics. Having physically realistic simulation is moreover of fundamental importance
in order to naturally address the typical sim-to-real problem that arises when trans-
ferring a simulated trained policy to the actual scenario and platform (Zhao et al.,
2020; Ding et al., 2020).

Furthermore, researchers must consider practical constraints when designing envi-
ronments for DRL experimentation. For example, simulated environments must be

2www.franka.de
3www.turtlebot.com
4www.intcatch.eu
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flexible and allow a variety of setups to control the simulation and ensure a correct
generalization of a trained model.

3.2.1 Simulation Environments

A wide variety of simulators have been developed over the years either for domain-
specific tasks, as a collection of different environments packaged together to form a
benchmark, or as general platforms to create environments with arbitrary compo-
nents (e.g., sensors and physical interactions). Follows a brief overview of the most
famous simulation environments responsible for key development in Deep Reinforce-
ment Learning:

• Games and Video Games: typically consists of high-dimensional environments
with fixed rules and dynamics that return partial (or global) information to the
agent. They can model single or multi-agent scenarios but are usually black-
boxes from the agent’s perspective as they can not be customized to foster
generalization. Examples of these include ALE (Machado et al., 2018), StarCraft
II (Vinyals et al., 2019), Dota 2 (OpenAI et al., 2019) as well as classic board
games such as Chess, Shogi, and Go (Silver et al., 2018b).

• Toy examples: are mostly related to classical control tasks that involve simple
dynamics and limited state and action spaces. Typical tasks include CartPole
or MountainCar (Sutton and Barto, 2018) that are representative examples of
the suite of Gym environments (Brockman et al., 2016).

• Physics interaction: represents tasks where the physical component introduces
significant challenges for the learning algorithms and typically requires contin-
uous control. Key examples of this are the Mujoco locomotion tasks (Todorov
et al., 2012; Lillicrap et al., 2016) or the DeepMind Lab (Beattie et al., 2016)
that are widely considered as a benchmark for Deep Reinforcement Learning al-
gorithms. This class of simulation environments is perhaps key to advancements
in both the Safe DRL and robotic fields as it allows to model realistic scenar-
ios where the robots can acquire precise sensor information of the surroundings
(Juliani et al., 2018; Ray et al., 2019).

In this direction, Unity provides a general-purpose game engine that supports various
platforms (e.g., smartphones, computers, virtual reality) with an underlying accurate
physics simulation. For this reason, we believe this is an ideal candidate simulation
platform for Deep Reinforcement Learning research. The engine’s flexibility enables
the creation of tasks across the previously mentioned classes, ranging from simple 2D
grid world problems to complex 3D strategy games or multi-agent competitive games.

In the following, we present our three robotics environments that employ the Unity
game engine to design a physically realistic simulation. Crucially, these environments
are also compatible with the widely adopted Gym interface (Brockman et al., 2016)
to promote their applicability. To further motivate the importance of this general-
purpose simulation software, we show that its accurate simulation of sensors and
physics allows transferring the trained models on conventional robotics simulators
(e.g., Gazebo) and the real platforms without any additional training.
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3.3 Trajectory Generation for Panda

Target Platform: We build our environment on the seven degrees of freedom Panda
manipulator, depicted in Figure 3.1, and rely on the Panda’s Denavit-Hartenberg (D-
H) parameters to verify whether the performed trajectory in our environment reflects
the kinematics of the robot.

Figure 3.1: The kinematic chain of the Panda (image from
frankaemika.github.io) (left). The real Panda manipulator used in our

experiments (right).

Task Encoding: Given the manufacturer specifications, we encode the manipulator
work-space considering a range of ±120 degree for the first six joints, excluding the last
one in the wrist, which is responsible for the grasping phase that we do not consider
in the trajectory generation task. The observation space includes nine values; one
for each considered joint and the last three for the target, which coordinates are
represented as a triple (x, y, z) ∈ R3 sampled uniformly in the whole work-space of
the robot. These values are normalized in range [0, 1]. We encoded the output space of
the environment to represent an action that moves each joint by 2 degrees. However,
we note that given the generalization skills of Deep Reinforcement Learning agents,
it is possible to generate a trajectory using different values. Formally:

S = [j0:5, gx,y,z] A = [v0:5] (3.1)

where j0:5 are the current position of the six joints, gx,y,z are the goal’s coordinates,
and v0:5 maps each action to a joint movement (i.e., if vi > 0 then ji moves 2 degrees
clockwise, else if vi < 0 then ji moves 2 degrees anti-clockwise, ∀i = {0, . . . , 5}). A
decisive factor that allows us to use a discrete action space is the functions provided
by the Franka APIs that allow us to interpolate the discrete joint steps, to create a
smooth trajectory with a desired joint velocity. Discrete actions are further motivated
by the fact that recent work (Tavakoli et al., 2018; Zahavy et al., 2019; Dulac-Arnold
et al., 2015) shows that discrete action space algorithms are a competitive alternative
over continuous action spaces in control tasks.

https://frankaemika.github.io/docs/control_parameters.html
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Reward Function: A natural choice for a dense reward is the distance from the
end-effector to the target. However, we noticed that there might be configurations
close to the goal but can not reach the desired final configuration. Giving a high
reward to such configurations would provide false positive information, ruining the
training phase. To avoid this, the agent receives a sparse reward in case of reaching
the target, and for timeouts:

rt =


−1 timeout is reached
0 intermediate step
1 end-effector has reached the target

(3.2)

Moreover, we remark that the different parameters of the environment (e.g., joint
rotations, reward) are easily configurable to match the desired specifications.

Unity Simulation: Our simulated Unity environment, depicted in Figure 3.2, is
realized using primitive 3D objects of the engine (e.g., spheres, cubes) for the plane
and the targets. We use the manufacturer model of the Panda for our robotic agent,
simulating the joint connections using Unity’s native joints system. Unity’s polar
coordinates return the current joints and target positions that form the observation
space with respect to the modeled environment. Finally, default physics parameters
are considered to simulate gravity, frictions, and collisions.

Figure 3.2: Overview of the Unity environment for the Panda.

3.4 Mapless Navigation

Similarly to manipulators, mobile robots are widely considered in Deep Reinforcement
Learning literature (Tai et al., 2017; Zhang et al., 2017; Kretzschmar et al., 2016)
due to the variety of practical applications. In particular, we focus on the mapless



32 Chapter 3. Unity Simulation for Robotics

navigation problem, a well-known benchmark in recent literature (Wahid et al., 2019;
Chiang et al., 2019), which aims at navigating the robot towards random targets
using local observation and the goal’s position, without a map of the surrounding
environment or obstacles. We present two navigation-based scenarios:

1. An indoor one with both continuous and discrete action spaces, characterized
by static obstacles and walls.

2. A highly dynamical aquatic navigation scenario with both continuous and dis-
crete action spaces to cope with the uncertainty of the operational environment.

3.4.1 Indoor Navigation for TurtleBot3

We first introduce the indoor navigation scenario with fixed obstacles, characterized
by a discrete and continuous action space and a dense reward function.

Target Platform: We build our environment on the differential drive mobile robot
TurtleBot3, depicted in Figure 3.3, which is a widely used platform in previous work
focusing on robot navigation (Tai et al., 2017; Tai et al., 2016).

Figure 3.3: The real TurtleBot3 mobile robot used in our experi-
ments.

Task Encoding: Given the specifications of the TurtleBot3, we consider an angular
velocity of max 90 deg/s. The discrete action space encodes actions directly mapped
into the angular and linear velocities of the robot (i.e., [vang0:... , vlin0:... ] are the possible
discrete velocities for the action space), while a continuous action space directly maps
actions to the motor velocities (i.e., [vang, vlin]). The decision-making frequency of the
simulated robot is 20Hz. However, in the following evaluations, a Deep Reinforcement
Learning trained agent computes on average ≈ 60 actions/s, providing a significant
margin of improvement to increase the control frequency further and deal with a
faster robot or dynamic obstacles. The laser sensor mounted on the robot is an
LDS-01 and provides sparse scan values sampled between -90 and 90 degrees in a
fixed angle distribution. The maximum update rate of this component, provided by
the manufacturers, is 5Hz. The target goal coordinates are randomly chosen in the
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environment’s area and are guaranteed to be obstacle-free. Similar to the manipulator
scenario, such coordinates are expressed as a triple (x, y, z) ∈ R3. Formally, the
observation and action spaces of the task are:

S = [d, hg, lid0:...] A = [vang0:... , vlin0:... ] ∧ [vang, vlin] (3.3)

where d is the current distance of the robot from the target goal, hg is its relative
heading over the goal, and lid0:... are the sparse lidar values that can be configured
according to the task. Moreover, all the other parameters that characterize the envi-
ronment are configurable. Finally, to analyze the generalization skills of our models,
the configuration of the obstacles is fixed and compact around the robot’s initial
position.

Reward Function: There are three conditions for the reward: two sparse values in
case of reaching the target or crashing, which terminates an episode (resetting the
robot to its starting position), and a dense part used during the travel:

rt =


−1 if crashes or timeout
1 if reaches the target
µ(dt−1 − dt) otherwise

(3.4)

where dt−1−dt indicates the distance between robot and goal between two consecutive
time steps, and µ is a multiplicative factor. In the following experiments µ = 15.
However, we note that the tuning of µ causes different behaviors of the robot:

• µ = 15 leads to straighter movements, and smoother trajectories as the reward
for actions with zero angular velocity are more significant.

• µ = 10 causes non-smooth paths because more unnecessary actions with non-
zero angular velocity are selected.

Unity Simulation: We modeled different Unity environments for the training and
testing of Deep Reinforcement Learning policies. Figure 3.4 shows two of them that,
similar to the manipulator environment, are realized using primitive 3D objects of
the Unity engine (e.g., spheres, cubes) for walls, obstacles, and the targets. For our
robotic agent, we use the manufacturer model of the TurtleBot3, and the current
scan values, robot position, and target positions that form the observation space are
returned by Unity’s polar coordinates with respect to the modeled environment.

3.4.2 Outdoor Navigation for Aquatic Drone

Robotic navigation, however, is not limited to indoor environments; instead, wild
(outdoor) environments pose more significant challenges for learning algorithms (e.g.,
uneven terrain, unexpected obstacles). Hence, we introduce an aquatic navigation
scenario characterized by a physically realistic water surface with dynamic waves and
floating objects. Similar to indoor navigation, among the variety of applications for
aquatic drones (Codd-Downey and Jenkin, 2017; Karapetyan et al., 2018), navigation
is a crucial aspect to enable autonomous behaviors. For example, autonomous water
quality monitoring represents an efficient alternative to the more traditional manual
sampling (Castellini et al., 2020).
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Figure 3.4: Two representative overviews of a training (left) and
testing (right) environments for the TurtleBot3 navigation task.

Target Platform: We consider the drones of the EU-funded Horizon 2020 project
INTCATCH as a robotic platform, depicted in Figure 3.5.5 Since the platform is not
standard, here are some specifications of the robot: the drone is a differential drive
platform based on a hull equipped with two in-water propellers that can be deployed
in shallow water, with a max velocity of 3m/s. The onboard sensors (e.g., GPS,
compass) provide the localization and orientation information, while a laser sensor
returns the distances between the boat and obstacles.

Figure 3.5: The aquatic drones of the INTCATCH 2020 European
project.

Task Encoding: Given the drone’s specifications, the robot’s decision-making fre-
quency is set to 10Hz, as aquatic navigation does not require high-frequency controls.

5www.intcatch.eu
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We designed both discrete and continuous action space settings to provide a more
comprehensive evaluation for this non-standard scenario. The discrete action space
considers values that map to the power of the two motors to drive the boat (i.e., [v0:...]
that ranges from left steering to forward only movement and right steering). In the
continuous setup, two outputs control each motor velocity (i.e., [vleft, vright]). More-
over, the observation space contains sparse laser scans sampled in the range [−90, 90]
degrees in a fixed angle distribution and the polar target coordinates, a similar setting
considered in the previous environment. Formally:

S = [d, hg, lid0:...] A = [v0:...] ∧ [vleft, vright] (3.5)

Reward Function: The reward function is equivalent to the indoor navigation one,
where rt = µ(dt−1−dt) is a dense value during the travel and computes the euclidean
distance between the robot and the goal at two consecutive time steps. Two sparse
values explain the cases of reaching the target (rt = 1) or crashing (rt = −1), which
terminates an episode (resetting the drone to a starting location and spawning a new
target).

Unity Simulation: The game engine allows us to reproduce the water behavior by
triangulating a plane and displacing the generated vertices to simulate the desired
wave condition. The plane triangulation can be adjusted to address the trade-off
between a more fine-grained simulation of the waves and a higher computational
demand imposed on the machine. We considered this, as other particle-based methods
such as FleX are not suitable to simulate high-dimensional water surfaces.6 Trivially,
the amount of generated vertices depend on the hardware. Moreover, Unity integrated
collision and force algorithms (e.g., gravity, friction, viscosity) are suitable to simulate
the water surface, the aquatic drone, and their interactions.

As in the indoor scenario, we modeled different environments for the training and
testing of Deep Reinforcement Learning policies, depicted in Figure 3.6. In more
detail, obstacles are blue shapes, and the goal is a red sphere. To speed up the
training process in such a complex dynamic environment, we consider Unity materials
for the rendering pipeline (as they are less computational demanding). However, it
is possible to adjust the scene characteristics (e.g., materials, lights, shadows) for a
more realistic scene.

3.5 From Unity to the Real Robots

Finally, we show that it is possible to export a model trained in our Unity environment
to the Robot Operating System and the real robot. To this end, we note that only the
Panda and the TurtleBot3 have a native ROS interface. Hence we only consider these
two for our transfer to ROS and the robots. In particular, we modified the source
of observations for the trained policies as in the Robot Operating System testing,
the Panda and the TurtleBot3 models retrieves information from RViz and Gazebo,
respectively. The critical outcome of these validations is that the movement of the
actual robots shows a very close correspondence with the original Unity simulation
environment.

6www.developer.nvidia.com/flex
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Figure 3.6: Two representative overviews of a training (left) and
testing (right) environments for the aquatic navigation task.

Panda Transfer: with a correct localization of the goal in the Panda scenario, we do
not encounter additional sources of noise that hinder the performance of our trained
models.

Figure 3.7 shows an explanatory episode for a trained trajectory generation model in
the two setups: the RViz simulator (top) and the real Panda (bottom).

Figure 3.7: Overview of an explanatory trajectory of a trained model
in the RViz visualizer (top), and the real Panda (bottom).

TurtleBot3 Transfer: To further motivate the use of Unity, Figure 3.8 shows the
average difference between training a navigation policy in Unity and the same envi-
ronment in Gazebo for the TurtleBot3. It is clear that the optimization offered by
the game engine significantly speedup the training phases (i.e., ≈ 4 time faster) even
among different standard implementations of various Deep Reinforcement Learning
algorithms such as Double DQN (van Hasselt et al., 2016), Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2016), and Proximal Policy Optimization (PPO)
(Schulman et al., 2017).
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Figure 3.8: Average training time between different algorithms in
the same Unity and Gazebo environment.

In the transfer to the robot, we use the manufacturer ROS package to retrieve the laser
sensor values and Adaptive Monte Carlo Localization (AMCL) to localize the robot.
However, given the update rate of the TurtleBot3 laser sensor (i.e., 5Hz), we note that
the robot localization retrieved with AMCL is imprecise, and the traditional movebase
motion planner, to which we compare, could fail without fine-tuning its parameters.
In contrast, DRL trained models were able to generalize over this additional source
of noise and have no problem during the navigation.

Figure 3.9 shows an explanatory trajectory for a trained navigation model in the three
setups: the Unity environment to show the simulated laser scans (top), the Gazebo
simulator (middle), and the real TurtleBot3 (bottom).

Figure 3.9: Overview of an explanatory trajectory of a trained model
in the Unity environment (top), the Gazebo simulator (middle), and

the real TurtleBot3 (bottom).
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3.6 Discussion

In this chapter, we investigated Unity as a viable general-purpose framework to design
fast and easy-to-change environments for Deep Reinforcement Learning, presenting
three robotic environments that will be used through this thesis. Crucially, we showed
that DRL policies trained in Unity work in standard simulation tools and on the real
robots, without additional training.
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Chapter 4

Benchmarking Sample Efficiency

The non-determinism in benchmark environments, along with the intrinsic variance
of Deep Reinforcement Learning algorithms, make state-of-the-art DRL results tough
to interpret and reproduce.

This chapter discusses the importance of choosing a particular algorithm, depending
on task-related requirements. To this end, we use our robotic environments to bench-
mark existing Deep Reinforcement Learning techniques and present further optimiza-
tion (e.g., asynchronous training, scaling discounts) to enhance their performance.

4.1 Introduction

Without significant metrics and clear standardization of experimental evaluations, it
is difficult to determine whether the claimed improvements of novel algorithms are
meaningful (Henderson et al., 2018; Colas et al., 2019). For example, the well-known
suite of MuJoCo locomotion tasks is the de-facto benchmark for the majority of policy-
gradient Deep Reinforcement Learning algorithms proposed over the years. However,
Mania et al. (2018) recently argued that such environments are not as complex as
previously thought, obtaining state-of-the-art performance using a simple random
search of static linear policies.

In this direction, we note that since the release of the first continuous control policy-
gradient DRL algorithm, DDPG (Lillicrap et al., 2016), the vast majority of works
on autonomous robotics focused exclusively on these approaches (Tai et al., 2017;
Xie et al., 2018; Gu et al., 2017; OpenAI et al., 2019), employing continuous action
spaces. Such methods followed the idea that value-based DQN (Mnih et al., 2013b)
can not deal with high-dimensional action spaces. However, discrete action space
solutions (and generally value-based algorithms) typically result in shorter training
time being more sample efficient. Hence, different methods are renewing the interest
in using discrete action spaces, showing that value-based Deep Reinforcement Learning
algorithms can also handle high-dimensional actions. In more detail, Tavakoli et al.
(2018) proposes an adaptation of Dueling DQN (Wang et al., 2016) with Double DQN
(van Hasselt et al., 2016) that achieves competitive results in locomotion benchmarks
(Brockman et al., 2016; Todorov et al., 2012). More recently, de Wiele et al. (2020)
designed a DQN-based algorithm to handle enormous discrete and continuous action
spaces, with several other value-based methods that confirm these results (Zahavy
et al., 2019; Dulac-Arnold et al., 2015).

We begin by presenting the central insights of the Deep Reinforcement Learning algo-
rithms that we consider in our evaluation. Then, we present the experimental setup
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for the indoor mapless navigation environment we consider here, discussing the pros
and cons of different algorithms and further optimizations applied to these domains.

4.2 Preliminaries

We formalize the indoor mapless navigation as a Reinforcement Learning problem,
defined over a Markov Decision Process, as described in recent DRL literature (Tai
et al., 2017; Zhang et al., 2017). In more detail, at each time step t = {0, . . . ,T},
the robot chooses and executes an action at according to the state st, observing the
new state of the environment st+1 and receiving a reward rt. The goal is the same
described in Section 2.2 that is to maximize the total discounted reward from step t
onward, given by Equation 2.3.

For our evaluation, we use the value-based Double DQN (van Hasselt et al., 2016),
the policy-gradient PPO (Schulman et al., 2017), and the actor-critic DDPG (Lillicrap
et al., 2016), which we briefly describe in the following.

Double Deep Q-Networks The classic target Q-value in the DQN algorithm, i.e.,
rt+γmaxaQθ(st+1, a), involves taking the max over the next state values. Intuitively,
suppose the estimation is incorrect (i.e., it is underestimated or overestimated), which
is typical in the early stages of the training. In that case, a bias is introduced in
the learning process. Since DQN involves learning estimates from estimates (i.e.,
bootstrapping), such underestimation (or overestimation) may lead to significant con-
vergence issues. van Hasselt et al. (2016) illustrated this bias issue in the Atari
environments, proposing to avoid the maximization bias by disentangling the updates
from biased estimates. Hence, Double DQN uses two separate Q-value estimators,
one for action selection parametrized by θ, and the other for the action evaluation
parametrized by θ′. Formally, the target Q-value in the Double DQN algorithm be-
comes:

rt + γQθ(st+1,max
a

Qθ′(st, a)) (4.1)

The update of the action evaluation model, namely the target model, is typically
performed by periodically copying the parameters of θ, or smoothing such transition
through Polyak averaging (Polyak and Juditsky, 1992), which in practice show better
performance (Lillicrap et al., 2016):

θ′ = βθ + (1− β)θ′ (4.2)

where β is a hyper-parameter representing the interpolation factor in Polyak averaging
for the target model.

Deep Deterministic Policy Gradient In contrast, DDPG is an actor-critic algo-
rithm that concurrently learns a value function and a policy. It uses off-policy samples
and the Double DQN insights to learn the Q-function (i.e., the critic, parametrized
by θQ with target model θ′Q as in Double DQN), which DPPG uses to learn the policy
(i.e., the actor, parametrized by θπ with target model θ′π)

Deep Deterministic Policy Gradient is specifically designed for continuous action
spaces and interleaves the learning of the two components. Due to the continuous
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nature of the action space, we can not exhaustively evaluate such space (i.e., compute
the maximum over actions as in Equation 2.11). To address this, DDPG set up a
gradient-based learning rule for a deterministic policy π(s), using the estimated value
function.

In more detail, the critic is trained similarly to Double DQN, where the main difference
is that the target is computed using the deterministic policy of the actor; formally:

rt + γQθ′Q
(st+1, πθ′π(st+1)) (4.3)

Instead, the actor is trained by maximizing the mean value given by the critic for the
actions taken by the actor network. Hence, we update the actor to produce actions
that achieve the maximum predicted value, for a given state. Formally, given a sample
at time step t, we update the actor using the sampled policy gradient:

∇π(st)QθQ(st, π(st))∇θππθπ(st) (4.4)

And the target networks are updated using Polayk averaging:

θ′π = βθπ + (1− β)θ′π

θ′Q = βθQ + (1− β)θ′Q
(4.5)

Proximal Policy Optimization In a different direction, Trust Region Policy Op-
timization (TRPO) (Schulman et al., 2015) introduced the concept of trust region
search strategy to ensure that the updated policy does not differ too much from the
current one, hence limiting the exploration only to nearby policy spaces. To this end,
authors propose to use the KL-Divergence to measure the distance between the cur-
rent policy πθold and the new policy πθ and ensure that such distance is always fewer
than a given threshold δ. Therefore, the objective function aims at maximizing the
discounted cumulative reward while ensuring the limited divergence between the two
policies; formally:

E

[ ∞∑
t=0

γtR(st, at)

]
s.t. DKL(πθold || πθ) < δ (4.6)

However, TRPO is a computationally demanding algorithm that relies on second-order
optimization with the additional overhead of a hard constraint.

Schulman et al. (2017) improved TRPO with Proximal Policy Optimization, a first-
order optimization problem that measures how much the two policies differ by encod-
ing the probability ratio of the new (updated) policy πθ and the old policy at time
step t (i.e., πθt) as follows:

πθ(a | s)
πθt(a | s)

(4.7)
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Hence, given the advantage of performing a specific action a under policy πθt at state
s (i.e., Aπθt

(s, a)) the clipped objective function, which is the best performing version
of PPO according to the original work, is formalized as follows:

E
[
min(

πθ(a | s)
πθt(a | s)

Aπθt
(s, a), clip

(
πθ(a | s)
πθt(a | s)

, 1− ϵclip, 1 + ϵclip

)
Aπθt

(s, a)

]
(4.8)

In the above equation, the ratio between the policies always clips in a small interval
around 1, and such interval indicates the maximum allowed changes for the new policy,
regulated by a hyper-parameter ϵclip set to 0.2 in the original implementation.

4.3 Experiments

We benchmark the described algorithms in the TurtleBot3 mapless navigation do-
main, described in Section 3.4.1. Since this is the first time in the thesis we present
a comprehensive training and testing experiment in a Unity environment, Gazebo,
and the robot, we provide additional information and overviews to clarify the entire
process, which is summarized in Figure 4.1.

Figure 4.1: Overall architecture of our training and testing procedure
in Unity, ROS, and the robot.

We aim at showing that value-based Deep Reinforcement Learning approaches with
discrete action spaces could represent a viable and more sample-efficient alternative
over policy-gradient and actor-critic algorithms. Moreover, value-based DRL results
in comparable or better performance in tasks that employ physical control.

Training Setup: All the considered algorithms share the same input layer structure:
13-sparse laser scans and the target position (Tai et al. (2017) considers a similar
setting). One computation of the network represents an action that directly maps into
the angular velocity of the robot in the case of Double DQN (with [−90,−45, 0, 45, 90]
deg/s as possible angular velocities). In contrast, it is used end-to-end in the case of
PPO and DDPG, multiplying such output by a hyper-parameter to shape the angular
velocity in a range [−90, 90] deg/s. In these experiments, we choose a constant linear
velocity = 0.15 m/s. However, given the capability of generalization of the method,
once the network is trained, it is possible to modify this value to obtain different
behaviors. We did explore other encodings for the problem, increasing the number
of sparse scan ranges up to 25 and decoupling the network’s output in two streams
to compute different linear and angular velocities. However, the higher complexity of
the problem causes longer training times, but the success rate was similar. Hence, we
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preferred a coarse structure of the action space to maintain a fast training phase. We
summarize the input and output structure of the Double DQN algorithms in Figure
4.2

Figure 4.2: Overview of the input and output values for the Double
DQN function approximator.

To determine the size of the hidden layers, we performed tests on different network
dimensions (Chen and Chang, 1996). In particular, we performed multiple trials with
different random seeds and network sizes. Figure 4.3 highlights the results of the
chosen network architecture, noting that DDPG and PPO hidden layers have the
same structure.

Figure 4.3: Network architectures for Double DQN, DPPG and
PPO. Each layer is represented by type, dimension, and activation

function.

Experimental Setup: Data are collected on a RTX 2080, using the standard hyper-
parameters of the original algorithmic implementations (van Hasselt et al., 2016; Lil-
licrap et al., 2016; Schulman et al., 2017). Given the importance of the statistical
significance of the results (Colas et al., 2019), we report mean and standard deviation
collected over ten independent runs with different random seeds. Such setting moti-
vates slightly different results over our published results that we evaluated over a few
seeds (Marchesini and Farinelli, 2020a).

4.4 Empirical Evaluation

For each algorithm, we consider the following evaluation metrics:

• Success rate: how many successful obstacles-free trajectories are performed on
a batch of one hundred episodes.
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• Training time.

• Path length.

In particular, we note that after the training phase, the models were able to learn
to navigate, exploiting the minimal information in the input layer of the network,
generalizing three core navigation components: (i) robot starting position, (ii) target
position, and (iii) velocity. The laser scan-based navigation also allows the Turtle-
Bot3 to navigate in unknown environments with different obstacles, crucial for motion
planning.

Training Results: Figure 4.4 shows that the discrete action space Double DQN
(DDQN) offers better performances in terms of success rate over the same number
of interactions. The training stabilizes at over 95% of success rate after about 3000
epochs corresponding to 50 minutes of training. To further support the viability of
value-based algorithms, Figure 3.8 shows that to reach similar performance (i.e., 95%
of success rate), the policy-gradient and actor-critic algorithms require at least four
times the training time of DDQN.

Figure 4.4: Average success rate between DDQN, DDPG, and PPO.

Moreover, we did run experiments using DDPG and PPO with the discrete action
space for a more comprehensive evaluation. However, such implementations gave us
no significant improvements both in terms of success rate and training time. Moreover,
we note that in our relatively simple motion planning scenario, the four Deep Neural
Network used by DDPG lead to the significant time-consuming training phase. The
same considerations hold for more recent approaches such as TD3 (Fujimoto et al.,
2018), an improved version of DDPG that uses two critics, hence six Deep Neural
Networks.

Testing Results: Figure 4.5 shows our additional tests for Double DQN and DDPG
in the training environment (on the left) and in a testing environment of size 3.5 ×
10.5m (on the right) that present previously unseen obstacles (e.g., cylinders). These
figures report the trajectories generated by two exemplary executions of the trained
models aiming at providing a visual representation of the behaviors for the different
models and are consistent with our evaluations. Given a very similar behavior of
DDPG and PPO, we show the path of just one of the two.

In particular, we notice a very close correspondence of the robot motion in the training
scenario. However, the value-based algorithm offers a shorter path, ≈ 14m versus
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Figure 4.5: Explanatory comparison between the traveled path of a
trained DDQN and DDPG policies in the training (left) and testing

(right) environments.

≈ 15.5m, and takes less (simulation) time (80s versus 125s). Moreover, our testing
environments show another crucial aspect of our evaluation, where the DDPG model
fails to reach the second target goal (even with a training phase that is four times
longer). We relate the failure of DDPG to the slow update rate of the laser sensor,
which negatively affects the generalization capabilities of more complex algorithms
such as DDPG. Our evaluation found that the discretization offered by DDQN deals
better with the lag introduced by the lidar sensor over DDPG and PPO. Notice that
this issue is not related to the learning algorithm or the chosen network architecture
as the standard movebase motion planner (included in the ROS distribution) also fails
for some obstacle configurations.1

4.5 Further Optimizations

We further enhance the results of these approaches (i.e., returns and training time)
using asynchronous parallel training phases and multi-batch memories to employ the
visited samples efficiently, which we detail in the following sections.2

4.5.1 Asynchronous Parallel Simulation

The nature of Unity is to manage and optimize the efficiency of multiple concurrent
game threads, so we exploited the original asynchronous fashion of the game engine for
the training process. In more detail, we separate the experience collecting process (i.e.,
the interactions in the environment) in a separate thread over the one that updates
the networks’ parameters. Moreover, we use multiple independent instances of the
training environment to collect samples with parallel agents simultaneously. Figure
4.6 on the left shows the effectiveness of the asynchronous parallel DDQN version
compared to the original one in a setting with 1, 2, and 4 parallel environments.

1We refer to the video attached to Marchesini and Farinelli (2020a) for a summary of our evalua-
tion.

2These improvements were implemented in all the algorithms evaluated in Section 4.3.
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4.5.2 Multi-Batch Memory

Given the mixed reward structure of the indoor navigation environment, we use a
modified version of the Priority Experience Replay (PER) (Schaul et al., 2016) to
accelerate training times. We modified the original priority system by introducing
three memory batches: one for the successful interactions (i.e., the ones with rt =
1) of size 5000, one for the unsuccessful ones (i.e., the ones with rt = −1) of the
same size and one with the other experiences of size 20000. Therefore, we update
the models’ weights with a batch of experiences composed of the same amount of
samples taken from the three batches. We train our models with an equal-size batch
of experiences from all the possible behaviors shaped by the reward function with this
implementation. Figure 4.6 on the right shows the difference in terms of success rate
between the original PER and this version, applied to the DDQN algorithm.

Figure 4.6: Average success rate between a 1, 2, and 4 thread im-
plementation of DDQN (left) and with the standard PER and our

multi-batch PER (right).

4.6 Related Work

The significant progress made by Deep Reinforcement Learning in solving challenging
problems across various domains have been recently argued by several works (Mania
et al., 2018; Henderson et al., 2018; Colas et al., 2019). In detail, Mania et al. (2018)
represented one of the first works that criticize the importance of choosing bench-
marks to evaluate DRL research. Along this line, Henderson et al. (2018) investigated
challenges related to three main topics of interest: (i) reproducibility, (ii) proper ex-
perimental techniques, and (iii) reporting procedures for the results. In particular,
the authors illustrated the variance in reported evaluations compared over original
baselines implementations. Following a similar direction, Colas et al. (2019) proposed
a comprehensive guide to foster rigorous comparison across different algorithms, re-
viewing the importance of statistical tests and empirically comparing them.

Hence, given the importance of the statistical significance of the results, through this
thesis, we will exhaustively report the details of each experimental setup, including,
for example, details about the chosen metrics, number of runs, mean and standard
deviation of the results.
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4.7 Discussion

In this chapter, we investigated the performance of value-based, policy-gradient, and
actor-critic Deep Reinforcement Learning algorithms in the context of robotic mapless
navigation. Our goal is to discuss the importance of choosing a particular algorithm
depending on task-related requirements, in contrast to the typical trend of employing
a specific algorithm for a specific task without considering different solutions. To this
end, we use our robotic environments to benchmark the different families of algorithms,
presenting further optimization to enhance their performance.

In more detail, the asynchronous parallel training and a multi-batch memory further
improved the navigation performance, achieving a success rate of over 95% in a short
time (i.e., 50 minutes) on a budget computational platform for the value-based ap-
proach. In contrast, training times of policy-gradient and actor-critic algorithms were
significantly longer (i.e., ≈ 4.5 and ≈ 3.5 hours), and the resultant navigation policies
performed worse than the discrete one in terms of success rate and path length.
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Chapter 5

Evaluating Decision-Making

Choosing informative metrics is fundamental to determine whether algorithmic im-
provements are meaningful (Henderson et al., 2018; Colas et al., 2019).

This chapter discusses the limitations of standard evaluation metrics (e.g., average
reward, success rate) in providing information regarding the actual behaviors of a
trained Deep Reinforcement Learning policy. To this end, we use Formal Verification
techniques to formally guarantee the decision-making process of a DRL model over
a set of desired specifications. We also discuss further optimizations (e.g., scaling
discounts) and how they lead to policies with higher performance.

5.1 Introduction

Applying Deep Reinforcement Learning to learn different behavioral skills for various
platforms typically involves some desired behaviors (e.g., limited workspace, safety
constraints) and high-cost hardware. Therefore, it is crucial to evaluate the correct
behavior of a trained model before deploying the system in real applications (Liu et al.,
2019). However, ensuring a provable behavior of a non-linear function approximator
such as a Deep Neural Network is an active research topic. The lack of such formal
guarantees represents one of the main issues that prevent the wider use of DRL systems
for building trustworthy commercial solutions.

In this chapter, we characterize the behaviors of a Deep Reinforcement Learning model
to show two essential aspects:

1. The limitations of standard evaluation metrics.

2. The effects of an improved training process on both the performance and decision-
making of a model.

Regarding the former, we also aim at improving performance and reducing the training
time by presenting a scaling discount factor and the use of a mixed exploration policy,
based on a directional controller (Xie et al., 2018).

We evaluate our approach on the Panda environment, detailed in Section 3.3, where
our optimizations allow us to increase the complexity of the scenario, reaching random
targets in the whole workspace of the robot within millimeter precision. In contrast,
previous approaches on DRL trajectory generation for manipulators consider only
random targets generated in a limited fixed workspace within centimeter precision
(Gu et al., 2017).
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Moreover, for what concerns the Formal Verification of Deep Neural Networks, we note
that several research efforts have been devoted to this problem (Liu et al., 2019; Wang
et al., 2018c,b). However, prior work can not directly verify a Deep Reinforcement
Learning model that encodes decision-making policies (e.g., which joint has to move
to keep the manipulator in its workspace). The reason is related to their focus on
verifying whether the bound of a single output of the network lies in a given interval
(e.g., a motor velocity never exceeds fixed bounds). In contrast, a DNN for decision-
making typically requires the analysis of multiple outputs (e.g., choose the action
that maximizes a return). Hence, starting from existing verification tools, we describe
the formalization of properties (i.e., input-output relationships) for decision-making,
focusing on verifying the behavior of the Panda’s trajectory generation. In more detail,
we employ interval analysis to verify the relationships between two or more network
outputs, allowing the verification of DRL models, where the output nodes correspond
to actions, and the trained network chooses the one with the highest value.

5.2 Preliminaries

Similar to the indoor mapless navigation scenario in Section 4.3, we formalize the
trajectory generation task for the Panda manipulator as a Reinforcement Learning
problem, defined over a Markov Decision Process (Gu et al., 2017).

To evaluate the actual behaviors of a trained decision-making model, we argued
that standard metrics such as the total reward or the success rate over independent
epochs are not informative. Along this line, Szegedy et al. (2015) shows that human-
imperceptible perturbations in the input space of a DNN may result in a significant
difference in the output prediction, which is an open problem in literature (Madry
et al., 2018). In particular, Sandy Huang and Abbeel (2017) highlighted that neural
network policies, trained with state-of-the-art DRL algorithms, are also vulnerable to
adversarial inputs. These specific input configurations are challenging to detect with
empirical testing phases and are consequently undetectable using standard metrics,
underlining the limits of the traditional evaluation approach.

Following the recent trend in Formal Verification for Deep Neural Networks, we pro-
pose to design a set of input-output relationships (or properties) that encode desired
behaviors for a decision-making agent. To this end, we introduce the main concepts
and notations useful to understand a typical verification process, which will be de-
tailed in the following sections. Starting from the standard formalization for a property
(Equation 2.13), we define an "area" as a set of inputs limited by an upper and lower
bound. A "subarea" is then a further subdivision of the same input set used to reduce
the overestimation during the computation (Wang et al., 2018b). The propagation of
an area (or a sub-area) through a DNN generates an "output-bound", a set of bounds
for each output node that quantifies the limits on the output values of the network,
given an input in the provided area.

Figure 5.1 shows an example of these concepts, where two input nodes with area
([a0, b0], [a1, b1]) are propagated through the network to compute the output-bound
[c, d] of the single output node. To further clarify the process, we employ two different
bound representations. First, Figure 5.1 on the left shows a simple network with two
inputs and one output. Otherwise, we visualize the Deep Neural Network function
and bounds as a 2-dimensional graph on the right, with the inputs on the x-axis and
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the computed output bounds [c, d] on the y-axis.1. The red curve represents the actual
values assumed by the output node.

Figure 5.1: Explanatory overview of the bound analysis of a generic
MLP with two inputs and one output.

5.3 Decision-Making Properties

We present our design for properties that encode desired behaviors for a trained
decision-making agent and an overview of a typical verification algorithm.

Given the formulation provided by Liu et al. (2019), a property for a DNN formalizes
an input-output relationship in the form of Equation 2.13. Such a relationship aims
at verifying if an output of the network lies in a specific interval and applies to many
problems related to robotics and deep learning in general (e.g., the velocity limit of a
motor or the probability in a classification task).

To address this issue, we propose a different formulation, specifically designed for
decision making problems; formally:

p : If x0 ∈ [a0, b0] ∧ ... ∧ xn ∈ [an, bn]⇒ yj > yi (5.1)

We refer to these properties as decision-making properties as they can be used to
ensure that a given action (e.g., yj) is always preferred over the others for a given
input configuration. Following the insights on Formal Verification of Section 2.4, we
exploit this proposition to prove (or deny) a variety of properties in the context of
trajectory generation for the Panda, which can be verified using prior verification
approaches (Wang et al., 2018b).

As a practical example, consider a simplified navigation scenario encoded by a Deep
Neural Network with:

• Inputs xi ∈ [0, 1] with i = {0, . . . , 3}, representing the normalized distance from
an obstacle in the four cardinal directions (1 translates in a distance ≥ 1m in
that direction), where x0 is the right distance and x1 is the left distance.

• Outputs y0 = right, y1 = left, representing the directions where the agent can
turn.

where we could be interested in a natural language decision-making property as:
1We note that a network generally has more than one input, so we represent a tuple with one

value for each input, but the order in the tuple is required only for visualization purposes.



52 Chapter 5. Evaluating Decision-Making

p→: If an obstacle is close to the right and other directions are obstacle-free, always
turn left (i.e., choose y1).

Assuming prior knowledge on the task, typically available in practical applications,
we know the minimum distance from an obstacle that allows avoiding a collision when
turning in the opposite direction in the worst-case scenario, i.e., at maximum speed.
This information, which we assume to be 0.07m, leads to the following formal notation
for the property in the form of Equation 5.1:

p→ : If x0 ∈ [0, 0.07] ∧ x1, x2, x3 ∈ D ⇒ y0 < y1,where D = (0.07, 1] (5.2)

Hence, to verify the relation between two (or more) outputs, we rely on the interval
algebra of Moore (1963). In particular, supposing y0 = [c, d] and y1 = [e, f ] we have
the preposition:

d < f ⇒ y0 < y1 (5.3)

To further explain the issues of previous verification approaches that prevent a direct
application to decision-making, Figure 5.2 shows a simplified visual example of a
typical output analysis. After computing the output bounds, a typical decision-making
scenario presents max(y1) > min(y0), and it is not possible to assert if the desired
property holds. Figure 5.2 on the left shows an example of this behavior, where d ≮ c,
(i.e., the bounds overlaps). In this situation, verification frameworks can not formally
verify the property (i.e., we do not have enough information to state if the input-output
relation holds or not). We overcome this issue by computing the propagation phase
for a subset of the input area, obtaining a more accurate estimation of the output
function shape (Figure 5.2 in the middle). This leads to right Figure 5.2, where the
use of smaller bounds allows to check if y1(x) < y0(x) for any x ∈ X . Hence we
verified that y1 < y0 (i.e., the network always chooses the action represented by y0
inside the input area specified by the property). Furthermore, y2 ≮ y1 (the agent can
choose y2 in that input domain).

Figure 5.2: Explanatory output analysis of a decision-making prob-
lem with two outputs and one subdivision (left); the estimation of an
output function shape, using multiple subdivisions (middle); and the
output analysis with three outputs and multiple subdivisions (right).

Algorithm 3 shows a pseudo-code description of the overall approach that relies on
the bound estimation process of prior work (Wang et al., 2018b). In detail, given
as input: (i) the trained neural network to test, (ii) the input area to perform the
analysis, (iii) the property to verify, and (iv) the number of desired subdivisions (which
is a hyper-parameter):
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• Line 1-2: we initially perform the split of the original input area. This function
uses a simple heuristic that splits the input area with the largest bound as it
performs better than a random strategy in our initial evaluation.2. We also
initialize an array that will contain all the states that lead to a violation of the
tested property.

• Lines 3-5: We then use the input propagation of Neurify (Wang et al., 2018b)
on the smaller sub-areas to compute the output bounds. This is the most com-
putational demanding section of the process due to the non-trivial number of
sub-areas. However, each propagation is strongly independent of the others,
enabling parallel computation on Graphics Processing Units (GPUs).

• Lines 6-12: Hence, it is possible to evaluate the desired property for each gen-
erated sub-area, which can produce three different results: (i) the property is
verified; (ii) the property is denied or (iii) in this area we can not conclude any-
thing on the property (i.e., more subdivisions are required to solve the property).

• Line 13: Finally, the verification procedure ends, providing additional informa-
tion. If the returned array "violation-areas" is empty, we know that the property
is verified, and no violations are found in the input area. Otherwise, the array
contains the input configuration that causes a wrong evaluation from the net-
work, which can be quantified to evaluate the actual behaviors of the model over
the properties.

Algorithm 3
Given:

• a DRL trained model to test fθ
• the input domain (area) where we are interested in verifying the property D,

and the number of subdivisions nsub

• the property p to verify
1: sub-areas ← split-area(D, nsub) ▷ e.g., using an heuristic
2: violation-areas ← [ ]
3: for sub-area in sub-areas do
4: output-bounds ← get-out-bound(fθ, sub-area) ▷ e.g., using Neurify, ProVe
5: end for
6: for output-bound in output-bounds do
7: is-violation ← check-property(output-bound, p) ▷ e.g., using Eq. 5.3
8: Append sub-area to violation-areas if is-violation is true
9: if is-violation is unknown on output-bound then

10: return False, [ ] ▷ i.e., increase nsub and repeat
11: end if
12: end for
13: return: True, violation-areas

5.4 Experiments

We evaluate the behaviors of the Panda in the trajectory generation task using a Deep
Reinforcement Learning trained policy. Since this is the first time in the thesis we

2This is a crucial step to reduce the number of the subdivision to perform. Therefore this is an
exciting area for future research
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present a comprehensive training and verification experiment from the manipulator
environment to the robot, we provide additional information and overviews to clarify
the entire process, which is summarized in Figure 5.3.

Figure 5.3: Overall architecture of our training and verification pro-
cedure from Unity to the robot.

We aim at showing that formal verification is a viable methodology to evaluate the
behaviors of trained decision-making models. In particular, we show how further
optimization for the training process makes the resultant policy more robust, obtaining
a lower number of violations over the desired behaviors.

Training Setup: We consider a Double DQN algorithm for the training of the tra-
jectory generation task presented in Section 3.3, which we enhance with the following
optimizations.

Linear Scaling Discount Factor

The joint steps that compose the trajectory of the Panda tend to be minimized in the
advanced stages of the training as the network learns to reach the target minimizing
the steps to obtain the positive reward. Discount is thus crucial, and prior work
considers to upscale the discount, starting to learn by maximizing rewards on a short-
term horizon and progressively giving more weight to delayed rewards (François-Lavet
et al., 2015). In contrast, our approach works oppositely. To address the sparsity of
the reward, we initially give more importance to delayed rewards and then to short-
term ones, hence scaling the discount factor linearly downwards to achieve higher
returns.

Exploring with a Directional Controller

Knowing the kinematics of the manipulator, we designed a mixed exploration method
that replaces part of the random choices of the standard ϵ-greedy strategy with correct
actions, providing the network with correct samples. For example, given j0 the current
position of joint0 and j0f its final pose when generating the target, if j0 < j0f then
a clockwise action is selected. Moreover, training the network using the controller
as policy when the end-effector reaches a minimum distance from the target (5cm in
our experiments) enables us to reach a millimeter precision < 0.1cm. This further
motivates the results of Chapter 4 as state-of-the-art continuous Deep Reinforcement
Learning for trajectory generation achieved trajectories within a 5cm error (Gu et al.,
2017).
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Experimental Setup: Similar to the experiments in Section 4.3, data are collected
on an RTX 2080, using the standard hyper-parameters of the original algorithmic
implementations of Double DQN (van Hasselt et al., 2016) and ten independent runs
with different random seeds. Considering the sparsity of the reward in this envi-
ronment, described in Section 3.3, our best performing implementation of the linear
scaling discount factor considers an initial γ = 0.99. We then gradually scale down to
γ = 0.8 for each improvement measured in the success rate (i.e., a decay of 0.0019 for
each successful trajectory).

5.5 Empirical Evaluation

We consider the success rate as standard evaluation metrics that measures the number
of successful trajectories over a batch of one hundred epochs.3 An epoch ends when
a correct trajectory is generated or a fixed timeout of actions is reached (300 in our
experiments).

Figure 5.4 on the left shows that the scaling discount factor offers more stability
during the training over a fixed discount γ = 0.95 (i.e., the best performing one in our
evaluation). This result considers the same setup of prior work with an error between
the target and the end-effector of 5cm (Gu et al., 2017), and an ϵ-greedy exploration
policy. In more detail, the training stabilizes at over 95% of successes after about
20000 iterations. This corresponds to 3 hours of training with our computational
platform. Crucially, the scaling discount presents a success rate that is on average
10-15% better over the fixed discount, keeping the same trajectory dimension in terms
of joint steps. Hence, the following results will consider only training performed with
a scaling discount. Moreover, Figure 5.4 on the right depicts the similarity between
two explanatory trajectories to the same target position: one generated by a trained
Double DQN model, and the other one computed with the inverse kinematic solver of
Robotic Toolbox4.

Figure 5.4: Average success rate between a Double DQN with our
scaling discount and a fixed one (left). Explanatory trajectory gener-
ated by the trained Double DQN model and the Robotic Toolbox in

Matlab (right).

Figure 5.5 on the left shows the performance with the mixed policy based on the direc-
tional controller. A preliminary evaluation shows the best results using the controller

3Note that the average reward would provide the same results, due to the sparse reward signal of
the environment.

4petercorke.com/wordpress/toolboxes/robotics-toolbox
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actions in 25% of the ϵ cases (a greater value of controller actions causes a drop in
performance). This result offers over 90% of success rate after about 30000 iterations,
reducing the trajectory error to 2cm. By providing more correct trajectories in the
first stages of the training, we obtain superior performance (i.e., lower error) faster
(i.e., 2 hours). As detailed in the previous section, when the controller is used in
the last part of the trajectory (i.e., when the target’s distance is 2cm), it is possible
to train the same Double DQN model to reach the target with millimeter precision
(Figure 5.5 on the right).

Figure 5.5: Average success rate with our mixed exploration phase
with an error of 2cm between the end-effector and the target (left).
Average success rate with the directional controller for the last part of

the trajectory with an error of 0.1cm (right).

5.5.1 Evaluating Behaviors with Formal Verification

While the success rate provides a clear indication of the performance of the trained
Double DQN model in reaching random targets, it does not provide any information
on important features of the trajectory executed by the arm.

Assuming an industrial application, we could be interested in verifying that the manip-
ulator always operates inside its workspace. Therefore, we require that the decision-
making properties, formalized as Equation 5.1, describe the following behavior. Sup-
pose the current position of a joint ji equals one of its domain limits, regardless of
the configuration of the other joints and the target’s position. In that case, the robot
must not rotate ji in the wrong direction. Trivially, an action that rotates ji causes
the robot to exit from the workspace.

To this end, we want to verify that the model never selects a specific action over
a set of others. In detail, the trajectory generation environment for the Panda has
one output for each joint (v0:5), hence we have to verify the property over multiple
outputs. Equation 5.1 is thus in form:

p : If j0 ∈ Ij0 ∧ ... ∧ j5 ∈ Ij5 ∧ gx,y,z ∈ Ig ⇒ v0 < [v1:5]

where I denotes the input area for specific input. A property in this form verifies
whether the network chooses to move the joint j0 (that corresponds to output v0).
To avoid such behavior, we require an area (or sub-area) with a lower bound of [v1:5]
greater than the upper bound of v0. To summarize, it is sufficient that one of the
other actions has a greater value to ensure that the agent never chooses the specified
output.
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Following the environment specification, a property that checks whether a joint exit
from its workspace is formalized as follows:

p0L : If j0 ∈ [1, 1] ∧ {j1:5, gx,y,z} ∈ D ⇒v0 < [v1:5], where D = [0, 1)

Property p0L represents a configuration where the position of j0 equals its limit on the
left (i.e., a normalized value 1). For this reason, whatever values the other network
inputs assume, the output corresponding to the action j0 rotates left must be lower
than at least one of the others. Hence, for each joint ji we consider two properties, one
for the left limit (piL) and one for the right limit (piR). To show that our optimiza-
tions lead to a network that behaves better according to the desired specifications,
we evaluate these properties on two trained networks: one trained with a standard
Double DQN (Standard) and one with the scaling discount and the mixed exploration
(Optimized). As evaluation metrics, we use the percentage of input configurations
(i.e., sub-areas) that cause a property violation during our formal analysis, calculated
over the size of the original input area. We note that such metric is an upper bound
of the actual violations during the execution of the trained model, and this can be
considered a worst-case analysis. Our analysis assumes an equally distributed prob-
ability for a state to belong to one of the sub-areas. However, when executing the
trajectory, some input configurations appear more frequently, while property viola-
tions are usually restricted to the limits of the workspace. To summarize, during the
testing phase of a trained model, a violation may never appear because undesirable
behaviors belong to a restricted sub-set of input configurations that rarely occur.

Table 5.1 shows the results of our evaluation, which confirm that the network trained
with our optimizations better behaves over the properties. In more detail, the model
trained with standard Double DQN has a significantly higher percentage of violations
for p0R and p3L (where > 65% of input configurations lead to a violation of the
property). Furthermore, even if the optimized model has a higher failure rate in
specific properties, the average number of undesirable behaviors is significantly lower
(0.12% in contrast to 12.33%).

Table 5.1: Property verification results. For each property we show
the percentage of property violations for the Standard and the Opti-

mized models.

Property Standard (%) Optimized (%)

p0L 0.00 0.17
p0R 78.76 0.00
p1L 0.00 0.12
p1R 0.01 0.00
p2L 0.31 0.01
p2R 0.00 0.03
p3L 68.33 0.50
p3R 0.27 0.28
p4L 0.04 0.10
p4R 0.04 0.03
p5L 0.09 0.08
p5R 0.08 0.12

Average 12.33 0.12
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5.6 Related Work

In this section, we first discuss DRL approaches for manipulator’s trajectory genera-
tion. Hence, we briefly discuss the broad field of formal verification that we employ
to verify our trained models’ behaviors.

5.6.1 Learning Trajectory Generation

Deep Reinforcement Learning has been previously employed on seven degrees of free-
dom robotic arms (Gu et al., 2017; Marchesini et al., 2019). These methodologies,
however, most consider a limited target area or fixed targets during the test on the real
robot (e.g., a door handle). An exhaustive evaluation of DRL algorithms to perform
the trajectory generation of a similar manipulator is presented in Gu et al. (2017).
In particular, authors consider only continuous action space algorithms, which limi-
tations have been discussed in Section 4.3. Moreover, their random target position is
sampled uniformly from a cube of size 0.2m centered around a point, with a precision
of 5cm. In contrast, Marchesini et al. (2019) shows that it is possible to use discrete
action space algorithms for the trajectory generation problem, but considering an error
of 5cm between the target and the end-effector. Following this, we optimized Double
DQN to generate a trajectory in the whole considered workspace of the manipulator
and reduce the error between the target position and the end-effector to < 0.1cm,
using our directional controller.

5.6.2 Formal Verification for Deep Neural Networks

Traditionally, the validation of neural networks relies on a large evaluation of a set of
input points and the analysis of the corresponding outputs. This determines whether
they belong to the desired set of bounds (Liu et al., 2019). However, since the input
space is continuous and Deep Neural Networks are vulnerable to adversarial examples
(Szegedy et al., 2015), a practical evaluation strategy can not provide reliable results
(Papernot et al., 2016). An entire family of formal approaches extends the Boolean
Satisfiability or the Satisfiability Modulo Theories to find configurations that falsify
assertions in the form of Equation 2.13 (Katz et al., 2017; Dutta et al., 2017; Bunel
et al., 2017). A different line of research aims at reducing the formal verification to
an optimization problem, trying to falsify a set of safety properties (Lomuscio and
Maganti, 2017; Tjeng et al., 2017; Raghunathan et al., 2018). However, all these
approaches suffer from a scalability problem on large networks that prevents their
application on real complex problems (Wang et al., 2018c). A promising method to
address this issue relies on Moore’s interval algebra (Moore, 1963). In particular,
ExactReach (Xiang et al., 2017) and MaxSense (Xiang et al., 2018) represent the first
approaches in this direction. While the former is an exact method that does not scale
to large networks, the latter proposes an approach to partition the input domain but
suffers from a severe loss of information. Neurify (Wang et al., 2018b) addresses these
issues, exploiting the interval analysis propagation of ExactReach, to obtain a scalable
and reliable approach. For our behavioral analysis, we use Neurify by splitting the
input space subdivision into independent sub-intervals, enabling a direct computation
of the number of violations over the properties.
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5.7 Discussion

In this chapter, we investigated further optimizations to improve the performance of
the Double DQN algorithm (i.e., a scaling discount factor and a mixed exploration
policy). Moreover, we discussed the limits of standard evaluation metrics in the
evaluation of the actual decision-making process of a trained Deep Reinforcement
Learning model. The reported results show that our approach can verify whether
a trained DRL model respects a set of properties that describes a desired set of
behaviors. Moreover, the empirical evaluation highlighted that a model trained with
the proposed optimization tends to learn the task faster with a higher success rate,
which intuitively results in a lower percentage of violations.

5.8 Conclusions

In this first part of the thesis, we focused on providing a comprehensive overview of
recent issues related to the choice and the evaluation of Deep Reinforcement Learning
algorithms.

We started by presenting three robotics environments that we will use through the
thesis as practical evaluation scenarios. Crucially, we showed the benefits of using
non-standard simulation software, such as Unity, to improve the physics simulation
while exporting the trained models on the real robots without further training.

Hence, we highlighted the issues related to the choice of the training algorithms,
benchmarking value-based, policy-gradient, and actor-critic approaches in our mapless
navigation domain, presenting further optimizations (i.e., the asynchronous parallel
training and the multi-batch memories). We also showed that value-based DRL ap-
proaches could be a more sample-efficient alternative over policy-gradient algorithms,
resulting in comparable or better performance in tasks that employ physical control.

Finally, we discussed the limitations of evaluating these methodologies with stan-
dard metrics (e.g., the average reward) as they are not informative on the actual
decision-making of the models. To this end, we leveraged existing Formal Verification
approaches to characterize the actual behavior of the trained policies over desired
specifications. Moreover, we evaluated further optimizations (i.e., a scaling discount
factor and a directional controller for exploration) within FV to show that optimizing
the training process also leads to models with better behaviors.
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Part II

Enhancing Exploration
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Chapter 6

Combining Deep Reinforcement
Learning with Evolutionary
Algorithms

Exploration in high-dimensional spaces is a crucial challenge in Deep Reinforcement
Learning. Despite its importance, typical exploration strategies use naive heuristics
such as ϵ-greedy action selection (e.g., DQN (Mnih et al., 2013b)) or Gaussian control
noise (e.g., DDPG (Lillicrap et al., 2016)). Moreover, the lack of diverse exploration
in such complex domains leads DRL algorithms to a premature convergence to local
optima (Pathak et al., 2017; Ostrovski et al., 2017).

This chapter discusses an emergent research direction that combines gradient-based
DRL methods with gradient-free population-based approaches, typical of Evolutionary
Algorithms (Fogel, 2006). EA, in particular, have the advantages of enabling diverse
exploration and improving robustness, leading to a more stable convergence. In detail,
we employ the indoor mapless navigation task to highlight the issues of prior combined
approaches, which hinders their combination with value-based Deep Reinforcement
Learning.

6.1 Introduction

The ability to adapt to the surrounding environment by generalizing from a mas-
sive amount of training experiences is the key factor behind the recent success of
Deep Reinforcement Learning (Mnih et al., 2013a; Silver et al., 2018a; OpenAI et al.,
2019). However, the sample efficiency of DRL algorithms is not the only limitation
that hinders broader applications of such learning techniques to more complex sce-
narios. These solutions have to cope with the uncertainties and the dynamics of
the operational environment. Hence, Deep Reinforcement Learning also suffers from
convergence to local optima, mainly caused by the lack of diverse exploration when
operating in high-dimensional spaces.

Classic exploration strategies in value-based algorithms with discrete action spaces are
usually limited to ϵ-greedy action selection, which selects the action that maximizes
the current Q-value with probability 1 - ϵ or uses a random action. Another approach
considers injecting noise in the action selection to increase the diversity seen by the
agent. In contrast, policy-gradient algorithms with continuous action space sample
actions from the current stochastic policy, typically translating into sampling a Gaus-
sian distribution that adds to a deterministic base policy. These naive exploration
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strategies applied to DRL algorithms achieved non-trivial performance in a variety of
tasks (Mnih et al., 2013b; Lillicrap et al., 2016; Schulman et al., 2017; Fujimoto et al.,
2018). However, they are inadequate when rewards are sparse or the observation and
action spaces to explore are simply too large. A typical example of this issue is Mon-
tezuma’s Revenge Atari game, where also the variants of DQN fail to achieve scores
at the level of a novice human due to inadequate exploration (Mnih et al., 2013b; van
Hasselt et al., 2016; Wang et al., 2016; Mnih et al., 2016).

Several studies address the exploration problem to encourage better exploration. To
this end, intrinsic motivation seeks to maximize an additional task-independent intrin-
sic reward function while optimizing to the reward signal (Barto et al., 2013; Oudeyer
and Kaplan, 2013). Typical examples are:

• Empowerment: it measures the level of control the agent has over its future.

• Surprise: an agent takes more reward to act differently over its understanding
of the environment.

• Novelty: the agent takes more reward to explore new states, which is related to
surprise (Ostrovski et al., 2017).

Barto et al. (2013) and Oudeyer and Kaplan (2013) present an exhaustive taxon-
omy and comparison of intrinsic motivation approaches. However, we note that these
strategies typically rely on sensitive task-specific hyper-parameters, which is another
significant issue in Deep Reinforcement Learning. The sensitivity to hyper-parameters
is, in fact, the main responsible for brittle convergence properties and poor perfor-
mance in practical tasks of DRL (Haarnoja et al., 2018; Henderson et al., 2018).

In contrast, Evolutionary Algorithms (Fogel, 2006) have been recently employed as
a promising gradient-free optimization alternative to Deep Reinforcement Learning.
The redundancy of these population-based approaches has the advantages of enabling
diverse exploration and improving robustness, leading to a more stable convergence. In
particular, Genetic Algorithms (GA) (Montana and Davis, 1989) show competitive re-
sults compared to gradient-based DRL (Such et al., 2017) and have low computational
cost. However, these gradient-free approaches struggle to solve high-dimensional prob-
lems, have poor generalization skills, and are significantly less sample efficient than
gradient-based methods.

Hence, an emergent research direction proposes the combination of gradient-free and
gradient-based methods following the physical world, where evolution and learning
cooperate in assimilating the best of both solutions (Simpson, 1953). The first mixed
approach, Evolutionary Reinforcement Learning (ERL) (Khadka and Tumer, 2018),
relies on the actor-critic architecture to inject information into an evolutionary pop-
ulation. At the same time, both the gradient-free and gradient-based training phases
proceed in parallel. Similarly, Proximal Distilled ERL (PDERL) (Bodnar, 2020) ex-
tends ERL with different evolutionary methods. CEM-RL (Pourchot and Sigaud,
2019) brings this research field into the family of distributed approaches, combining
a portfolio of TD3 (Fujimoto et al., 2018) learners with the Cross Entropy Method
(CEM) (Duan et al., 2016).

These combined approaches, however, also present two significant limitations, which
we discuss through this chapter:



6.2. Preliminaries and Related Work 65

• The parallel training phases of the Deep Reinforcement Learning and evolution-
ary components (Khadka and Tumer, 2018; Bodnar, 2020), or the multitude of
learners (Pourchot and Sigaud, 2019) result in significant overhead.

• The combination strategy of prior work does not ensure better performance than
the DRL agent as it does not prevent detrimental behaviors (e.g., performance
drop).

• The actor-critic formalization of previous mixed approaches allows them to a
straightforward evaluation in continuous locomotion benchmarks (Brockman
et al., 2016; Todorov et al., 2012). However, this also hinders their combination
with value-based Deep Reinforcement Learning.

The latter is crucial as recent work (Matheron et al., 2019) investigated the unsatis-
factory performance of actor-critic solutions in deterministic tasks that, in contrast,
can be effectively addressed with value-based DRL. Hence, in this chapter, we discuss
the poor performance of value-based implementations of prior combined approaches
(Khadka and Tumer, 2018; Bodnar, 2020) in our discrete action space indoor mapless
navigation task.

6.2 Preliminaries and Related Work

Following the trend of using Evolutionary Algorithms, or Evolutionary Strategy (ES),
as an alternative optimization process over Deep Reinforcement Learning (Such et al.,
2017; Salimans et al., 2017), an emergent research field proposed the combination of
gradient-free population-based approaches and gradient-based solutions.

In detail, ERL (Khadka and Tumer, 2018) considers an actor-critic DDPG agent (Lil-
licrap et al., 2016) and a concurrent EA training that generates a population of indi-
viduals, which are mutated and selected based on their fitness. The DRL agent trains
in parallel from the samples generated by both the training phases. It is thus period-
ically injected into the running population, which is also used to collect the training
performance. The mutation function of ERL ensures that, in a certain number of
episodes, the gradient-based policy outperforms its evolutionary siblings, introduc-
ing the gradient-based benefits into the population. Hence, such a mutation pattern
biases the selection process of the next generation and its performance. In their exper-
iments, authors highlight an efficient transfer of information between the two families
of algorithms, outperforming DDPG in well-known locomotion benchmarks (Brock-
man et al., 2016; Todorov et al., 2012). However, both the usage of all the experiences
in the buffer and forcing the Deep Reinforcement Learning agent to perform better
than the evolutionary population bias the training and cause detrimental behaviors,
which we will show in the following section.

Inspired by ERL, several combinations have been proposed (Bodnar, 2020; Colas
et al., 2018; Pourchot and Sigaud, 2019; Khadka et al., 2019). While GEP-PG (Colas
et al., 2018) is a precursor of a combined approach, where a curiosity-driven approach
fills the buffer of the agent, PDERL (Bodnar, 2020) addresses the EA component of
ERL. In particular, PDERL introduces novel evolutionary operators to compensate
for the simplicity of the genetic representation (as investigated by Lehman et al.
(2018), where authors address destructive behaviors of biologically-inspired variation
operators applied to neural networks, which causes catastrophic forgetting). We also
mention CERL (Khadka et al., 2019) and CEM-RL (Pourchot and Sigaud, 2019) as
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they are extensions of ERL for distributed training with multiple active learners (i.e.,
gradient-based agents), which leads to a significant overhead for the training process.

However, these works share a common baseline as they all rely on actor-critic Deep
Reinforcement Learning and build on the insights of ERL. Hence, we choose ERL
and PDERL to show the poor performance of these approaches when combined with
value-based algorithms.

6.3 Experiments

We evaluate the performance of prior combined approaches in the indoor mapless
navigation task with a discrete action space, which makes it suitable for value-based
algorithms. We aim to show the limitations of such prior algorithms to provide a
comprehensive evaluation that will introduce and highlight the contribution of our
combined framework in the next chapter.

Training Setup: We consider the Rainbow algorithm (Hessel et al., 2018) as the
gradient-based component for ERL and PDERL. Rainbow represents a state-of-the-
art value-based approach that combines all the improvements developed for DQN
over the years (van Hasselt et al., 2016; Wang et al., 2016; Schaul et al., 2016; Mnih
et al., 2016; Bellemare et al., 2017). In contrast, for the gradient-free evolutionary
component, we refer to the original authors’ implementations (Khadka and Tumer,
2018; Bodnar, 2020).

Experimental Setup: Similar to previous chapters, data are collected on an RTX
2080, using the standard hyper-parameters of the original algorithmic implementations
(Hessel et al., 2018; Khadka and Tumer, 2018; Bodnar, 2020) and ten independent
runs with different random seeds. In order to get reproducible and consistent results
in this comparison, the random seed is fixed across a single run of every algorithm
(because there may exist a sequence of targets that favor a run or a better network
initialization), while it varies in different runs. Consequently, a specific run of every
algorithm executes the same sequence of targets and initializes the networks with the
same weights.

6.4 Empirical Evaluation

Similar to previous chapters, we consider the success rate as evaluation metrics that
measures the number of successful trajectories over a batch of one hundred epochs.

As previously discussed, Figure 6.1 shows that a direct combination of ERL with
a value-based algorithm can not cope with the issues of such Deep Reinforcement
Learning approaches. Indeed, the ERL combination with Rainbow results in detri-
mental performance. Given these results, we performed an additional evaluation with
the improved version of ERL, PDERL, which introduces novel genetic operators to
improve ERL robustness. These improved genetic operators achieved slightly better
performance over the naive ERL version. However, PDERL still provides detrimental
performance over the standard Rainbow.

Hence, we conjecture that the detrimental behavior of previous mixed approaches
is related to their Deep Reinforcement Learning injection pattern and the bias in
the selection operator, rather than the simplicity of their gradient-free component.
Furthermore, in a task such as mapless navigation, the parallel training phases of
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Figure 6.1: Average success rate between Rainbow and its combina-
tion with ERL and PDERL.

the gradient-based and gradient-free components do not provide a robust evaluation.
Intuitively, the gradient-free population evaluates over different random targets, which
can be easier to reach, hence selecting a genome that does not represent an overall
better navigation policy. Follows that the episodes of the population component
should be accurately modeled to ensure a robust evaluation in a practical task such
as navigation.

6.5 Discussion

In this chapter, we investigated the performance of value-based implementations of
previous combined approaches, ERL and PDERL. We discussed the limitations of
such frameworks, which typically return detrimental performance when combined with
value-based algorithms. This is crucial as previous chapters show the importance
of value-based Deep Reinforcement Learning both in standard benchmarks and in
practical applications.

For this reason, the next chapter investigates a generally applicable framework that
allows the combination of Evolutionary Algorithm with both policy-gradient (or actor-
critic) and value-based algorithms, ensuring to match the performance of the gradient-
based component in a worst-case scenario.
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Chapter 7

Genetic Soft Updates for Policy
Evolution

Evolutionary Algorithms (Fogel, 2006) represent a natural way to improve the explo-
ration abilities of Deep Reinforcement Learning agents using genetic operators such
as mutations and crossovers. In particular, the combination of gradient-free EAs and
gradient-based DRL show promising results in enhancing the performance of exist-
ing actor-critic algorithms, addressing the typical issue related to the lack of diverse
exploration (Khadka and Tumer, 2018; Bodnar, 2020). However, their combination
strategy, described in the previous chapter, leads to significant issues when combined
with value-based approaches (Marchesini et al., 2021), which typically present more
brittle convergence properties over policy-gradient (and actor-critic) algorithms (van
Hasselt et al., 2018).

For this reason, this chapter presents a generally applicable framework that allows
complementing any Deep Reinforcement Learning algorithm with Evolutionary Al-
gorithms, improving the performance of prior work with every considered gradient-
based approach. Crucially, our combination strategy matches the performance of the
gradient-based component in a worst-case scenario, enabling the usage of value-based
solutions. Moreover, we show that our framework addresses the sensitivity of DRL
algorithms to hyper-parameters, significantly improving the returns in settings where
the only Deep Reinforcement Learning component presents pathological performance
(e.g., a specific seed initialization).

7.1 Introduction

Our framework, which we refer to as Soft Updates for Policy Evolution (Supe-RL),
enables us to combine the characteristics of Evolutionary Algorithm (in particular,
a Genetic Algorithm) with any DRL algorithm, addressing the limitations of previ-
ous approaches. The general idea is to benefit from the high sampling efficiency of
gradient-based Deep Reinforcement Learning while incorporating gradient-free GA to
generate diverse experiences and find better policies.

Figure 7.1 provides a general overview of the methodology. In more detail, Supe-RL
based algorithms perform a periodic genetic evaluation applying a Genetic Algorithm
to the agent network’s weights. A selection operator uses a fitness metric to evaluate
the population, choosing the best performing genome (i.e., the weights of the network)
used to update the weights of the Deep Reinforcement Learning agent. In contrast
to previous work, our genetic evaluation is only performed periodically, drastically
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Figure 7.1: High-level overview of the Supe-RL framework.

reducing the overhead. Furthermore, our soft update combination strategy, detailed
in Section 7.2 allows direct integration of a GA to any DRL algorithm as it is similar to
performing a gradient step towards a better policy, avoiding detrimental behaviors. As
previously discussed, this allows the combination with value-based approaches, which
benefit from the variety of optimizations developed for DQN, namely the Rainbow
algorithm (Hessel et al., 2018). Crucially, our genetic component influences the Deep
Reinforcement Learning agent policy only if one of its mutated versions performs
better in a subset of additional evaluation epochs. Hence, with a sufficient number of
epochs, we obtain a reasonable estimation of the overall performance of the population.

To provide a comprehensive evaluation of our approach, we consider both the dis-
crete action space indoor mapless navigation and the continuous action space aquatic
navigation, which allows testing Supe-RL with different DRL algorithms. To further
confirm the superior performance of our framework, we also employ standard bench-
marks (i.e., MuJoCo locomotion (Brockman et al., 2016; Todorov et al., 2012)) to
compare over prior work (Khadka and Tumer, 2018).

7.2 Genetic Soft Updates for Policy Evolution

The central insight of Supe-RL is to soft update a Deep Reinforcement Learning
agent towards better policy regions, enabling the combination with any DRL algo-
rithm. Crucially, given the more brittle convergence properties of value-based DRL,
in this section, we discuss the general procedure to complement a Deep Reinforcement
Learning approach with our framework. Therefore, we separately discuss other tricks
that allow Supe-RL to work with any gradient-based algorithm.

Algorithm 4 reports a general description of a typical execution of our framework,
which proceeds as follows:

• Lines 1-8: the Deep Neural Network weights of a DRL agent drla, also referred
to as genome or θa, are initialized with random values. Following a standard
training setup, the agent then starts to collect experiences interacting with its
environment. Such experiences are stored in a memory buffer to train θa.

• Lines 9-12 (Algorithm 5): periodically, i.e., every eP epochs, Supe-RL generates
a population P of children, each one characterized by a different genome θp
(with p = {0, . . . , |P|}). The agent’s weight θa are used to create n individuals
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Algorithm 4 Supe-RL pseudocode

Given:
– the size n of the population P
– the periodicity eP for the genetic evaluation
– a gradient-based DRL agent in environment env initialized with seed s

1: for epoch = 1 to ∞ do
2: for t = 1 to T do
3: Following the agent’s policy, select action at
4: Execute at, observing state st+1, reward rt
5: Store (st, at, rt, st+1) in the agent’s memory buffer
6: end for
7: Sample a random mini-batch of transitions from the memory buffer
8: Perform a gradient descent step updating the agent’s weights θa
9: if epoch % eP == 0 then

10: Start the genetic evaluation ▷ typically in a parallel fashion
11: P, envsP ← generate-children(n, θa, env)
12: P-fitness← genetic-evaluation(P, envsP) ▷ possibly storing the samples

in the agent’s buffer
13: θ∗ ← Select best θp according to P-fitness ▷ ∀θp ∈ P
14: θa ← Update using θ∗
15: End the genetic evaluation
16: end if
17: end for

(children) applying Gaussian noise G ∼ N (0,mutv) to the parameter vector:
mutpθa + G, where mutp is the mutation probability for each weight. In con-
trast, the mutation function of ERL multiplies the randomly chosen weights by
N (0,mutv), i.e., mutpθaG. Such mutation operator acts in a similar fashion of a
dropout layer, biasing the Deep Reinforcement Learning agent to perform better
than the evolutionary population in the long term. In practice, ERL mutates
10% of the network weights in each episode (or epoch), multiplying them by
N (0, 0.1) (plus a mutation with standard deviation 10 or a reset mutation in a
small percentage of cases). Given that their evolutionary component is running
in parallel with the gradient-based agent, we noticed that the weights in the
population tend to 0, hence causing a detrimental behavior.

• Lines 12-13: the population and a copy of θa are then independently tested over
a set of evaluation episodes that shares the same goals to find the overall best
performing individual θ∗ based on the fitness.1 In this phase, we can also store
a portion of diverse experiences in the memory buffer of drla to further exploit
the diversity of the population-based component.

• Line 14: if the selected genome belongs to one of the children, θa are updated
towards the mutated version, and the training phase continues with the new
weights. In contrast, if the best score belongs to drla, the training phase running
in parallel continues.

1The fitness definition is domain-specific; in the case of navigation, it is computed as the number
of targets the agent reaches over the evaluation episodes.
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Algorithm 5 generate-children(n, θa, env)

1: P ← Initialize with n+ 1 copies of θa
2: envsP ← Initialize with n+ 1 copies of env
3: for each θp ∈ |P| − 1 do
4: Randomly sample a mutp percentage of weights from θp
5: for each w ∈ mutpθp do
6: w ← w + G ▷ where G ∼ N (0,mutv)
7: end for
8: end for
9: return P, envsP

Since the evaluation does not require any interaction among the population, we in-
stantiate an independent copy of the environment for each individual in a separate
thread and test them in parallel. The parallel computation drastically reduces the
overhead for the drla training process.2 Hence, our approach has both the advantage
of searching for a better-performing policy exploiting mutations that resembles noisy
exploration (Fortunato et al., 2017), and enriching the memory buffer with new di-
versified experiences. As detailed in the following empirical evaluation, our genetic
evaluation strategy leads to better policies significantly reducing training time, with
Supe-RL resulting approximately two times faster than ERL in the same scenario.

Crucially, in contrast to previous combined approaches, Supe-RL based algorithms
are designed to improve the performance of drla as our combination strategy does not
bias the choice of the better-performing children in the long term. Moreover, we do
not transfer any information in the worst-case scenario where the gradient-based agent
is always the best genome in the genetic evaluation. Hence a Supe-RL based training
will match the performance of the baseline Deep Reinforcement Learning algorithm.

Limitations: We note that Supe-RL and previous combined approaches are specially
designed for training in simulation, where it is possible to parallelize the learning
process. Hence, when training on a real scenario, it is not generally possible to evaluate
the population in parallel, and combined approaches could significantly increase the
training time. However, having access to a simulation environment is a common
assumption in Deep Reinforcement Learning literature, where significant results have
been achieved mainly using simulation and transferring the policy on real platforms
(Juliani et al., 2018; Zhao et al., 2020; Ding et al., 2020; OpenAI et al., 2019).

7.2.1 Methodology

Our practical implementations of Supe-RL consider a classic gradient-free Genetic
Algorithm (Montana and Davis, 1989), described in Section 2.2.2, with two gradient-
based approaches. In particular, we evaluated a variety of different Deep Reinforce-
ment Learning algorithms that work in both discrete and continuous action spaces.
Among Rainbow, PPO, DDPG, and TD3, we chose the best-performing ones: (i)
Rainbow as a value-based algorithm for the discrete indoor navigation, and (ii) PPO
as policy-gradient (or actor-critic) one for the continuous aquatic navigation. We refer
to the resultant combinations as GRainbow and GPPO, respectively.

2The multi-thread nature of the Unity game engine makes this parallel testing phase straightfor-
ward and efficient.



7.2. Genetic Soft Updates for Policy Evolution 73

Value-based Genetic Soft Updates

The genetic evaluation of a value-based agent presents additional challenges due to the
typical instability of the training approaches. Such brittle convergence and the poor
scalability on high-dimensional action spaces are known drawbacks of DQN-based
algorithms. Nonetheless, we remark that recent works show the benefits of this family
of approaches solutions in these challenging settings (Tavakoli et al., 2018; Zahavy
et al., 2019; Dulac-Arnold et al., 2015; de Wiele et al., 2020), further motivating
the requirement for a combined approach that is compatible with value-based Deep
Reinforcement Learning.

We evaluated different methodologies to update the gradient-based agent with the
better performing child:

1. The first method substitutes θa with θ∗, approaching the new set of weights
on the target network via Polyak averaging (or soft update, according to the
literature (Lillicrap et al., 2016)). We tried different settings for the target
network, but a soft update of 10% of the weights showed us the best performance.
However, this method leads to an unusual optimizer choice, which is crucial
considering the high volatility of value-based algorithms. In particular, we note
that the well-known Adam (Diederik P. Kingma, 2015) is widely considered
in the literature due to the self-adaptable learning rate that typically requires
minimal hyper-parameter tuning. However, after the switch of drla, Adam leads
to a marginal performance drop. We motivate this as the learning rate of Adam
at the epoch of the switch is "adjusted" for the old θa, hence requiring additional
training epochs to embrace the new, better-performing agent. This first Rainbow
implementation of Supe-RL, which we refer to as GRainbow, requires careful
tuning of an SGD optimizer. Nonetheless, results in Section 7.4 show that
GRainbow outperforms both Rainbow and the GA components.

2. Given the main limitation of GRainbow in hand-tuning SGD, which requires
several trials, we considered Tessler et al. (2019) that improves stability by
copying the agent model to the target, only when the former performs better
than the latter. Hence, we flipped the GRainbow update approach by soft
updating drla towards the best genome and then switching the target network
with such genome (which guarantees better performance on the target). This
simple trick resulted in a more stable switch operation, enabling us to use Adam
and improve the performance of GRainbow.

3. Finally, a natural improvement of the previous methods considers employing
the soft update technique for both networks. We refer to the resultant combi-
nation as Soft GRainbow (SGRainbow). In more detail, we soft update both
the agent’s models towards the weights of the best performing child, smoothing
the transition of the networks’ weights towards its better-mutated version. The
update rule for the drla networks is thus:

θa = βθ∗ + (1− β)θa

θ′a = βθ∗ + (1− β)θ′a
(7.1)

where we recall that θa, θ
′
a are the weights of the agent’s network and target

network, and β is the update factor of the Polyak averaging. We consider these
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slight periodical changes in the drla weights as a gradient step towards a nearby
set of parameters that performs better. Hence, this switching strategy represents
the core mechanism that allows Supe-RL to work and improve the performance
of value-based Deep Reinforcement Learning while also reducing the variance
across different runs.

Therefore, a useful side message is that using Stochastic Gradient Descent seems a
better alternative than Adam when drla "jumps" due to target network instabilities.
At the same time, Adam works better if the transition of the target network is more
stable.

Policy-gradient Genetic Soft Updates

In contrast to value-based Supe-RL implementations, the better convergence proper-
ties of policy-gradient (and actor-critic) Deep Reinforcement Learning algorithms do
not lead to any particular issue related to the optimizer’s choice. Hence, we consid-
ered the soft update strategy of SGRainbow. Trivially, we do not use the population
visited samples in the update of GPPO, due to the on-policy nature of the baseline
PPO algorithm.

7.3 Experiments

We evaluate our framework in six different environments to provide a comprehensive
overview of its performance over different scenarios. In detail, we use the discrete
action space indoor navigation for GRainbow (and SGRainbow), the continuous action
space aquatic navigation, and four benchmark locomotion tasks (Brockman et al.,
2016; Todorov et al., 2012) for GPPO. We compare the gradient-free and gradient-
based baselines (i.e., Rainbow, PPO, GA) and ERL, the most closely related work.
Moreover, we will also present several ablation experiments to confirm the superior
performance of Supe-RL and to analyze its core components (e.g., whether to use or
not the samples from the genetic evaluations, the effects of different values for β).

Training Setup: We consider the original authors’ implementations for the gradient-
free component of the algorithms over which we compare here and in the following
additional experiments: ERL, PDERL, CEM-RL (Khadka and Tumer, 2018; Bodnar,
2020; Pourchot and Sigaud, 2019). In particular, the results of prior approaches with
value-based Deep Reinforcement Learning have been discussed in the previous chapter.
Hence, this section presents their performance in the continuous action space tasks,
using PPO as the gradient-based component (as it showed better performance in our
preliminary evaluation).

Experimental Setup: Following the experiments of previous chapters, data are
collected on an RTX 2080, using the hyper-parameters of the original authors’ im-
plementations for ERL, PDERL, CEM-RL, and ten independent runs with different
random seeds. Concerning our baselines and Supe-RL based approaches, we consider
the following hyper-parameters:3

• Genetic Evaluation and GA: we use the same genetic hyper-parameters for
the baseline Genetic Algorithm, and the gradient-free component of GRain-
bow, SGRainbow, and GPPO. In particular, the population size is n = 10,

3For a fair comparison, the baselines (i.e., Rainbow, PPO, and GA) use the same hyper-parameters
when trained alone and in the combined approaches.
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and the number of epochs in the evaluation to compute the fitness ranges
from 10 to 20 across tasks. The mutation probability of a network weight is
mutp = {0.75, 0.4, 0.1} (based on the current success rate of the drla) and the
mutation value is mutv = 0.1.

• GRainbow, SGRainbow, and Rainbow: here, we discuss the relevant hyper-
parameters for GRainbow and SGRainbow, referring to Hessel et al. (2018)
for further details. Based on preliminary evaluations, we use a PER (Schaul
et al., 2016) memory buffer with size 30000, batches of 64, with the original
priority decaying parameters. The soft update of the target network (Lillicrap
et al., 2016) for Rainbow uses β = 0.01. Furthermore, given the well-structured
reward function, we notice that a simple ϵ-greedy exploration strategy with a
decay of 0.99 for each epoch led to a faster training phase compared to using
noisy exploration (Fortunato et al., 2017). Finally, a genetic evaluation collects
an average of 30000 total samples; adding a random 10% of these interactions
in the agent’s priority buffer showed improved performance.

• GPPO, ERL, PDERL, CEM-RL, and PPO: we consider the clipped PPO im-
plementation recommended in the authors’ work (Schulman et al., 2017), to
which we remind the interested reader for further details. We use a small buffer
of 256 samples with mini-batches of size 64 for the on-policy gradient-based
component, while we use the original algorithm parameters for ERL, PDERL,
CEM-RL.

7.4 Empirical Evaluation

The goal of our empirical evaluation is to investigate whether Supe-RL based ap-
proaches combine the benefits of a Genetic Algorithm with both value-based and
policy-gradient (or actor-critic) Deep Reinforcement Learning while maintaining min-
imal overhead for the training.

All the trained models (except for the GA and the previous value-based combined
approaches) can navigate generalizing: starting and target position and velocity. Fur-
thermore, the lidar allows navigating in unknown environments with different obsta-
cles, while the boat maintains similar performance in different wave conditions. We
consider both the average success rate and reward as main evaluation metrics in our
Unity environments. To further confirm the beneficial effects of combined approaches,
we also show the average number of steps and perform an additional evaluation in the
testing scenarios described in Section 3.4.1, 3.4.2. In contrast, the only reward is used
in locomotion benchmarks, which is referred to with the general term Performance
in the literature (Lillicrap et al., 2016; Schulman et al., 2017; Fujimoto et al., 2018;
Haarnoja et al., 2018).

Indoor Mapless Navigation: In the discrete action space task, we compare the
GA, Rainbow, GRainbow, and SGRainbow, referring to Section 6.4 for the results of
the value-based implementations of ERL and PDERL.

Figure 7.2 shows the average success rate on the left and the average reward on the
right. In particular, similarly to prior combined approaches, the standalone Genetic
Algorithm can not cope with the complexity of the task, where the algorithm needs to
generalize the navigation skills while exploiting the laser values to avoid obstacles. In
contrast, our periodical genetic evaluation with a soft update strategy that simulates
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a gradient step towards a better policy shows promising results. In more detail, we
note that the naive GRainbow implementation with the Stochastic Gradient Descent
optimizer outperforms Rainbow (i.e., ≈ 80% of successes over ≈ 60%). Moreover, the
soft genetic update of SGRainbow further improves the performance while reducing
the variance, reaching ≈ 90% successes in about 2000 epochs. Such results correspond
to 60 minutes of training with our computational hardware. In contrast, Rainbow and
GRainbow reached ≈ 80% and ≈ 60% successes in similar training time.

Figure 7.2: Average success rate (left) and average reward (right)
for GA, Rainbow, GRainbow, SGRainbow in the discrete action space

indoor navigation environment.

Furthermore, Figure 7.3 shows the average number of steps performed by SGRainbow
and Rainbow during the training. These results confirm the superior performance of
SGRainbow in learning more efficient navigation skills, as it achieves higher returns
performing shorter paths (i.e., fewer steps).

Figure 7.3: Average number of steps for Rainbow and SGRainbow
during the training.

To further confirm the superior performance of SGRainbow over Rainbow and GRain-
bow (which are the only trained policies able to navigate in the environment), we
performed an additional experiment in the TurtleBot3 testing scenario that presents
previously unseen obstacles. Table 7.1 reports the average reward, steps, and time
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(in seconds) of this evaluation. For a fair comparison, we chose a set of targets reach-
able by every model. Although these results confirm the superior performance of
SGRainbow, we note that rewards are similar (as the agents navigate towards the tar-
get, collecting positive rewards). At the same time, time and number of steps differ
significantly (≈ 31% and ≈ 37.5% for SGRainbow over Rainbow).

Table 7.1: Performance of Supe-RL value-based approaches in the
TurtleBot3 testing scenario.

Algorithm Avg. Reward Avg. Steps Avg. Time (s)

Rainbow 36.2 370 42
GRainbow 37.8 303 34
SGRainbow 39.1 269 29

Outdoor Aquatic Navigation: In the continuous action space task, we compare
the GA, PPO, and its combined versions, ERL-PPO and GPPO.

Figure 7.4 shows the average success rate on the left and the average reward on the
right. In particular, the Supe-RL based algorithm, GPPO, offers better performances
considering our evaluation metrics also in the continuous action space domain. In
more detail, GPPO reaches over ≈ 98% of average success rate in about 1300 epochs
that correspond to 110 minutes of training, while PPO, similarly to ERL-PPO, was
able to reach ≈ 82% of average success rate in ≈ 1700 epochs (160 and 210 minutes
of training, respectively). However, we note that Figure 7.4 presents a significant
variance across the runs with different seeds. A more detailed analysis of the collected
metrics revealed an initialization seed that resulted in pathological performance for
the majority of the algorithms. We will investigate this in the following sections.

Figure 7.4: Average success rate (left) and average reward (right) for
GA, PPO, ERL-PPO, GPPO in the continuous action space outdoor

aquatic navigation environment.

Furthermore, Figure 7.5 shows the average number of steps performed by GPPO and
PPO, which confirms the superior performance of GPPO similarly to the indoor navi-
gation evaluation, where fewer steps translates into shorter paths and higher rewards.
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Figure 7.5: Average number of steps for PPO and GPPO during the
training.

Finally, Table 7.2 reports the performance of PPO, ERL-PPO, and GPPO (i.e., the
algorithms that achieved good navigation skills) in the previously unseen testing sce-
nario. Crucially, GPPO confirms its superior performance also in combination with
policy-gradient (or actor-critic) algorithms.

Table 7.2: Performance of Supe-RL policy-gradient (actor-critic) ap-
proaches in the aquatic testing scenario.

Algorithm Avg. Reward Avg. Steps Avg. Time (s)

PPO 4.5 98 27
ERL-PPO 4.6 96 27
GPPO 4.8 89 22

7.4.1 Robustness over Detrimental Initialization

A more detailed analysis of our results reveals that the high variance of GA, PPO,
and ERL in the aquatic navigation task is due to a specific seed that results in a
pathological performance of the approach. Moreover, such a problem also occurs in
the indoor navigation task, but on a smaller scale.

In detail, Figure 7.6 reports the average success rate (for the aquatic navigation on
the left and the indoor task on the right) of the only detrimental initialization seed
that causes GA, Rainbow, PPO, and ERL to pathological performance (compared
to the other experiments with different seeds). Crucially, Supe-RL based approaches
(i.e., GPPO, GRainbow, and SGRainbow) do not present poor performance, reaching
similar results to the other training phases.

This analysis is not as statistically relevant as previous results because it is not aver-
aged over multiple seeds. However, we believe that this is an essential aspect of our
framework. For this reason, the next chapter employs Formal Verification to provide
guarantees on the improvements of Supe-RL in the context of safety. Moreover, for a
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Figure 7.6: Average success rate considering the training phase of
the only detrimental initialization seed in the aquatic navigation task

(left) and in the indoor one (right).

more comprehensive overview of our evaluations in the robotic tasks, Figure 7.7 re-
ports the average success rate for all the experiments without such detrimental seed,
where Supe-RL based algorithms still outperform all the considered baselines.

Figure 7.7: Average success rate considering all the training phases
without the detrimental initialization seed in the aquatic navigation

task (left) and in the indoor one (right).

7.4.2 Ablation Studies and Additional Experiments

For a broader evaluation, we present a set of additional and ablation experiments to
test our claims on the superior performance of Supe-RL based approaches.

Value-based Experiments

We begin with the value-based implementation, showing the performance of GRain-
bow with SGD and Adam and the performance difference in the tuning of the soft
update parameter β for SGRainbow. We also present an ablation experiment on the
influence of the population samples in the buffer of the Deep Reinforcement Learning
agent.
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Evaluating Adam and SGD: In Section 7.2.1 we discussed two different implemen-
tations for GRainbow that differ in the soft update strategy and allow us to consider
the Adam optimizer over SGD, which typically requires careful tuning. Figure 7.8
on the left shows the performance difference between GRainbow with Adam, which
outperforms the manually tuned version with Stochastic Gradient Descent.

Tuning the Soft Update: We performed multiple evaluations over different seeds to
find the best value for the soft update parameter β that regulates the flow of informa-
tion from the best set of weights in the population to the gradient-based agent. Figure
7.8 in the middle clearly shows that SGRainbow outperforms the naive GRainbow,
and reports the average success rate of our experiments with β = {0.15, 0.3, 0.6}.

Using Population Samples: Given our best performing value-based Supe-RL algo-
rithm (i.e., SGRainbow with β = 0.3), we performed an ablation experiment to test
the influence of introducing the samples collected in the genetic evaluation phase into
the Deep Reinforcement Learning agent’s memory buffer. In particular, Figure 7.8 on
the right shows a non-negligible performance improvement when storing part of the
population samples into the memory buffer.

Figure 7.8: Average success rate in the additional value-based Supe-
RL experiments: SGD and Adam GRainbow (left). Effects on the soft
update factor tuning for SGRainbow (middle). Ablation on introduc-
ing part of the population visited samples in agent’s memory buffer

(right).

Policy-gradient Experiments

In this section, we show a further comparison of GPPO in standard benchmarks
environments and over CEM-RL (Pourchot and Sigaud, 2019), a distributed combined
approach.

Evaluation in Locomotion Benchmarks: We performed additional experiments
on Reacher-v2, HalfCheetah-v2, Hopper-v2, and Ant-v2 MuJoCo locomotion tasks
(Brockman et al., 2016; Todorov et al., 2012) with GPPO and ERL. These envi-
ronments consist in learning locomotion behaviors that allow the different simulated
agents to move forward, receiving a positive reward signal.

For a fair comparison, we consider the data collection specifics detailed in (Khadka and
Tumer, 2018). Our ERL implementation with PPO returned comparable results to the
original ones presented in (Pourchot and Sigaud, 2019; Khadka et al., 2019; Khadka
and Tumer, 2018). Crucially, Figure 7.9 shows that our GPPO offers comparable or
better performance across all the considered tasks. Furthermore, results in the Hopper



7.4. Empirical Evaluation 81

environment further highlights the detrimental behavior of ERL, which we discussed
in the previous chapter.

Figure 7.9: Performance of PPO, ERL-PPO and GPPO in the Mu-
JoCo locomotion benchmarks: Reacher-v2, HalfCheetah-v2, Hopper-

v2, and Ant-v2.

Comparison with a Combined Distributed Approach: As detailed in the pre-
vious section, the recent field of combined approaches presents distributed solutions
that use a portfolio of gradient-based Deep Reinforcement Learning learners, such as
CERL (Khadka et al., 2019) and CEM-RL (Pourchot and Sigaud, 2019). Intuitively,
this results in significant overhead in the training process.4 Nonetheless, we compare
GPPO with a PPO version of CEM-RL (CEM-PPO) due to its superior performance
over other combined approaches. In contrast, Supe-RL based approaches employ one
DRL learner, and the population is only used for policy evaluation.

Figures 7.10 shows the average success rate and training time in the continuous aquatic
navigation scenario. As expected, CEM-PPO required significantly more time for the
training (250 minutes over 110). In particular, CEM-PPO reaches a 98% success rate
(the performance of GPPO at epoch 1200) in approximately 600 episodes. However,
it required 125% more wall-clock time with respect to the time required by GPPO to
reach a similar performance.

4Note that the CEM-RL authors also confirm the significant overhead in Sec. 5.2.2 of the original
paper (Pourchot and Sigaud, 2019), which states that their evaluations are on limited timesteps, due
to computational demands.



82 Chapter 7. Genetic Soft Updates for Policy Evolution

Figure 7.10: Average success rate (left) and training time (right) for
GPPO and CEM-PPO in the continuous action space outdoor aquatic

navigation environment.

7.5 Discussion

This chapter presents our combined framework that exploits the robustness of population-
based Genetic Algorithm to improve value-based and policy-gradient Deep Reinforce-
ment Learning agents. We evaluated Supe-RL based algorithms in our navigation
scenarios using state-of-the-art algorithms as gradient-based baselines (i.e., Rainbow
and PPO). Our extensive empirical evaluation, along with the ablation studies, shows
that Supe-RL significantly outperforms DRL baselines (Rainbow and PPO), the GA,
and other recent combined approaches, which also showed poor performance when
combined with value-based Deep Reinforcement Learning. Crucially, Supe-RL is the
first framework that successfully combines Genetic Algorithms and DRL in the field
of value-based methods.
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Chapter 8

Global Dueling Q-Learning

So far, we have discussed problems related to exploration in single-agent environments,
where the task complexity derives from the dynamics of the environment and its
high-dimensional observation and action spaces. In contrast, Multi-Agent (Deep)
Reinforcement Learning studies how multiple agents interact in a shared environment.
Hence, it is the branch of RL that studies how agents interact with the environment
and with each other others, which can either cooperate, compete, or collectively act
to accomplish a specific task.

In this chapter, we restrict our attention to cooperative settings, where all the agents
share a common goal and cooperate to achieve it. In particular, we discuss how current
MARL algorithms hinder exploration, proposing a different perspective on the agents’
networks architecture and training schema to overcome such limitations.

8.1 Introduction

Multi-Agent (Deep) Reinforcement Learning (Tuyls and Weiss, 2012) considers mul-
tiple learning agents (or robots) that have to optimize either an individual or a joint
reward signal accumulated over time. In particular, we focus on multi-agent naviga-
tion as it recently gained attention due to the wide range of applicability to real-world
scenarios (e.g., search (Baxter et al., 2007) and self-driving (Wang et al., 2018a)).
Furthermore, we can leverage our insights from the previous chapters on robotic nav-
igation.

Multi-agent navigation has been previously considered as a cooperative MARL prob-
lem and requires the learning of an efficient collision avoidance policy (Long et al.,
2018). Among the different approaches (Tuyls and Weiss, 2012; Oroojlooyjadid and
Hajinezhad, 2019; L. Busoniu and Schutter, 2008), centralized learning aims at reduc-
ing the task to a single-agent problem, which is solvable with standard DRL algo-
rithms. However, these centralized solutions require comprehensive knowledge about
all the agents’ observations (e.g., positions, velocities) and their workspace (e.g., a grid
map) that form a joint observation. However, centralized methods do not scale well
within the number of agents and consistently fail in practice due to the "lazy" agent
problem (Sunehag et al., 2018). Intuitively the lazy agent consists of an individual
discouraged from learning the policy as its exploration can hinder other successful
agents.

Conversely, independent learning consists of individual agents that have to face a
non-stationary problem. Such an issue is due to the dynamics of the environment
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that changes within the other unobserved policies. In practice, we address the non-
stationarity by using recurrent units such as Long Short-Term Memory (LSTM)
(Sepp Hochreiter, 1997), but the lack of shared information does not favor coop-
erative behaviors. However, independent learning is typically used as a baseline as it
represents a good-performing yet straightforward solution for a variety of Multi-Agent
(Deep) Reinforcement Learning tasks (Lowe et al., 2017). Both the scalability and
the non-stationarity issues have been considered by the recent Centralized Training
Decentralized Execution (CTDE) paradigm. In particular, CTDE has been used to
design value-based MARL algorithms (Sunehag et al., 2018; Rashid et al., 2018; Son
et al., 2019) that showed state-of-the-art results on several multi-agent tasks (e.g.,
multi-agent particle envs (Lowe et al., 2017)). In more detail, CTDE involves training
agents’ policies that use global information in a centralized way and rely only on local
observations for the action selection, enabling decentralized execution.

In more detail, to address the combinatorial action space and the size of the joint ob-
servations, VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), Weighted QMIX
(Rashid et al., 2020) and QTRAN (Son et al., 2019) propose different mechanisms to
factor a joint (or global) action-value function QG. However, these approaches intro-
duce structural constraints (e.g., additivity, monotonicity) to ensure that QG factors
into the agent individuals Qi-values (with i = {1, . . . , n}, where n is the number of
agents) that are used for the decentralized action selection process. Such constraints
severely limit the joint action-value function class that VDN and QMIX can repre-
sent, while QTRAN showed poor practical performance although its robust theoretical
factorization guarantees (Son et al., 2019).

To address these limitations, we propose a value-based Centralized Training Decentral-
ized Execution approach, which we refer to as multi-agent Global Dueling Q-learning
(GDQ). In contrast to prior work, GDQ exploits the state-values Vi of each agent i to
estimate a joint state-value for the system, which is used in the update of the agents’
weights.1 In more detail, GDQ centralizes the individual state-values of the agents
to compute a joint state-value VG using a standard value-based Deep Reinforcement
Learning algorithm (van Hasselt et al., 2016), which learns using the cumulative re-
ward signal. A high-level overview of GDQ’s architecture is depicted in Figure 8.1.2

Our goal is to avoid the issues in the factorization of QG, separating each agent’s
state-value Vi and advantage Ai functions. Such decomposition is possible as Duel-
ing DQN (Wang et al., 2016) showed that the combination of Vi and Ai results in
the agent’s action-value Qi, from which an agent samples its action. Intuitively, the
state-value function measures how good it is to be in a state, whether the advantages
are the relative importance of the actions. Such values are thus combined to form
the per-agent action value, i.e., Qi = Vi + Ai, which is used to choose a particular
action in the state. Hence, we use the agents’ state values as input for the central-
ized value-based model that learns the joint state-value VG, which replaces Vi in the
estimation of the temporal difference target of each agent. It also has the advantage
of addressing the overestimation problem of DQN-based algorithms that typically re-
quires a target network (van Hasselt et al., 2016). Our idea is to inject information on

1In these high-level descriptions, we omit the state s and action a parameters for notation sim-
plicity.

2Note that in a practical multi-agent application, the input for each agent is its recent history,
and the hidden layers contain (at least) one recurrent layer to deal with the partially observable and
non-stationary environment.
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the global environment state in each agent update rule, such that the agents optimize
their behaviors while considering the state of the system.

Figure 8.1: High-level overview of GDQ. Each agent computes its
Qi-values for a decentralized execution. Agents’ Dueling Networks
compute the state-values Vi that are used as input for the joint state-

value estimator.

We first evaluate the performance of GDQ on the benchmark Cooperative navigation
task of the multi-agent particle envs to confirm the superior performance of GDQ over
prior value-based Centralized Training Decentralized Execution algorithms (i.e., VDN
and QMIX). Hence, we extend the Turtlebot3 Unity environment of Section 3.4.1 to
the multi-agent setting to highlight the scalability and the beneficial effects of GDQ
in increasingly complex practical situations.

8.2 Preliminaries and Related Work

Similar to previous CTDE approaches, we describe the multi-agent navigation sce-
nario as a Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
(Oliehoek and Amato, 2016). In detail, a Dec-POMDP extends a classic POMDP,
formalized in Section 2.2, for scenarios with a decentralized decision-making process
of a multitude of agents. Hence, this extension offers an important framework for co-
operative sequential decision making under uncertainty, such as the task we consider
for our evaluation.

8.2.1 Multi-agent Navigation

We previously discussed the importance of robotic navigation in recent Deep Rein-
forcement Learning literature (Tai et al., 2017; Zhang et al., 2017; Kretzschmar et al.,
2016). Given its wide range of applications, such as search and rescue (Baxter et al.,
2007), or collision avoidance solutions (Long et al., 2018), this class of problems has
been naturally extended to the Multi-Agent (Deep) Reinforcement Learning domain.

Similar to prior CTDE baselines (Sunehag et al., 2018; Rashid et al., 2018), we remark
the beneficial aspects of value-based DRL (which has been exhaustively addressed in
previous chapters). Hence, we employ this family of algorithms in the design of GDQ.
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8.2.2 Centralized Training Decentralized Execution

Centralized Training Decentralized Execution has recently attracted significant re-
search attention as a core Multi-Agent (Deep) Reinforcement Learning paradigm
(Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Lowe et al., 2017). The
main idea introduced by the first CTDE approach, the actor-critic Multi-Agent DDPG
(MADDPG) (Lowe et al., 2017), is that the individuals learn using centralized infor-
mation (e.g., QG) or the global state (e.g., positions and goals of the other robots)
during the training phase. However, the decision-making process of each agent is
strictly independent as it is based only on the local action-observation history, guar-
anteeing a decentralized execution.

Starting from MADDPG (and the actor-critic COMA (Foerster et al., 2018)), multi-
agent research shifted its focus to developing CTDE value-based approaches, that
aim at satisfying the Individual Global Max (IGM) requirement. In detail, IGM
states that the optimal joint action induced from QG is equivalent to the collection of
the individuals Qi-values. Formally, this asserts that QG(τ ,a) (where τ is the joint
action-observation history, and a ≡ [ai]

n
i=1 is the joint action) is factorizable if and

only if exists [Qi : T × A → R]ni=1 such that ∀τ ∈ T :

argmax
a∈A

QG(τ ,a) =

 argmaxa1∈AQ1(τ1, a1)
...

argmaxan∈AQn(τn, an)

 (8.1)

we can summary Equation 8.1 saying that a global argmax on QG returns the same
result as a set of argmax on each Qi, with i = {1, . . . , n}.

Two main different factorization strategies for satisfying the IGM have been proposed:

1. Additivity by VDN (Sunehag et al., 2018).

2. Monotonicity by QMIX (Rashid et al., 2018, 2020).

These factorizations are sufficient for the IGM principle. However, they limit the rep-
resentation expressiveness of the joint action-value function QG (Mahajan et al., 2019).
QMIX also considered additional hypernetworks (Ha et al., 2017) to add additional
global state information to the robot individual observations, introducing overhead.
QTRAN (Son et al., 2019) uses a relaxation of the IGM constraint in the form of a
linear constraint, which despite the theoretical guarantee, result in poor performance.

In contrast to this research trend that aims at factoring QG (and using additional
global state information to favor cooperation), GDQ is more closely related to the
independent learning paradigm. The reason is that GDQ’s agents do not share any
additional global observations to favor cooperation. However, they only rely on an
additional estimation of a joint state-value VG, which uses the individuals V as input
(i.e., a form of centralized training). Crucially, we use VG only in the temporal differ-
ence target computation of each agent. Hence GDQ is also based on the Centralized
Training Decentralized Execution paradigm.
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8.3 Global Dueling Q-Learning

In this section, we present the multi-agent Global Dueling Q-learning algorithm. In
particular, we discuss the benefits of computing a joint state-value over prior CTDE
approaches that factorize the joint action-value to satisfy the IGM, which is the main
limitation of such methods.

Multi-Agent Global Dueling Q-learning: GDQ uses a Double DQN (van Hasselt
et al., 2016) based algorithm for each agent, enhanced with PER (Schaul et al., 2016),
n-step returns (Hessel et al., 2018), and the dueling architecture (Wang et al., 2016).
The insights of Dueling Networks represent the foundation of our value-based CTDE
approach.

In detail, the agents’ Q-networks maintain two streams to represent both the individ-
ual state-value function V (s), and the individual advantage function A(s, a).3 The
streams are combined with an aggregation layer to produce the agent’s action-value
function Q(s, a), which in its simplest form computes the Q-values as follows:

Q(s, a) = V (s) +A(s, a) (8.2)

The use of a separate representation for the state-value and the action advantages
allows to learn whether the considered state s is either valuable or not. Crucially,
V (s) does not influence the action selection process of an agent, which is strictly
dependent on the advantage values; formally:

argmax
a∈A

Q(s, a) ≡ argmax
a∈A

A(s, a) (8.3)

Furthermore, we note that the action-value decomposition improves the sample ef-
ficiency of the training process (Sutton and Barto, 2018; Wang et al., 2016). For
example, it is crucial to know which action to take in specific states (e.g., avoiding
a collision). However, various actions can be negligible in other states (e.g., where
obstacles are far from the agents). This is mainly related to two factors:

1. The direct estimation of the Q-values (as in standard DQN) requires calculating
the value of each action at each state, which is a non-negligible overhead when
the whole set of possible actions do not affect the environment in a relevant way.
For example, in a navigation scenario, we could move to the left or the right only
when there is a risk of collision. Otherwise, the choice of action has no major
effect on what happens. As detailed by prior work (Wang et al., 2016), this also
aggregates similar actions, which further improves the sample efficiency.

2. In a dueling architecture, where the state-value is estimated independently by
a separate stream of the network, it is possible to learn V (s) more efficiently as
its separate estimation stream updates with every update of the Q-values.

In practice, Equation 8.2 is unidentifiable, in the sense that we can not uniquely recover
the state-value and the advantages function from given Q-values. For example, if we
multiply the state-value and divide the action advantages by the same constant value,
we obtain the same Q-values. This causes poor practical performance and has been

3Here we refer only to local state/action information, where s could be the local observation
history in a partially observable scenario.
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addressed using different aggregation functions to combine the two streams. Hence,
we consider the best operator identified in the original work (Wang et al., 2016) for
the aggregation layer of each agent; formally:

Q(s, a) = V (s) +

A(s, a)− 1

|A(s, a)|
∑

a′∈A(s,a)

a′

 (8.4)

where |A(s, a)| is the cardinality of the advantage function’s stream, i.e., the number
of possible actions.

Hence, given the weights of each agent’s network θai and a batch of samples b, where
each sample is a tuple (s, a, r, s′, V ′G), each agent minimize the following loss function:

L(fθai ) =
1

|b|
∗
|b|∑
k=0

[(
yθai (rk, s

′
k, V

′
Gk

)−Qθai
(sk, ak)

)2
]

(8.5)

where V ′G is the estimated joint next state-value, which we describe in the next section.

In more detail, the target is computed by replacing the next state-value, with the one
computed by our centralized joint state-value estimator:

yθai (r, s
′, V ′G) = r + γ argmax

a∈A
Qθai

(s′, a, V ′G)

Qθai(s
′, a, V ′G) = V ′G +Aθai

(s′, a)
(8.6)

As previously discussed, this does not influence the action selection process of an agent
as it only depends on the advantage function. However, it serves to inject learned
information on the global state value. The other natural contribution of introducing
V ′G is that it naturally mitigates the overestimation bias of the standard DQN. Hence,
it is possible to remove the requirements of a target network for each agent.

Joint State-Value Estimator: We use a standard Double DQN algorithm to com-
pute the joint state-value V ′G for the agents. This additional estimator takes as input
all the agents’ next state-values [V1(s

′), . . . , Vn(s
′)] computed by their separate stream

to learn an estimation of the joint state-value V ′G. The training procedure for this cen-
tralized component is the same as the Double DQN algorithm. However, it considers
state values instead of action values and the cumulative reward of the agents.

In more detail, a memory buffer stores at the concatenated agents’ state-values v =
[V1(s), . . . , Vn(s)], the next state-values v′ = [V ′1(s

′), . . . , V ′n(s
′)], and the agents’ cu-

mulative rewards r = r1 + · · · + rn.4 Hence, given the weights of both the joint
state-value estimator θc and its target network θ′c, and a batch b of samples from its
memory (where each sample is a tuple (r,v,v′), the centralized component aims at
minimizing the following loss function:

4Intuitively, next state-values require an additional forward step of the agents’ networks.
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L(fθc) =
1

|b|
∗
|b|∑
k=0

[(
yθ′c(r,v

′)− Vθc(v)
)2] (8.7)

where Vθc(v) is computed with a forward pass of the joint state-value estimator on
input v, and the target yθ′c is:

yθ′c(r,v
′) = r+ γ Vθ′c(v

′) (8.8)

Although this chapter focuses on cooperative Multi-Agent (Deep) Reinforcement Learn-
ing, we believe the decoupled nature of the state-value stream could also address com-
petitive MARL by using a separate joint state-value estimator for each agent group.
We intend to explore this direction for future work.

8.4 Experiments

We evaluate GDQ on a preliminary experiment on the multi-agent benchmark Coop-
erative navigation task of the multiagent particle envs suite. Therefore, we present the
multi-agent navigation scenario used to test GDQ performance on a growing number
of agents.

8.4.1 Multi-Agent Navigation Scenario

We consider a setup similar to the single-robot navigation scenario presented in Section
3.4.1, adapted for the multi-agent setup.

Figure 8.2: Training environment for our MARL navigation (left)
Testing environment for the trained policies (right). Explanatory view

with n = 4 robots in different colors.

In more detail, we consider an indoor navigation environment with n = {2, 4, 8}
robots and fixed obstacles, where each robot has to navigate to its target, avoiding
collisions. The decision-making frequency of the robot in both the training and testing
environments is set to 20Hz, to reflect the update rate of the equipped LDS-01 lidar
sensor. This training environment is depicted in Figure 8.2. To detect collisions
among the robots and the obstacles, we used Unity’s mesh collider system, applied
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to the 3D models of the environment. This allows triggering a collision event when
an intersection between the bounds of two or more colliders is detected. The target
goals of each randomly spawn in the scenario and are guaranteed to be obstacle-free
and with a minimum distance between each other (set to 0.5m). Each agent receive
a separate reward rt at each timestep t that is structured as follows:

rt =


µ(dt−1 − dt)− 0.005, if dt > 0.1

1, if dt <= 0.1

−1, if a collision is detected
(8.9)

In detail, we have two sparse values in case of reaching the target within a threshold
distance dt = 10cm from the robot’s goal (i.e., rt = 1), or crashing within the obstacles
or other robots (i.e., rt = −1) which terminates an episode resetting the robot to its
starting position and generating a new set of goals. A dense component is used during
the travel: µ(dt−1 − dt)− 0.005, where dt−1, dt is euclidean distance between a robot
and its goal at two consecutive time steps and µ is a multiplicative factor that is used
for normalization. A penalty of 0.005 is applied at each timestep to encourage the
robots to perform the shortest path possible while avoiding collisions.

Training Setup: We consider the original authors’ implementations for the MARL
algorithms over which we compare: VDN (Sunehag et al., 2018), QMIX (Rashid et al.,
2018) (as Weighted QMIX (Rashid et al., 2020) achieved comparable performance in
our preliminary evaluation), and an Independent Learner approach based on Rainbow
(Hessel et al., 2018) (IQL).

Given the partially observable nature of multi-agent navigation, the action-value func-
tions are defined over individual observation histories. Hence we incorporate recurrent
units (i.e., an LSTM layer (Sepp Hochreiter, 1997)) in all the agent’ networks.

All the considered algorithms share the same input layer structure: 35-sparse laser
scans sampled in [−120, 120] degrees in a fixed angle distribution and the individ-
ual target position. To cope with the complexity of learning an efficient collision
avoidance policy, the output layer considers the Branching Architecture (Tavakoli
et al., 2018) to output two streams of Q-values: one for angular velocities vang ∈
[−90,−45, 0, 45, 90] deg/s and one for linear velocities vlin ∈ [0, 0.05, 0.1, 0.15, 0.2]m/s.
Hence, following the GDQ architecture, each network maintains three separate streams:
one for the advantage of vang, one for the advantage of vlin, and one to estimate the
state-value. The two advantage streams are then combined with the state-value using
Equation 8.4.

Similar to the benchmark in Chapter 4, we performed an initial evaluation in the
training environment with multiple trials on different network sizes and seeds. The
outcome led us to use the network architectures depicted in Figure 8.3: one ReLU
hidden layer with 128 neurons, a ReLU LSTM layer of size 64, plus an additional
ReLU hidden layer of 64 neurons for each stream. The joint state-value estimator, is
a simple feed-forward network with two ReLU hidden layers of 64 neurons each and
a Linear output.

Experimental Setup: We collect data on an RTX 2080, using the hyper-parameters
of the original authors’ implementations for the baselines. Each experiment in the
multi-agent navigation (i.e., with n = {2, 4, 8} robots) runs over ten independent runs
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Figure 8.3: Agents’ network architecture (left). Joint state-value
estimator network architecture (right).

with different seeds, for statistical significance of the collected data (Henderson et al.,
2018).

8.5 Empirical Evaluation

Our goal is to show the benefits of avoiding structural constraints on the network ar-
chitectures that limit exploration. Hence we aim at showing the superior performance
of GDQ.

To this end, given the multi-agent setting of our scenarios, we consider both the
average reward and the average percentage of collisions of the agents as evaluation
metrics. Given the navigation nature of the tasks, we also report the average traveled
distance, either as actual distance in meters or as the number of steps.

8.5.1 Standard Navigation Benchmark

To evaluate the performance of GDQ over previous similar CTDE baselines, we con-
sider the Cooperative Navigation as a standard benchmark example. In particular,
we compare with VDN, QMIX, and IQL based on Rainbow, as Weighted QMIX re-
sulted in comparable performance over QMIX (in our preliminary experiments), and
QTRAN typically results in poor performance (Son et al., 2019).

For this benchmark experiment, all the networks share the previous architecture and
Adam optimizer with default learning rate (for algorithmic specific hyper-parameters,
we refer the interested reader to the original works (Sunehag et al., 2018; Rashid
et al., 2018; Hessel et al., 2018) as we used the authors’ implementation). In this col-
laborative problem, three agents should cover the same number of landmarks and are
rewarded based on how far each one is from each landmark, while they are penalized
if they collide with other agents.

Results in Table 8.1 show the average reward, distance from the landmarks, and col-
lision percentage. The reported metrics confirm the superior performance of GDQ
over the considered baselines as it obtains the highest average reward (i.e., minimum
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average distance) while also favoring information exchange, resulting in the lowest
percentage of collisions. Moreover, IQL obtained good performance despite the sim-
plicity of the approach, while the superior performance of QMIX over VDN and IQL
confirm the original authors’ results (Rashid et al., 2018).

Table 8.1: Average reward, distance from the landmarks, and colli-
sion % for IQL, VDN, QMIX, and GDQ.

Algorithm Avg. Reward Avg. Distance (m) Avg. Collisions (%)

IQL -2.41 ± 0.31 1.39 ± 0.11 34.2 ± 2.2
VDN -2.45 ± 0.21 1.43 ± 0.13 32.5 ± 1.9
QMIX -2.23 ± 0.24 1.25 ± 0.09 25.6 ± 1.7
GDQ -2.06 ± 0.21 1.02 ± 0.10 18.7 ± 1.7

8.5.2 Unity Multi-Agent Navigation

Given the results in the preliminary evaluation in a standard benchmark, the multi-
agent navigation task compares the only two best-performing algorithms: QMIX and
GDQ. This evaluation investigates whether GDQ can successfully address a robotic
task of practical interest while favoring cooperation.

Each experiment with n = {2, 4, 8} robots reports the following curves that show mean
and standard deviation over the runs, smoothed over 100 epochs. All the metrics are
averaged over the n robots. We also test the two MARL algorithms in a previously
unseen scenario to evaluate their generalization skills.

Training Results: Figure 8.4 shows the results of GDQ and QMIX, where the
robots have to learn how to reach different target positions, avoiding collisions with
the fixed obstacles and with each other. In detail, while the results are comparable
when considering only two robots, with a growing number of robots, GDQ offers better
performances. In more detail, with n = 4, the percentage of successes stabilizes at
over ≈90% in ≈1700 epochs, i.e., 150 minutes of training. QMIX, in contrast, reaches
≈80% successes in the same epochs that correspond to 190 minutes of training. It
naturally follows that GDQ offers better performance even in terms of reward. The
evaluation with n = 8 confirms the superior performance of GDQ.

Figure 8.4: Average success rate of the GDQ and QMIX algorithms
in the multi-agent navigation training phases.
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Testing Results: Crucially, after the training phase, the trained models can navigate
the environment in a decentralized fashion, exploiting the minimal information in the
network’s input layer. Moreover, the individuals generalize crucial aspects of robot
navigation such as (i) robot starting position, (ii) target position, (iii) velocity. The
laser scan-based navigation also allows our robots to navigate previously unknown
environments with different obstacles, which is crucial for motion planning. To confirm
the successful generalization of our models, we run an additional evaluation with
n = {4, 8} in a previously unseen scenario, depicted in Figure 8.2 on the right. Results
in Table 8.2 confirm the trend highlighted during the training, where GDQ offers
superior performance over the baseline in terms of average reward and path length
when the same sequence of goals is considered for both algorithms. In this evaluation,
we also collect the percentage of collisions detected, which further confirms a better
generalization of the task with multiple robots in the case of GDQ.

Table 8.2: Average reward, steps and collision percentage in the
testing scenario.

Algorithm n Reward Steps Collisions (%)

QMIX 4 26.3 ± 3.1 295 ± 23 1.4 ± 2.6
GDQ 4 30.1 ± 2.7 242 ± 18 0.8 ± 1.8

QMIX 8 18.2 ± 3.9 361 ± 29 34.2 ± 4.1
GDQ 8 24.3 ± 2.8 285 ± 22 17.3 ± 2.3

8.6 Genetic Global Dueling Q-Learning

In addition to GDQ that avoids structural constraints of prior Centralized Training
Decentralized Execution, we also aim at improving exploration for Multi-Agent (Deep)
Reinforcement Learning in multi-robot mapless navigation by analyzing the problem
from a different perspective. Specifically, in this context, a navigation policy can be
decoupled into two (so-called) sub-policies:

1. Navigation skills to reach the target.

2. Collision avoidance behaviors to avoid other robots.

Following relevant literature, both policies could be learned as a single navigation
policy (Tai et al., 2017; Zhang et al., 2017), however, we argue that learning the two
skills by training a single policy implicitly hinders sample efficiency and exploration
and the motivation is straightforward. A collision between robots ends a training
epoch because robots should be returned to a non-collision state (i.e., the environment
is typically reset). However, the robots could have continued to explore the current
path and acquire novel skills that are useful to learn their end goal of reaching the
target.

To this end, we propose an Evolutionary Policy Search (EPS), depicted in Figure 8.5,
that works on top of existing MARL approaches. Our goal is to bias the current multi-
robot policies with basic navigation skills easily acquired with EPS in a single robot
environment. Intuitively, improving navigation skills in a stationary environment
with a single robot is much simpler than learning them from scratch in a complex
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non-stationary environment such as the multi-robot task (and collisions rarely occur,
improving the exploration).

Figure 8.5: Overview of our Evolutionary Policy Search.

In more detail, we propose using an evolutionary population that is periodically gener-
ated from the robots’ policies using mutation operators to explore different regions of
the policy space. These mutated versions of the policies are evaluated independently
over a set of trials in a single-robot environment. Hence, we select the individual with
the highest return, which means better navigation behaviors, and inject its skills into
the MARL policies using a crossover operator. The beneficial effects of this informa-
tion transfer have been highlighted in the previous chapter and by previous combi-
nations of Evolutionary Algorithms and gradient-based Deep Reinforcement Learning
(Khadka and Tumer, 2018; Bodnar, 2020). However, these frameworks were limited
to single-agent scenarios and designed to improve the overall return. In contrast,
EPS facilitates the learning of basic navigation skills online (i.e., during the MARL
training) using our decoupled formalization to improve the performance and sample
efficiency of existing approaches.

The general flow of our Evolutionary Policy Search is summarized in Algorithm 6:

• Line 1: the chosen Multi-Agent (Deep) Reinforcement Learning baseline runs
on the multi-robot task following the algorithm’s specifications.

• Lines 2-6: periodically, we leverage Evolutionary Algorithms (Fogel, 2006) and
gradient-based mutations (Lehman et al., 2018) to generate a population of
mutated versions of the robots’ policies.

• Lines 7-8: to this end, we sample a batch b from the memory buffer to compute
the per-weight sensitivity λ of the network’s outputs over its weights θe (more
details in the following section). This is used to generate the population of n
individuals P with weights θP , to which we add a copy of the original network’s
weights.

• Line 10: we evaluate P in a fixed set of epochs on multiple independent instances
of a single-robot environment that collect the individual’s average reward that
represents our fitness score P-fitness.

• Line 11: P-fitness is then used to select the best set of weights θ∗, i.e., the one
that achieves higher return:

θ∗ = argmax
θp

(P-fitness) (8.10)
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Algorithm 6 Evolutionary Policy Search

Given:
• network with shared weights θe at current epoch
• the size n of the population P
• periodicity eP for the evolutionary policy search
• a running MARL algorithm ▷ e.g., GDQ, IQL

1: During the training of the multi-agent navigation task, the robots proceed accord-
ing to the chosen algorithm.

2: if epoch % es == 0 then
3: Start the evolutionary search ▷ typically in a parallel fashion
4: P ← Initialize with n+ 1 copies of θe ▷ each with weights θp
5: envsP ← Initialize with n+ 1 copies of single-robot environments
6: Compute G ← N (0,mutv) ∀ weight ∈ θp, ∀p ∈ P
7: b← Sample a batch of visited states
8: Compute sensitivity λ as Equation 10.6 using b
9: θp ← θp +

G
λ , ∀p ∈ P

10: P-fitness ← genetic-evaluation(P, envsP)
11: θ∗ ← Select best navigation policy using P-fitness as Equation 8.10
12: Combine θe with θ∗ using Equation 8.11
13: End the evolutionary search
14: end if
15: Continue the MARL training until the next EPS

• Line 12: Hence, we inject the best behaviors highlighted in the population
in the policies of the multi-robot scenario, using a mean crossover operator
based on Polyak averaging, which showed better performance in our preliminary
experiments:

θe = βθ∗ + (1− β)θe (8.11)

where β is a hyper-parameter that controls the amount of information injected
from the best individual and the MARL algorithm. We noticed that high values
of β (i.e., ≥ 0.4) affect the Multi-Agent (Deep) Reinforcement Learning net-
work detrimentally due to a large amount of information on navigating in the
stationary single-agent environment that is injected. Conversely, when β < 0.4,
we found a beneficial transfer of information with a significant performance im-
provement, which benefits EPS.

8.6.1 Gradient-based Mutations

Perturbing the weights of a Deep Neural Network via simple Gaussian noise can lead
to disruptive policy changes (Lehman et al., 2018). Hence, we use gradient information
to design mutations that avoid such detrimental behaviors, normalizing the Gaussian
perturbation by a per-weight sensitivity λ. We consider Gaussian noise G as a baseline
for the perturbations and normalize it with our sensitivity λ, which we compute using
past visited states in the memory buffer. We then apply the resultant gradient-based
mutations to the population weights. Formally, we use the per-weight magnitude of
the gradient of the outputs y = fθe(b) (where b is a randomly sampled batch of past
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visited states, and fθe is the function represented by the network with weights θe), to
estimate the sensitivity λ to that weight with a first-order approximation:

λ =
∑
y

(∑
s∈b abs(∇θefθe(s))

|b|

)
∗ 1

|y|
(8.12)

where each sample of b contributes equally to λ to reduce the overall changes to the
policy.5 We refer to Chapter 10 for further details about gradient-based mutations.
However, we note that this is the first application of this operator in a Multi-Agent
(Deep) Reinforcement Learning context.

Limitations: We note that EPS shares a limitation with prior work (Khadka and
Tumer, 2018; Khadka et al., 2019; Pourchot and Sigaud, 2019; Bodnar, 2020), requiring
a simulator to perform the evolutionary search. However, state-of-the-art results in
Deep Reinforcement Learning, robotics, and combined approaches in general, are
mainly achieved using simulation and transferring the policy on real platforms (Zhao
et al., 2020; Ding et al., 2020). Moreover, our formalization of EPS in Algorithm
6 requires weight sharing in the considered MARL baseline. While this is typically
used in Multi-Agent (Deep) Reinforcement Learning (Lowe et al., 2017; Rashid et al.,
2020, 2018), we note that EPS is also compatible with the scenario where each robot
maintains its separate set of weights. In this case, it is sufficient to instantiate the
population P with the copies of each robot’s set of weights (i.e., the population size
equals the number of robots) and compute the sensitivity separately using individuals
experiences. Finally, since EPS works on top of existing algorithms, it (possibly)
applies to any MARL baseline.

8.6.2 Empirical Evaluation

We evaluate the augmented evolutionary Global Dueling Q-learnings on the same
setup of GDQ, starting with a preliminary experiment on the multi-agent benchmark
Cooperative navigation and then our multi-agent navigation scenario with up to twelve
agents.

Note that for a fair comparison, we include the additional epochs required by EPS in
all the results as this is typical in combined approaches (Khadka and Tumer, 2018).
However, we note that the training time overhead is negligible due to parallelization
(i.e., each single-robot environment is strictly independent and, in our experiments,
EPS-based approaches train with an overhead of ≈ 4 ± 3% of the considered Multi-
Agent (Deep) Reinforcement Learning baseline).

Standard Navigation Benchmark

We first investigate the benefits of EPS applied to an independent learners (IQL)
algorithm based on the state-of-the-art value-based algorithm Rainbow (Hessel et al.,
2018), and GDQ that showed superior performance over prior value-based MARL. We
refer to these implementations as EPS-IQL, and EPS-GDQ, respectively.

Results in Table 8.3 show the average reward and percentage of collisions of IQL,
EPS-IQL, GDQ, EPS-GDQ considering the entire training phase. These preliminary

5We use the absolute value of ∇θefθe(s) as we are interested in the magnitude (not the sign) of
the slope.
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experiments confirm the idea behind EPS, where searching concurrently for better
core navigation behaviors leads to better performance (i.e., higher reward and fewer
collisions).

Table 8.3: Avg. reward and collision % of the training phases for
IQL, EPS-IQL, GDQ, EPS-GDQ.

Algorithm Avg. Reward Avg. CollisionS (%)

IQL -2.42 ±0.32 29.2 ±2.5
EPS-IQL -2.16 ±0.25 25.1 ±2.6
GDQ -2.12 ±0.24 18.2 ±1.5
EPS-GDQ -1.95 ±0.19 16.3 ±1.7

Unity Multi-Agent Navigation

For each experiment with n = {2, 4, 8, 12} robots, we plot the following curves that
report mean and standard deviation over the multiple runs, smoothed over 100 epochs.
In more detail, we plot the average reward as the main evaluation metric, which
indicates the navigation performance. We also discuss the relative success rate that
indicates how many successful collision-free trajectories (i.e., we consider a success
when all the robots in the environment reach their target) are performed over 100
epochs.

Training Results: Figure 8.6 shows the results of IQL, QMIX, GDQ, and EPS-GDQ
in the navigation tasks with a growing number of robots, where the goal is to learn
how to reach different target positions while avoiding collisions with the walls and
with each other.

Similar to the GDQ evaluation, we note that results are comparable when consider-
ing two robots, while the benefits of EPS become evident with a growing number of
robots. In more detail, with n = 4 EPS-GDQ stabilizes at ≈35 average reward (i.e.,
≈ 90%) in ≈100000 steps. The standard GDQ and QMIX, in contrast, reach ≈88%
and ≈90% successes in 175000 and 110000 steps, respectively. The performance im-
provement of EPS-GDQ is evident with n = {8, 12} robots, where QMIX does not
learn how to factorize the global action-value in so few interactions with the environ-
ment. In contrast, EPS offers a clear performance advantage over GDQ, especially in
the initial training phases where core navigation behaviors are learned faster.

Table 8.4: Avg. reward and collisions % for QMIX, GDQ, EPS-GDQ
in the evaluation in a previously unseen scenario.

Algorithm Avg. Reward Collision (%)

QMIX 26.3 ± 3.1 1.4 ± 2.6
GDQ 30.1 ± 2.7 0.8 ± 1.8
EPS-GDQ 32.4 ± 2.5 0.9 ± 1.0
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Figure 8.6: Average reward for IQL, QMIX, GDQ, and EPS-GDQ
in our multi-robot navigation scenarios with n = {2, 4, 8, 12} robots.

Testing Results: To test whether our models generalize over crucial aspects of
robotic navigation, we perform an additional experiment with four robots in a previ-
ously unseen scenario.6 For a fair evaluation, we selected a sequence of targets that
were reachable by all the models. Results in Table 8.4 confirm the trend highlighted
during the training, where EPS-GDQ outperforms the baseline in terms of average
reward. We also measured the percentage of collisions detected, further confirming
the performance improvement obtained with our evolutionary search, which returns
comparable collisions over GDQ, but with a higher reward.

8.6.3 Ablation Study

To further confirm our idea that EPS improves exploration and sample efficiency of
prior algorithms, we performed an additional ablation study in the scenario with four
robots. In detail, we initially trained a navigation policy in the single-robot scenario.
Hence, we initialize the network’s weights of GDQ with the resultant set of weights
of the pre-training (which we refer to as Pre-GDQ) in a similar fashion to transfer

6We consider four robots due to the good performance of the models trained with the MARL
baselines.



8.7. Discussion 99

Figure 8.7: Average reward for the single-agent pre training (left)
and Pre-GDQ (right) initialized with a single-robot policy that reached
≈20 avg. reward. Pre-GDQ reaches≈30 avg. reward in around 210000

steps.

learning. Our goal is to verify whether the EPS periodical search offers improved
performance over the more intuitive solution of Pre-GDQ.

We performed three experiments with different initialization at different stages of
the pre-training (i.e., at around 50, 75, and 95% of success rate for the single-robot
pre-training, which corresponds to ≈ 12, 20, 30 average reward, respectively). Figure
8.7 shows the average reward over different runs for Pre-GDQ initialized at ≈75%
successes. Moreover, Table 8.5 shows the performance of our trials with different
initializations (where we indicate the steps in thousands). Crucially, every experiment
confirms our intuition behind EPS as our EPS-GDQ achieves ≈35 average reward in
100000 steps (i.e., approximately two times fewer steps than the best performing Pre-
GDQ).

Table 8.5: Average results with different pre training for GDQ. EPS-
GDQ outperform Pre-GDQ in any inizialitation, achieving ≈35 avg.

reward in ≈100000 steps.

Pre Training Pre-GDQ EPS-GDQ

Steps Reward Steps Reward Steps Reward

75 12 200 25
100 35110 20 210 30

170 30 280 34

8.7 Discussion

We presented Global Dueling Q-learning, a novel value-based Centralized Training
Decentralized Execution approach for multi-agent scenarios that exploit state-values
information to favor cooperation.
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Our empirical evaluation shows that GDQ significantly outperforms prior CTDE
approaches in multi-robot robotic navigation, especially with a growing number of
robots. Crucially, we only consider the individual’s state values and no additional
centralized information (such as in QMIX). This also allows us to scale the number
of robots without significant overhead for the training process (each robot only adds
an input node in our centralized joint state-value estimator).

We also extended Global Dueling Q-learning within the Evolutionary Policy Search,
a novel approach for multi-robot navigation that works on top of existing algorithms,
maintaining their Centralized Training Decentralized Execution fashion. The idea is
to perform a periodical evolutionary search to find better core navigation behaviors
to inject into the MARL training. We evaluated our framework in a multi-robot
robotic navigation scenario with up to 12 robots. This empirical evaluation shows
that EPS-GDQ significantly improves the performance of prior Multi-Agent (Deep)
Reinforcement Learning approaches, especially with a growing number of robots.

8.8 Conclusions

In this second part of the thesis, we focused on enhancing exploration in single and
multi-agent domains, combining gradient-based Deep Reinforcement Learning algo-
rithms with Evolutionary Algorithms.

We started by discussing the recent field that combines gradient-free and gradient-
based methods. Crucially, we showed the limitations of prior combined work that
hinder its applicability with value-based DRL. Hence, we proposed an evolutionary
framework that copes with such limitations, applicable to any Deep Reinforcement
Learning algorithm, that showed robustness over detrimental hyperparameters setting.

Finally, we discussed the exploration issues of prior value decomposition Multi-Agent
(Deep) Reinforcement Learning algorithms and proposed a framework that uses a joint
state-value to cope with such problems. We also extended this solution using evolu-
tionary approaches to decompose the desired policy and foster more robust navigation
performance.
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Part III

Exploring for Safer Behaviors
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Chapter 9

Quantifying Safe Behaviors

Practical applications, such as robotics usually involve high-cost hardware. Hence,
the behavior of the trained policy must be evaluated to avoid potentially dangerous
situations.

This chapter discusses the design of safety metrics that quantify the number of correct
decisions the network chooses over pre-defined safety specifications. We also employ
combined training algorithms described in Chapter 7 to assess whether policies trained
with combined approaches result in more robust and safer behaviors.

9.1 Introduction

Following the insights of Chapter 5, we remark that it is crucial to evaluate the correct
behavior of a trained model before and design a methodology to quantify the amount
of network’s safe decisions (Liu et al., 2019). To this end, we formally define a metric
that quantifies the number of correct decisions that a trained Deep Reinforcement
Learning policy takes over pre-defined safety specifications. We also use the state
configurations where such undesirable settings occur to discuss how it is possible to
exploit this information to design a controller to avoid such unsafe behaviors.

In detail, we use interval analysis (Moore, 1963) based verification to verify the re-
lations between two or more network outputs in the case of value-based DRL or the
output values in the case of continuous control. In contrast to prior work that mainly
considers such analysis from dependent input intervals, our approach subdivides the
analysis into small input intervals independent of each other. This allows a straightfor-
ward parallelization and the computation of the percentage of undesirable situations.
We discussed this verification setup in Chapter 5.

To analyze the safety of the trained models, we employ policies trained for aquatic nav-
igation due to the physically realistic water surface with dynamic waves that makes
the task particularly challenging. In this context, we introduce a set of properties
that describe core behaviors that an autonomous controller should respect in our
task. Moreover, we use the combined approaches presented in Chapter 7, namely
the value-based SGRainbow and the actor-critic GPPO, to train the navigation poli-
cies. Our goal is to show that the beneficial transfer of information between EA and
gradient-based DRL results in more robust policies. Crucially, the reduced number of
unsafe behaviors of the combined policies allow us to design a simple controller that
guarantees the correct behavior of the network.
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Figure 9.1: Overall schematic of our experimental setup.

We note that the methodologies for this chapter have already been presented in the
previous chapters. Hence. Figure 9.1 highlights a summary of the overall setup for
these experiments.

9.2 Experiments

Designing a set of properties for our aquatic navigation scenario that presents a vari-
able set of obstacles is a challenging problem. Given the dynamic and non-stationary
nature of such an environment, it is not possible to formally guarantee the safety of
the drone in any possible situation. For this reason, we focus on ensuring that the
agent makes rational decisions (i.e., it selects the best action given available informa-
tion) to provide an initial benchmark for the safety of this class of problems. Hence,
we selected three core properties that represent a possible safe behavior of our agent
about possible obstacles:

• p←: If there is an obstacle near to the left, whatever the target is, go straight
or turn right.

• p→: If there is an obstacle near to the right, whatever the target is, go straight
or turn left.

• p↑: If there are obstacles near both to the left and to the right, whatever the
target is, go straight.

To formally rewrite these properties as Equation 2.14, 5.1, it is necessary to detail
further the structure of the input and the output layers of our Deep Neural Network,
and formally define the concept of "near" for an obstacle. In both the value-based
and policy-gradient setup, the input layer contains 17 inputs: (i) the lidar collect 15
values normalized ∈ [0, 1], (ii) the heading of the target with respect to the robot
heading (∈ [−1, 1]), and (iii) the distance of the target from the robot (∈ [0, 1]). The
output nodes correspond to specific actions in the value-based case: from v0 to v6,
each node represents the action "strong right, right, weak right, forward, weak left,
left, and strong left". While for the policy-gradient scenario we have two outputs vleft
for the left motor and vright for the right one (for simplicity we only consider forward
movements, hence vleft and vright can assume values ∈ [0, 1])
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Moreover, we measured that an obstacle is close to the agent if its distance is less than
0.35 on the front, and less than 0.24 on the two sides (normalized in the corresponding
input domain), considering the max velocity of the agent (hence, these values allow
us to turn in the opposite direction to a fixed obstacle without colliding). Given this,
we obtain the following input domains for our properties:

• Ip← : x0, ..., x5 ∈ [0.00, 0.24] ∧ x5, ..., x14, x15, x16 ∈ D

• Ip→ : x10, ..., x14 ∈ [0.00, 0.24] ∧ x0, ..., x10, x15, x16 ∈ D

• Ip↑ : x0, ..., x5, x10, x14 ∈ [0.00, 0.24] ∧ x6, ..., x6, x15, x16 ∈ D

where D is the complete domain of the corresponding node where the obstacle is
not near. Finally, we formalize the previous decision properties for the value-based
combined SGRainbow and the actor-critic combined GPPO as follow:

• p←,SGRainbow : If Ip← ⇒ [v4, v5, v6] < [v0, v1, v2, v3]

• p→,SGRainbow : If Ip→ ⇒ [v0, v1, v2] < [v3, v4, v5, v6]

• p↑,SGRainbow : If Ip↑ ⇒ [v0, v1, v5, v6] < [v2, v3, v4]

• p←,GPPO : If Ip← ⇒ vleft − vright > k

• p→,GPPO : If Ip→ ⇒ vright − vleft > k

• p↑,GPPO : If Ip↑ ⇒ |vleft − vright| < k

where k is a constant value for the minimum motors power difference allows a rotation
that avoids a collision.

Finally, in contrast to prior work that typically returns SAT if the property is SATisfied
or UNSAT if it is UNSATisfied for at least one input (Wang et al., 2018b; Katz et al.,
2017), we aim at quantifying the safety of the individuals over the properties. To this
end, we propose the following violation metric v to quantify the number of violations.

Definition 9.1 (Violation metric) Given a (safety) property p := x ∈ X ⇒ y =
fθ(x) ∈ Y on fθ, and its reachability set Γ(X , fθ) := {y : y = fθ(x), ∀x ∈ X}. Given
XSAT,XUNSAT ⊆ X such that Γ(XSAT, fθ) ⊆ Y and Γ(XUNSAT, fθ) ∩ Y = ∅.1 We
define the violation metric as:

v =
|XUNSAT|
|X |

. (9.1)

9.3 Empirical Evaluation

Table 9.1 shows the results for each property, considering the average violation of the
ten best performing models (according to their success rate) for the best three random
seeds initialization. We show that converged models that achieve a similar return could
suffer from input corner cases in a very different way. For example, models trained
with seed 1 present a violation of ≈9.3 on seed 1 for p←,SGrainbow, while models with
seed 3 have a violation of 0 on the same property. Results confirm our insights of
Chapter 4, showing that the violation and the success rate are not necessarily related.
Although we tested the safety on the best models, we found a high violation rate in

1Note that XSAT ∪ XUNSAT = X and XSAT ∩ XUNSAT = ∅.



106 Chapter 9. Quantifying Safe Behaviors

Table 9.1: Mean and the variance of the violation metric (%) for the
best three random seeds initialization.

Property Seed 1 Seed 2 Seed 3

p←,SGrainbow 9.3 ± 2.4 5.3 ± 3.1 0.0 ± 0.0
p→,SGrainbow 3.0 ± 2.3 4.1 ± 2.2 0.0 ± 0.0
p↑,SGrainbow 7.1 ± 1.4 6.9 ± 2.7 3.4 ± 0.2

p←,GPPO 1.3 ± 0.3 1.3 ± 0.7 1.3 ± 0.2
p→,GPPO 0.2 ± 0.2 0.0 ± 0.0 0.7 ± 0.5
p↑,GPPO 3.6 ± 1.4 6.3 ± 2.6 3.1 ± 0.1

some cases. For this reason, we remark that this safety analysis is a necessary step to
evaluate a policy before its deployment in a real-world environment.

Moreover, to further confirm our claims on the beneficial transfer of information of
mixed approaches and the robustness highlighted in Section 7.4, we performed an
additional evaluation using formal verification. In more detail, we report the viola-
tion percentage, computation time, and memory returned by the verification tool to
test our safety properties. Table 9.2 reports the average collected metrics considering
the best ten performing models of the best seed initialization. Models trained with
mixed approaches (i.e., SGRainbow, GPPO) present fewer violations in every con-
sidered property over the standard gradient-based baseline (i.e., Rainbow and PPO).
Furthermore, there is also a significant improvement over the computation time and
memory required by the verifier. This confirms our claims on the policy improvement
of mixed approaches as they evaluate with a significant difference in the output values,
which translates into fewer bounds re-computations for the verifier.

Table 9.2: Verification results for combined approaches and standard
gradient-based DRL.

Violation (%) Time (s) Memory (MB)

Algorithm p← p→ p↑ p← p→ p↑ p← p→ p↑

Rainbow 2.21 9.11 0.0 79.7 75.5 92.6 3.74 3.96 6.92
SGRainbow 0.0 4.75 0.1 66.7 74.1 68.9 2.18 2.91 4.1

PPO 0.9 1.2 4.2 3.4 56 124 0.1 2.6 5.8
GPPO 1.3 0.7 3.1 3.1 3.2 3.6 0.1 0.1 0.14

Behavioral Controller: Due to the low violation rate of the combined models, it is
possible to design a simple controller to guarantee the correct behavior of the network.
To illustrate this, we describe the process to decide whether a behavioral controller
can address the unsafe behaviors in our navigation task.

Given the decision-making frequency of the robot set to 10Hz and the violation pre-
sented in Table 9.2, a complete search through the data structure that contains all the
sub-areas that cause a violation always requires less than 0.09s. This means that, with
our hardware setup, we can verify if the input state leads to a violation at each iter-
ation without lags in the robot operations. Consequently, in an ideal scenario where
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there are no communication lags or other overheads, we can avoid all the decisions
derived from input configurations that violate our desired safety properties.

9.4 Discussion

We formally presented the violation metric as a practical way to quantify the number
of unsafe behaviors over pre-defined safety specifications. We evaluated the behaviors
of aquatic navigation models to show the importance of such metrics. Moreover, we
exploited such violation value to confirm further the robustness of prior combined
approaches over standard gradient-based Deep Reinforcement Learning.
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Chapter 10

Safety-Oriented Search

This chapter considers Reinforcement Learning problems where an agent attempts
to maximize a reward signal while minimizing a cost function that models unsafe
behaviors.

In contrast to prior work employing constrained optimization, we propose a Safety-
Oriented Search that complements Deep Reinforcement Learning algorithms to bias
the policy toward safety within an evolutionary cost optimization. We leverage evo-
lutionary exploration benefits to design a novel concept of safe mutations that use
visited unsafe states to explore safer actions. We further characterize the behaviors of
the policies over desired specifics with a sample-based bound estimation, which makes
prior verification analysis tractable in the training loop. Hence, driving the learning
process towards safer regions of the policy space.

10.1 Introduction

We consider the class of problems where unsafe behaviors are specified with an auxil-
iary cost signal to maintain safety specifications separate from the task objective (e.g.,
the long-term reward) (Garcıa and Fernández, 2015). In the literature, Constrained
Markov Decision Process (Altman, 1999) are used to formalize such problems due
to the intuitive way of constraints (on the cost) to encode safety criteria (Liu et al.,
2020; Stooke et al., 2020). However, constrained DRL often violates the constraints
introduced in the optimization and naturally limits exploration (Ray et al., 2019).
Conversely, efficient exploration is crucial to avoid getting stuck in local optima or
failing to learn proper behaviors, obtaining low returns (Hong et al., 2018; Ostrovski
et al., 2017; Pathak et al., 2017). Such a trade-off between having efficient exploration
to achieve good performance, and the limitation induced by constraints, suggest inves-
tigating alternative ways to overcome the typical contrast in the design of Safe Deep
Reinforcement Learning algorithms. In particular, such algorithms are either based
on the optimality criterion (e.g., introduce the concept of risk in the optimization), or
on the exploration process (e.g., avoid undesirable situations) (Garcıa and Fernández,
2015).

To this end, we propose Safety-Oriented Search (SOS) to combine exploration pro-
cess and optimality criterion into a unique framework, depicted in Figure 10.1, that
works on top of existing DRL algorithms. Our goal is to bias policies toward safety
without multi-objective or constrained optimization without formalizing the problem
as a CMDP. We leverage Evolutionary Algorithms for SOS to augment Deep Rein-
forcement Learning, proposing a novel concept of Safe Mutations (SMs). SMs exploit
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Figure 10.1: High-level schematics of SOS.

the visited states deemed unsafe according to the cost to approximate the per-weight
sensitivity of the actions over such undesired situations. Then, such sensitivity is used
to compute safety-informed perturbations that locally bias the agent policy to explore
different behaviors (i.e., actions) in the proximity of the unsafe states (i.e., the explo-
ration process). In more detail, an evolutionary population is periodically generated
from the DRL policy using Safe Mutations, and it is evaluated independently over a
set of trials to select the subset of individuals with returns comparable to the Deep
Reinforcement Learning agent and a lower cost.

Assuming that this subset improves the additional cost, we note that such signal is
typically sparse (i.e., it is not trivial to shape the risk associated with every state
in a high-dimensional space). Hence, the cost function does not fully characterize
the behaviors of the policy, sharing the issues of using sparse rewards (Hong et al.,
2018). For this reason, we argue that a tractable characterization of the behaviors
of a Deep Neural Network is instrumental in evaluating the safety of a policy (Liu
et al., 2019). To this end, we employ our violation metric to quantify the number of
correct decisions that a policy chooses over desired safe specifications. We then select
the policy in the subset with the lowest violation that will replace the agent (i.e., the
optimality criterion). However, Formal Verification (Wang et al., 2018b; Weng et al.,
2018) is known to be computationally demanding and can not be used directly in the
training loop without assumptions that can not be satisfied in practice (e.g., having
an optimal policy (Lutjens et al., 2020)). We propose to relax the formal guarantees of
prior bound-estimation methods (Wang et al., 2018b) with a sample-based estimation
to make this analysis tractable. Crucially, our Estimated Verification (EV) impacts
the training within a negligible overhead. To summarize, we foster safer behaviors
with periodical Evolutionary Algorithm evaluations while the Deep Reinforcement
Learning training process optimizes the reward objective.

10.2 Preliminaries

A Constrained Markov Decision Process (Altman, 1999) is a Markov Decision Process
with an additional set of constraints C based on Ci : S ×A → R (i = {1, . . . , n}) cost
functions (similar to the reward) and h ∈ Rn thresholds for the constraints. The Ci-
return is defined as JCi

π := Eτ∼π[
∑∞

t=0 γ
tCi(st, at)], where γ ∈ (0, 1) is the discount,

τ = (s0, a0, . . . ) is a trajectory, π = {π(a|s) : s ∈ S, a ∈ A} denotes a policy in state S
and action A spaces. Constraint-satisfying (feasible) policies ΠC , and optimal policies
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π∗ are thus defined as:

ΠC := {π ∈ Π : JCi
π ≤ hi, ∀i}, π∗ = argmax

π∈ΠC
Jπ (10.1)

where Jπ := Eτ∼π[
∑∞

t=0 γ
tR(st, at)] is the expected discounted return that we aim at

maximizing in a standard MDP; Π are the stationary policies, and R : S × A → R
is the reward function. Without loss of generality, we consider the case of one cost
function (as in recent constrained Deep Reinforcement Learning literature (Ray et al.,
2019; Stooke et al., 2020; Liu et al., 2020)) and we will discuss later how SOS could
handle multiple cost functions.

10.2.1 Gradient-based Mutations

Mutating a policy with simple Gaussian noise can lead to disruptive changes (Lehman
et al., 2018) that can be naively address uses zero-mean and low standard deviation
(Martin H. and de Lope, 2009). Otherwise, if we define a genome as a Deep Neural
Network parametrized by θ that represents a function fθ : Dx → Dy (input x ∈ Dx

and output y ∈ Dy), and a vector of states s, we can express the average divergence
of the outputs y as a result of a perturbation δ as:

d(fθ, δ) =
∥fθ(s)− fθ+δ(s)∥2

|s|
(10.2)

where fθ(s) are the forward propagations of the states through the DNN. A more
flexible way to avoid disruptive mutations assumes using a differentiable Deep Neural
Network to approximate d(fθ, δ) with gradient information (Lehman et al., 2018).
In detail, it considers the following first-order Taylor expansion to model an output
yj ∈ y (j = {0, . . . , |y|}) as a function of perturbations δ over the states s:

yj(fθ, δ) = fθ(s)j + δ∇θfθ(s)j (10.3)

In later sections, we discuss how Safe Mutations specializes gradient-based mutations
(Equation 10.3) to explore safer behaviors.

10.3 Safety-Oriented Search

SOS proposes two mechanisms to foster safety:

1. A novel concept of Safe Mutations to augment DRL with a policy search devoted
to exploring safer behaviors.

2. An Estimated Verification that relaxes the guarantees of FV to characterize the
behaviors of the policies during the training tractably.

The general flow of SOS is presented in Algorithm 7:

• We augment the Deep Reinforcement Learning agent training with a cost-buffer
Bc which stores the visited unsafe states (according to the cost).

• Lines 2-9: Periodically, we sample a batch b from Bc to compute the per-weight
safety-informed sensitivity λ of the agent outputs over its weights θa. This is used
by SM to generate a population of n individuals (DNNs) P = {p1, . . . , pn}∪{pa}
with weights θP (pa is a copy of the agent), voted to explore for safer behaviors.
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• Line 10: P is evaluated in a set of epochs to collect the individuals average
reward Rp and cost Cp that define the fitness score P-fitness = (Rp, Cp) ∀p ∈ P

• Line 11: Such fitness is used to select a subset of genomes P ′ as:1

P ′ = {pj ∈ P : P-fitnessj ≥ P-fitnessa, j = {1, . . . , n}} ∪ {pa} (10.4)

where P-fitnessj ≥ P-fitnessa ⇒ Rpj ≥ Rpa ∧Cpj ≤ Cpa . By choosing an appro-
priate number of evaluation epochs for the population, we define the individuals
in P ′ to be safer than pa as they have higher (or equal) rewards and lower (or
equal) costs.

• Line 12: Although P ′ improves the additional cost, such a sparse metric does
not characterize the behaviors of the policies. For this reason, SOS selects the
"safest" genome θ∗ ∈ P ′ using the Estimated Verification detailed in the related
section.

• Line 13: Hence, if θ∗ is a SM perturbed policy (i.e., θ∗ ̸= pa) it substitutes
pa to continue the training, otherwise the training that is running in parallel,
continues.

We note that in a worst-case scenario, we match the performance of the baseline Deep
Reinforcement Learning agent as we would never switch its policy. Summarizing,
SOS proposes a periodical search devoted to safety-oriented exploration to improve
the DRL policy, simulating a small gradient step toward a "safer" (better) policy.

Algorithm 7 Safety-Oriented Search
Given:

• a DRL agent with weights θa at the current epoch in environment env
• a verifier Vreach and desired safety-properties Ps ▷ e.g., Neurify, ReluVal
• a cost-buffer Bc filled with unsafe samples
• periodicity eP for SOS and population size n
• scale mutv for the Gaussian noise G and threshold λmax

1: While the standard training of the agent proceeds:
2: if epoch % eP == 0 then
3: Start the safety-oriented search ▷ typically in a parallel fashion
4: P ← n+ 1 copies of θa (each p ∈ P has weights θp)
5: envsP ← Initialize with n+ 1 copies of env
6: b← Sample an unsafe batch from Bc

7: Compute G ← N (0,mutv) ∀ weight ∈ θp, ∀p ∈ P (i.e., baseline noise)
8: λ← Equation 10.6 using b, replacing values ≤ λmax with λmax

9: θp ← θp +
G
λ , ∀p ∈ P

10: P-fitness ← genetic-evaluation(P, envsP)
11: Select a "safer" subset P ′ using P-fitness as Equation 10.4
12: vP ′ ← Vreach(Γ̃P ′ , Ps) using Def. 9.1 and 10.2
13: θa ← minθP′vP ′

14: End the safety-oriented search
15: end if
16: Continue the training of the agent until the next SOS

1Note that ordering among fitness tuples is feasible as its components R,C ∈ R.
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10.3.1 Safe-Informed Evolutionary Operators

Section 8.6.1 discussed how perturbing the weights of a Deep Neural Network via
simple Gaussian noise can lead to disruptive policy changes (Martin H. and de Lope,
2009). Gradient information (sensitivity) can be used to design mutations that avoid
such detrimental behaviors, normalizing the perturbation by a per-weight sensitivity
(Lehman et al., 2018).

We leverage the cost function to design our Safe Mutations, avoiding disruptive
changes to the Deep Reinforcement Learning policy while biasing it to explore safer be-
haviors. We consider a baseline Gaussian noise G ∼ N (0,mutv) for the perturbations
and normalize it with our safety-informed sensitivity λ. The resultant mutations δSM
are applied to the agent weights θa to generate P. One way to compute λ considers
the gradient of the actual divergence (Equation 10.2) (Lehman et al., 2018):

∇θad(fθa ,G) ≈ ∇θad(fθa , 0) +Hθa(d(fθa , 0))G
λfθa

= abs(∇θad(fθa ,G))
(10.5)

where Hθa is the Hessian of divergence with respect to θa. However, this requires
second-order approximations, and therefore it is computationally demanding. To ad-
dress this, we use the per-weight magnitude of the gradient of the outputs y = fθa(b),
where b is a batch of unsafe states randomly sampled from Bc, to estimate the sensi-
tivity λ to that weight with a first-order approximation:

λfθa
=

∑
y

(∑
s abs(∇θafθa(s))

|s|

)
1

|y|

δSM (fθa) =
G

λfθa

(10.6)

where each unsafe experience equally contributes to λ to reduce the overall changes
to the policy.2 In practice, we note that using a threshold λ to limit the mutation
rescaling (i.e., λmax) leads to better performance. To summarize, our idea is to design
safety-oriented gradient information using visited unsafe states to bias the policy to
explore different actions in the proximity of such situations.

10.3.2 Relaxing Formal Verification

We leverage formal verification for Deep Neural Networks to evaluate the subset of
safer genomes P ′ and characterize their behavior over a set of given properties in
the form of Equation 5.1. In particular, we use the violation of Chapter 9 for our
evaluation.

Despite recent advances in the field of formal analysis for DNNs (Wang et al., 2018b;
Weng et al., 2018), existing tools require non-negligible computation time to approx-
imate the reachable set using Equations 2.15, 2.16 (Liu et al., 2019). Hence, these
approaches can not be directly applied to verify the properties (and compute v) during
the training. We propose the following empirical strategy to estimate the reachability
set, using feedforward steps of the Deep Neural Network. We thus apply the verifi-
cation phase of an existing framework (Corsi et al., 2021) to the estimated bounds,

2We use the absolute value due to the interest in the magnitude, and not the sign, of the slope.



114 Chapter 10. Safety-Oriented Search

obtaining our Estimated Verification method that enables SOS to perform the verifi-
cation in the training loop.

Definition 10.1 (Estimated Reachability Set) Given a (safety) property p :=
x ∈ X ⇒ y = fθ(x) ∈ Y on fθ, and a set X ′ ⊆ X of m samples. We define the
reachability set:

Γ̃(X ′, fθ) := {[min(fθ(X ′)y,max(fθ(X ′)y)] ∀y ∈ y}

Crucially, given a discretization value ϕ for the input space of a property, our estima-
tion returns the exact reachability set using m = |X |

ϕ different samples. For example,
in practical tasks such as robotics, ϕ could be the precision of the sensor. However,
our interest is to characterize the behaviors in the proximity of unsafe states. Hence
we further exploit the cost-buffer Bc to compute a cost-oriented reachability set:

Definition 10.2 (Estimated Cost Reachability Set) Given a (safety) property
p := x ∈ X ⇒ y = fθ(x) ∈ Y on fθ, and the cost-buffer Bc. We define the cost
reachability set:

Γ̃(X ∩Bc, fθ) := {[min(fθ(X )y ∩Bc,max(fθ(X )y ∩Bc)] ∀y ∈ y}

10.3.3 Limitations of Safety-Oriented Search

Our evolutionary search assumes to have access to a simulation environment. This is
common in Deep Reinforcement Learning, where significant results have been achieved
mainly using simulation and transferring the policy on real platforms (Juliani et al.,
2018; Zhao et al., 2020). We also assume a single cost function as in prior constrained
DRL literature (Ray et al., 2019). However, it would be possible to handle multi-
ple cost functions by using crossover operators, similarly to (Khadka et al., 2019).
Verification assumes knowing desired specifications to design the properties, typically
available in tasks with safety requirements. Commonly with prior formal verifica-
tion (Liu et al., 2019), such properties are hand-designed, hence as the complexity
of the task increases, the input space typically grows, and writing safety properties
may be unfeasible. To this end, we believe that producing compact state representa-
tions to reduce complexity (Cuccu et al., 2019) could be an exciting topic for future
investigation.

10.4 Experiments

We use Safety Gym (Ray et al., 2019), a recent benchmark for our class of prob-
lems (Hunt et al., 2021; Stooke et al., 2020). Safety Gym models several navigation
tasks (i.e., reach a Goal, press a Button, Push a box) for various robots (i.e., Point,
2-wheels Car, 12-joint Doggo) and difficulty levels (i.e., 0, 1, 2). Each has various
hazards and densities (randomly placed at each epoch) that induce the additional
cost upon collisions. The reward is shared across tasks, with a dense component to
promote movements toward the goal and a large sparse value for reaching it. Lidar
scans sense the hazards and the goal and comprise the observation space and posi-
tion and velocity sensors. We consider the six tasks recommended by the authors,
namely PointGoal1, PointGoal2, PointButton1, PointPush1, CarGoal1, DoggoGoal1,
that comprise at least one environment for each task, robot, and difficulty.
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We designed three properties to characterize the policy behaviors to ensure that the
agent chooses rational actions in the visited states. Given the cardinality of the inputs,
we report natural language property descriptions, which are shared across the tasks.
We remind to later sections for an overview of the formal definition in the form of
Equation 5.1:

• p↑: If the robot has hazards too close on the front, it must turn in any direction
or move backward.

• p→: If the robot has hazards too close on the right and the front, it must turn
left or move backward.

• p←: If the robot has hazards too close on the left and the front, it must turn
right or move backward.

We remark that our goal is to provide a high-level overview of core navigation skills to
quantify the overall behaviors of the agent. Hence, despite using only three properties,
their high-level formalization was sufficient to cover over 98.7 ± 0.5% of the visited
unsafe states.

We investigate an on-policy version of SOS based on PPO (SOS-PPO) against PPO,
CPO, Lagrangian-PPO (L-PPO), and IPO. We also report additional experiments
with a TD3 implementation of SOS (SOS-TD3) and the indoor mapless navigation
scenario. We compare with constrained Deep Reinforcement Learning as it is the most
closely related to addressing safety using cost functions. We evaluate the effectiveness
of SOS-based algorithms at minimizing the cost signal with the evolutionary search
while preserving returns. Conversely, constrained DRL hinders exploration (to satisfy
cost constraints) at the expense of low returns, leading to a significant performance
trade-off (Ray et al., 2019).

Training Setup: We use prior implementations of CPO, PPO, TD3, and L-PPO,
which improves the constraint satisfaction, and our version of IPO, which we carefully
tuned since authors did not release code.3 Similar to Ray et al. (Ray et al., 2019),
our experiments share the same network architecture. We achieve comparable results
over prior work by considering separate feedforward multi-layer perceptron policy and
value networks of size (64, 64) with Tanh activations.

Experimental Setup: The experimental setup is the same as in previous chapters.
In particular, we remark that the additional epochs required by SOS are included
in all the results for a fair comparison. However, the overhead of training time is
negligible due to parallelization (i.e., both the search and the Estimated Verification
are independent for each individual, and SOS-PPO trains with an overhead of 4 ±
2% over PPO). Given the importance of the statistical significance of the results
(Henderson et al., 2018; Colas et al., 2019), we report mean and standard deviation
collected over ten independent runs with different random seeds. This motivates
slightly different results over the original implementations evaluated over a few seeds.

Concerning the baselines and SOS implementations, we consider the following hyper-
parameters:

• SOS-PPO and SOS-TD3: for the on-policy SOS-PPO, we considered the clipped
PPO which was recommended in the original work (Schulman et al., 2017) and
to which we remind the interested reader for further details. We use a buffer of

3We refer to the original papers for specific details about the approaches and hyper-parameters.
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256 elements with mini-batches of size 64. For the additional experiments of the
off-policy SOS-TD3, we use the TD3 implementation of the authors (Fujimoto
et al., 2018), considering their set of hyper-parameters. We remind the interested
reader of the original implementations of the considered baselines, and to their
paper, for further details (Schulman et al., 2017; Fujimoto et al., 2018; Stooke
et al., 2020; Liu et al., 2020; Ray et al., 2019).

• Safety oriented evaluation: we use the same set of hyper-parameters for our
on-policy and off-policy search. In detail, the size n of the population is 10.
The number of evaluation episodes to compute the cost-oriented fitness tuple
is set to 15 as the resultant normalized fitness was comparable with the one
collected using more evaluation episodes. Our mutation operator applies to
all the agent weights, and the baseline Gaussian noise G has zero-mean and
standard deviation 0.1. To compute the Safe Mutations, we sample a mini-batch
of 250 unsafe states from the cost-buffer, setting the sensitivity threshold λmax

= 0.01. After evaluating different seeds in the Goal environments, these values
were chosen and shared for all the experiments. For the Estimated Verification,
we use m = 60 samples as they showed comparable performance over formal
verification. We set the discretization value ϕ = 0.001 to reflect the precision of
the lidar of a real robotic platform (i.e., the LDS-01 of the TurtleBot3).

10.5 Empirical Evaluation

For each task, we consider the following plots:

1. Average reward.

2. Auxiliary cost with a dashed line for the cost threshold of constrained DRL (for
a fair comparison, the threshold is the cost reached by SOS at convergence).

3. Pareto frontier of return versus cost at convergence, which drastically improves
(up and to the left) with SOS.

Figure 10.2 shows the results in five tasks (arranged in columns) for the complete
SOS-PPO implementation. This uses Estimated Verification to compute the viola-
tion metric for the selection, by verifying p↑, p→, p← using the cost reachability set
(Definition 10.2).

For the baselines, we obtain the same trend of prior work (Ray et al., 2019), where
the objective of maximizing the reward while limiting the cost present a meaningful
trade-off:

• PPO obtains high returns by taking unsafe actions.

• L-PPO is the most reliable in enforcing the constraint but typically achieves
poor returns.

• CPO achieves attractive rewards due to its approximation errors, which prevent
it from satisfying the constraints.

• IPO returns a similar result to CPO but has the advantage of being a first-order
method.
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Figure 10.2: Comparison of PPO, SOS-PPO, IPO, CPO, L-PPO in
Safety Gym. Each column (i.e., each task) shows the average reward

and cost during the training, and Pareto frontier at convergence.

• Conversely, SOS-PPO successfully maintains comparable returns over PPO while
drastically reducing the long-term cost, attaining cost values similar to L-PPO
at convergence.

A detailed analysis of the returns of L-PPO highlights that its constrained policies are
prone to perform poor behaviors (e.g., L-PPO often learns to stand still or move in
circles for entire epochs to avoid collisions). This further motivates the introduction
of the EV in the training loop to characterize the policies’ behavior and select the
safest individual using our violation metric.

Considering the limitation of formal verification, we note that writing properties for
the DoggoGoal1 task without knowing the kinematics of the robot is not trivial. For
this reason, Figure 10.3 shows the results of a SOS-PPO implementation without the
Estimated Verification part. Hence, in these experiments, the best individual θ∗ ∈ P ′
is the one that has minimum cost.

In this environment, we note that L-PPO maintains the imposed cost limit but fails
at learning the locomotion for this complex 12-joint robot. In contrast, our approach
achieves comparable rewards over CPO and significantly reduces costs, similar to
previous results.

10.5.1 Ablation Studies and Additional Experiments

We present a set of additional and ablation experiments to confirm our claims on the
superior performance of SOS-based approaches and their components.

Mapless Navigation Additional Experiments

For a more comprehensive evaluation of our work, here we discuss and report the
results of SOS in the indoor mapless navigation task. The setup is the same as prior
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Figure 10.3: Comparison in the DoggoGoal task with a SOS-PPO
implementation that selects the best individual in P ′ that has mini-

mum cost instead of using the EV part.

experiments in this domain. A simulated TurtleBot3 has to learn how to navigate an
indoor environment with obstacles to reach random targets, using only local observa-
tions (e.g., laser scans). The cost function triggers upon collision with an obstacle, and
the logical properties of the verification part are comparable to the ones previously
considered.

Figure 10.4 shows the Pareto frontier of reward versus cost at convergence on the right.
Crucially, it significantly improves (up and to the left) with SOS, further confirming
the results of our work.

Figure 10.4: Comparison in our robotic mapless navigation task.
Pareto frontier of average reward versus average cost at convergence.

Off-Policy Additional Experiments

We performed additional experiments in PointGoal1 and PointGoal2 to show that
SOS can also be combined with off-policy Deep Reinforcement Learning. Figure 10.5
confirms the results observed in the on-policy setting, where SOS-TD3 achieves a
similar reward to the original TD3, while correctly biasing the policy toward safer
regions (i.e., with lower cost). We note that it could be possible to augment the DRL
agent buffer with the population’s diverse experiences to improve sample efficiency
further.
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Figure 10.5: Comparison with TD3 and its SOS implementation
(SOS-TD3) in PointGoal1 (a) and PointGoal2 (b). For each task we
report the average reward and average cost. SOS-TD3 preserve the
reward, while minimizing the auxiliary cost even in the off-policy sce-

nario.

Safe Mutation and Estimated Verification

We further analyze SOS to show that:4

• Safe Mutations avoids disruptive changes to the policy while biasing exploration
towards safety.

• The selection based on Estimated Verification successfully characterizes the poli-
cies’ behaviors, resulting in better performance.

Figure 10.6 shows the plots generated by fitting a Gaussian kernel density model
on the action selected over several epochs. This explanatory overview reports the
behaviors (i.e., chosen actions) of the DRL policy and two perturbed versions with
SM and simple Gaussian noise G. The first row shows the effects of the mutations in
the first stages of the training, the second shows the middle stages of the training (i.e.,
around 1.5 million steps), while the last shows the last epoch of the training phase
of the PPO agent. SM locally biases the agent policy, maintaining a similar action
distribution (i.e., behaviors). In contrast, Gaussian noise causes disruptive changes,
resulting in very different and typically worst behaviors.

4Ablation studies are performed in PointGoal1 as we obtained similar results across the Safety
Gym tasks.
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Figure 10.6: Overview of the DRL policy (a) and its mutation with
SMs (b) or simple Gaussian noise (c) in the first, middle, and final
epochs of the training (depicted in the first, second and third row, re-
spectively). SMs locally biases the agent policy, maintaining a similar

action distribution.

This is further supported by the top of Figure 10.7, which shows the average reward
and cost collected by two SOS-PPO implementations. In detail, such implementations
use (i) Gaussian noise (i.e., without SM and the cost-buffer) and (ii) standard output-
gradient mutations (i.e., with the sensitivity computed on random samples). Hence,
these ablation studies have no information on the additional cost to generate the
population and can not cope with the safety aspect of the tasks, resulting in lower
returns and higher costs over PPO.

Moreover, Figure 10.7 on the bottom shows the same metric for a SOS-PPO implemen-
tation that selects θ∗ ∈ P without EV, i.e., it selects the individual with comparable
reward to the Deep Reinforcement Learning agent and with minimum cost. Crucially,
these results confirm the importance of our framework in the scenarios where prior
knowledge can not be included for the design of the properties for Estimated Veri-
fication as it maintains superior performance over the baselines. However, we note
that this supports our claims on the importance of integrating EV in the selection
process to characterize the actual behaviors of the policies. In particular, EV allows
discovering safer policies since the early stages of the training, improving both the
maximization of the reward and the cost minimization.
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Figure 10.7: Ablation study of SOS-PPO implementations with (i)
Gaussian mutations and (ii) output-gradient mutations without cost-
buffer (top). Ablation study of SOS-PPO that selects the best indi-

vidual that have minimum cost, instead of using EV (bottom).

Approximation of the Estimated Verification

We also analyze Estimated Verification to show that:

• The time required by prior Formal Verification approaches prevents their appli-
cation in the training loop.

• EV provides comparable results (i.e., violation) over formal approaches.

Figure 10.8 on top shows the cumulative time required to verify our three properties
using prior formal verification (i.e., ProVe (Corsi et al., 2021)), and EV with different
sample sizes m. We remark that the analysis is periodically performed in the training
loop for each safety-oriented search. Crucially, EV drastically reduces the compu-
tational time by more than 73.8× for each verification. Hence, in our experiments,
Estimated Verification is the only feasible solution as the average training time of SOS
in PointGoal1 requires a couple of hours, while it would require more than 48 hours
using formal verification.

Finally, our estimation also returns similar results over formal verification due to the
comparable violation results. Figure 10.8 on the bottom shows an explanatory com-
putation (during the training) of the violation metric for our three safety properties.
Note that we only report the curve of EV that uses the cost reachability set (Definition
10.2) as it has comparable performance over the estimated reachability set (Definition
10.1) in approximately half the time. Results highlight that with the bit of tuning
of the sample size m, we obtain an accurate estimation of the violation (i.e., in our
experiments, with m = 60 we have an error between the formal violation and the
estimated one below 0.5%).
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Figure 10.8: Comparison between formal analysis and the Estimated
Verification: computation time (with different values of m for EV)
(top). EV estimation of the violation metric over Formal Verification

(bottom).

Formal Definition of Safety Properties

Here we report the proper encoding of the properties used by EV and formal verifica-
tion in the Safety Gym tasks and in our evaluation. Notice that for some properties
we could be interested in the verification of the relationship between an output node
yi = [yi, yi], and a constant value c. For example, the Point robot has two outputs
that control linear and angular velocities. In this scenario, the steering action depends
on the sign of a single output value (e.g., if < 0 turn left, if > 0 turn right). Hence, we
use our property formalization 5.1 by setting the target output to yj = [c, c], where c
is the desired constant:

Considering the observation space of the tasks and the natural language description of
the properties in the main paper, we provide an explanatory subset of the considered
properties: p↑ and p→ for PointGoal and p←, for CarGoal:

p↑,PointGoal : If x0, . . . , x2 ∈ [−4, 10] ∧ x3, . . . , x18 ∈ [0, 1] ∧ x19, . . . , x21 ∈ [−3, 3]∧
x22, x23 ∈ [0.7, 1] ∧ x24, . . . , x35 ∈ [0, 1] ∧ x36, x37 ∈ [0.7, 1] ∧ x38, . . . , x40 ∈ [−0.5, 0.5]
∧ x41, . . . , x56 ∈ [0, 1] ∧ x57, . . . , x59 ∈ [−0.7, 0.7]
⇒ y1 < [−0.2,−0.2] ∨ y1 > [0.2, 0.2] ∨ y0 < [0, 0]
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p←,PointGoal : If x0, . . . , x2 ∈ [−4, 10] ∧ x3, . . . , x18 ∈ [0, 1] ∧ x19, . . . , x21 ∈ [−3, 3]∧
x24, . . . , x27 ∈ [0.7, 1] ∧ x28, . . . , x37 ∈ [0, 1] ∧ x38, . . . , x40 ∈ [−0.5, 0.5]∧
x41, . . . , x56 ∈ [0, 1] ∧ x57, . . . , x59 ∈ [−0.7, 0.7]
⇒ y1 < [−0.2,−0.2] ∨ y0 < [0, 0]

p→,CarGoal : If x0, . . . , x2 ∈ [−13, 13] ∧ x3, . . . , x5 ∈ [−9, 9] ∧ x6, . . . , x15 ∈ [−1, 1]∧
x15, . . . , x30 ∈ [0, 1] ∧ x31, . . . , x34 ∈ [−3, 3] ∧ x35, . . . , x50 ∈ [0, 1]∧
x44, . . . , x47 ∈ [0.7, 1] ∧ x51, . . . , x53 ∈ [−0.5, 0.5] ∧ x54, . . . , x69 ∈ [0, 1]∧
x70, . . . , x72 ∈ [−1, 1]
⇒ y0 > y1 ∨ (y0 < [0, 0] ∧ y1 < [0, 0])

Notice that the prior knowledge in the input domain is included by measuring the
minimum distance required to avoid an obstacle at max speed for the different robots.
This is similar to Chapters 5, 9.

10.6 Related Work

Safety critics (Thananjeyan et al., 2020; Bharadhwaj et al., 2021; Thananjeyan et al.,
2021) rely on estimating the probability of incurring into unsafe states, given a state-
action pair. However, such approaches could potentially return misleading information
for policy improvement, especially in the early stages of the training, where safety
critics are pre-trained on offline data. Such offline demonstration represents unsafe
samples which should cover a wide variety of unsafe behaviors for a robust pre-training.
This may be challenging, and a possible alternative is to use data collected by human
policies or human supervision. Moreover, these methods also introduce overhead in
the action sampling process. Each step has to compute different samples (e.g., the
action, the probability of failure), which can hinder their application to the physical
hardware that requires high-frequency control.

In contrast, we compare SOS with constrained Deep Reinforcement Learning as it is
more related to our approach. In more detail, CPO (Achiam et al., 2017) has near-
constrained satisfaction guarantees, but the Taylor approximations lead to inverting a
Fisher matrix, possibly resulting in infeasible updates and demanding recovery steps.
Similarly, PCPO (Yang et al., 2020) also has theoretical guarantees for constraint
satisfaction but uses second-order approximations and has mixed improvements over
CPO (Zhang et al., 2020). Lyapunov-based algorithms (Chow et al., 2018, 2019), in
contrast, combine a projection step with action-layer interventions, similarly to the
safety layer of (Dalal et al., 2018). However, the cardinality of Lyapunov constraints
equals the number of states, resulting in a non-negligible implementation cost.

Lagrangian methods (Ray et al., 2019; Stooke et al., 2020) reduce the complexity of
prior approaches, with promising constraints satisfaction. These methods transform
the equality-constrained problem defined over a real vector x:

min
x

f(x) s.t. g(x) = 0
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with a dual variable that form the Lagrangian:

L(x, λ) = f(x) + lλg(x)

where lλ is the Lagrange multiplier. Gradient-based algorithms then iteratively update
the primal and dual variables:

−∇xL(x, lλ) = −∇xf(x)− lλ∇xg(x)

∇lλL(x, lλ) = g(x)

where lλ acts as a learned penalty and is used to satisfy the constraint. This adapts to
the constrained setting (Geibel and Wysotzki, 2005; Altman, 1998) representing a well-
known constrained DRL approach due to its simplicity and good cost-limit satisfaction
(Ray et al., 2019; Stooke et al., 2020). Similarly, IPO (Liu et al., 2020) reduces the
constrained problem into an unconstrained one by augmenting the objective with
logarithmic barrier functions, which provide sub-optimal solutions.

García and Fernández (Garcıa and Fernández, 2015) shows that constrained ap-
proaches have several drawbacks, such as the careful tuning of the threshold h as
high values mean that they are too permissive, or conversely, too restrictive. Fur-
thermore, such approaches rely on the strong assumption that typically can not be
satisfied in practice (e.g., having an optimal policy) to provide theoretical guarantees
on the constraints’ satisfaction. Hence, constrained Deep Reinforcement Learning is
also not devoid of short-term fatal consequences as empirical evidence shows that they
typically fail at satisfying the imposed constraints (Ray et al., 2019), which is also
related to the non-linear approximation nature of Deep Neural Networks.

Furthermore, constraints naturally limit exploration, causing getting stuck in local
optima or failing to learn properly (Conti et al., 2018; Hong et al., 2018). In contrast,
we leverage Evolutionary Algorithms to design SOS as prior combinations of DRL and
EAs show a beneficial transfer of information between the two approaches (Khadka
and Tumer, 2018; Khadka et al., 2019; Marchesini et al., 2021). These methods,
however, use the evolutionary component only for improving the return and can not
be trivially extended to address the safety component.

10.7 Discussion

We summarize our contributions in Safety-Oriented Search, a framework that com-
bines Evolutionary Algorithms and Deep Reinforcement Learning using novel concepts
of Safe Mutations and Estimated Verification to minimize an auxiliary cost signal to
improve the policy safety while preserving the return. In detail:

• SM proposes the design of an informed mutation operator that preserves the
policy while biasing exploration towards the desired objective (e.g., safety).

• EV enables to characterize the behaviors during the training, providing a sig-
nificant speedup for the verification process, with comparable performance over
prior formal verification.
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Safety-Oriented Search is compatible with on-policy and off-policy Deep Reinforce-
ment Learning. Our results in the Safety Gym benchmarks confirm that SOS success-
fully addresses the trade-off between return and cost, achieving comparable returns
to unconstrained algorithms and comparable cost values to constrained DRL.

SOS has several potential impacts on society as it addresses safety, a crucial aspect of
practical Deep Reinforcement Learning applications. While the SMs show that it is
possible to augment exploration toward the desired objective and successfully transfer
beneficial information into a DRL agent, the Estimated Verification can characterize
the behaviors of a policy into the training loop. Hence it could be employed to
design Safe Deep Reinforcement Learning algorithms. Nonetheless, the broader field
of network verification, to which EV belongs, also presents negative consequences as
an incorrect formalization of the properties could result in undesired behaviors.
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Chapter 11

Conclusions and Future Work

In this thesis, we considered Deep Reinforcement Learning approaches aiming at im-
proving efficiency and safety. Specifically, we proposed several methods to enhance
the exploration abilities of the DRL agents. To conclude, we recap our contributions
and discuss progress and frontiers in the field.

Benchmarking Exploration. A significant part of this thesis is devoted to discuss
the importance that simulation environments have on the performance and develop-
ment of Deep Reinforcement Learning algorithms. In the literature, the discussion
on simulation appears underdeveloped over the algorithmic counterpart. We believe
that the importance of this topic is somewhat underestimated, and we argue that the
quality of environments is of critical importance to foster progress in the field of DRL.

In this direction, we explored an alternative way to develop high-quality environ-
ments, focusing on tasks where the agents’ uncertainty and environment dynamics
can genuinely represent a complex challenge for modern solutions. This follows the
criticism on the simplicity of standard evaluation benchmarks discussed by Mania
et al. (2018), which showed how benchmarks environments are not as complex as
previously thought, obtaining state-of-the-art performance using random searches of
linear policies. Hence, we presented three robotics-based domains to provide a more
comprehensive set of tasks to evaluate the following contributions. In detail, we devel-
oped the robotic scenarios using Unity, a physically realistic simulation environment
known for its applications to the game developing world. Crucially, we showed that
Unity is a viable alternative over more computationally demanding solutions. It allows
exporting the trained policies on the real robots without additional training or tun-
ing. The increasing employment of Unity as a simulation environment for drl research
further confirmed our intuition.1.

Intuitively, future work in this domain involves developing novel simulation software
that represents real challenges to open questions in the Deep Reinforcement Learning
field. In this context, multi-agent applications represent an ideal domain, given the
wide range of open problems in this field. The complexity of Multi-Agent (Deep) Re-
inforcement Learning translates into several different benchmark environments. Each
developed explicitly for a particular challenge. For example, game-based settings (e.g.,
Starcraft) are the benchmark de facto to test cooperative MARL algorithms. However,
these algorithms can not typically cope with different MARL open problems such as
communication among agents. Hence, our vision is to develop a suite of environments
of increasing difficulty, each comprising a multitude of open problems for Multi-Agent

1www.github.com/Unity-Technologies/Unity-Robotics-Hub
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(Deep) Reinforcement Learning. We intend to exploit existing board games to this
end, following the recent interesting insights given by the Hanabi challenge (Bard
et al., 2019).

Benchmarking Sample Efficiency. Along a similar direction, we then argued the
importance of choosing a particular algorithm, depending on task-related require-
ments.

To this end, we exploited the previous robotic environments to benchmark Deep Re-
inforcement Learning algorithms and present further optimization to enhance their
performance.

We note that the incrementalist perspective of improving on an existing approach
may be less appealing for a researcher. However, re-implementing and improving
prior work exposes new researchers to how existing algorithms are brittle and could
be improved. Furthermore, while it is hard to suggest directions for future work in
this context, some of the most impressive achievements in machine learning have come
from this incremental vision (Achiam, 2021).

Evaluating Decision-Making. Chapter 5 concludes Part I of the thesis discussing
the importance of evaluation metrics in Deep Reinforcement Learning.

Our vision follows recent work that argued how choosing informative metrics is fun-
damental to determine whether algorithmic improvements are meaningful (Henderson
et al., 2018). Hence, we analyzed this problem under the decision-making point of
view, as standard evaluations based on reward and number of successes do not convey
enough information to assess the decision-making skills of DRL policies. To this end,
we proposed the use of prior Formal Verification tools to formally verify the behaviors
of a policy in (possibly) the entire state space over desired specifications.

In this context, Colas et al. (2019) provides a starting point towards a standardization
of the procedures for Deep Reinforcement Learning evaluations. However, we believe
researchers should put a considerable effort towards this topic to ensure a shared
baseline to evaluate novel approaches. Standardization would also provide a sound
and objective way to properly assess various DRL methods, which is a crucial issue
given the increasing number of Deep Reinforcement Learning approaches that are
developed by the research community.

Combining Deep Reinforcement Learning with Evolutionary Algorithms.
Part II of the thesis then focuses on the issues of exploring high-dimensional spaces,
which is a crucial challenge both in single and multi-agent applications.

In this direction, Chapters 6 and 7 highlight the dual perspective between gradient-
based Deep Reinforcement Learning and gradient-free Evolutionary Algorithms. In
particular, we proposed to augment the broad family of DRL algorithms with a pop-
ulation search aimed at enhancing exploration while improving the robustness of the
policies. Our framework improved over prior work in terms of performance and appli-
cability. It showed promising performance, generalization skills, and robustness when
applied to value-based, policy-gradient, and actor-critic solutions.

We discuss possible future directions on this topic in what follows, where we further
employ Evolutionary Algorithms to achieve different objectives.

Global Dueling Q-Learning. We then analyzed the issues related to exploration
in Multi-Agent (Deep) Reinforcement Learnings.
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In detail, we analyzed the limitations induced by prior work to factorize a global
action-value function and favor cooperation at the expense of limiting the agents’
exploration. To this end, we proposed a different perspective that employs the in-
sights of Dueling Networks (Wang et al., 2016) to avoid structural constraints for
the factorization while fostering cooperative behaviors. We further extended this ap-
proach showing that evolutionary searches represent an efficient alternative way to
learn different skills concurrently, improving sample efficiency and performance.

The policy decomposition and the separate estimation of the state values open several
directions for future work. For example, we note that the insights of prior work
on value decomposition networks (Sunehag et al., 2018; Rashid et al., 2018, 2020)
could be applied to our network architecture to foster cooperation further. Moreover,
our decomposition allows us also to explore competitive multi-agent setups, which is
another exciting field of research. Nonetheless, our primary goal for the future involves
the previously discussed design of a comprehensive suite of multi-agent environments
based on complex board games to foster the development of efficient multi-agent
approaches that are generally applicable to (possibly) any settings. In our vision,
such general methodologies would deal with the different multi-agent challenges (e.g.,
communication, cooperation, credit assignment, partial information) within a single
solution.

Quantifying Safe Behaviors. The design of an evaluation metric in safety-critical
contexts begins Part III. This is crucial as practical applications, such as robotics
usually involve high-cost hardware or human cooperation. Hence, the behavior of a
Deep Reinforcement Learning policy must be evaluated to avoid unsafe situations.

We formally defined a violation metric to quantify the number of unsafe decisions
that a trained policy chooses over safety specifications defined a priori. To this end,
we employed Formal Verification to compute our violation results and confirm the
beneficial effects of Evolutionary Algorithms to gradient-based DRL.

Safety-Oriented Search. Finally, Chapter 10 ends the thesis contributions by an-
alyzing the problems of safety and efficient exploration into a unique framework.

In this direction, we argued the limitations of prior work on Safe Deep Reinforcement
Learning that typically employ constrained optimization to guarantee safety. However,
the non-linear approximation nature of Deep Neural Networks hinders the satisfac-
tion of such constraints and results in a significant trade-off between safety and return.
Hence, we proposed a different perspective based on safe-informed evolutionary op-
erators and approximated verification to bias a gradient-based Deep Reinforcement
Learning policy to explore safer behaviors. Crucially, our contribution allowed us to
obtain a comparable return over the DRL component while significantly improving
the overall safety of the resultant policy.

Considering the promising results on the variety of tasks we considered for our com-
bination of Deep Reinforcement Learning and Evolutionary Algorithms, we believe
this represents another promising field for future developments. In particular, the
objective-informed evolutionary operator could be a critical component for the design
of the general MARL approach due to its significant performance in biasing the policy
toward the desired objective, without explicit multi-objective optimization. Moreover,
the approximated version of Formal Verification enables to characterize the decision-
making process of an agent in an online fashion.
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Overall, we believe that novel Safe DRL solutions with formal safety guarantees is an
exciting future perspective. In particular, we argue that the trade-off related to de-
veloping effective and safe Deep Reinforcement Learning methods require a paradigm
shift in the way such methods are designed and evaluated. We believe that the combi-
nation of sample efficient DRL approaches and Formal Verification, proposed in this
thesis, is a first important step in this direction. Nonetheless, a significant amount of
research work is required to achieve this long-term vision.
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