206 research outputs found

    On the Identification of Symmetric Quadrature Rules for Finite Element Methods

    Get PDF
    In this paper we describe a methodology for the identification of symmetric quadrature rules inside of quadrilaterals, triangles, tetrahedra, prisms, pyramids, and hexahedra. The methodology is free from manual intervention and is capable of identifying an ensemble of rules with a given strength and a given number of points. We also present polyquad which is an implementation of our methodology. Using polyquad we proceed to derive a complete set of symmetric rules on the aforementioned domains. All rules possess purely positive weights and have all points inside the domain. Many of the rules appear to be new, and an improvement over those tabulated in the literature.Comment: 17 pages, 6 figures, 1 tabl

    Analytical computation of moderate-degree fully-symmetric cubature rules on the triangle

    Get PDF
    A method is developed to compute analytically fully symmetric cubature rules on the triangle by using symmetric polynomials to express the two kinds of invariance inherent in these rules. Rules of degree up to 15, some of them new and of good quality, are computed and presented.Comment: 13 pages, submitted to Journal of Computational and Applied Mathematic

    Programming of Finite Element Methods in MATLAB

    Full text link
    We discuss how to implement the linear finite element method for solving the Poisson equation. We begin with the data structure to represent the triangulation and boundary conditions, introduce the sparse matrix, and then discuss the assembling process. We pay special attention to an efficient programming style using sparse matrices in MATLAB

    Electric potential and field calculation of charged BEM triangles and rectangles by Gaussian cubature

    Get PDF
    It is a widely held view that analytical integration is more accurate than the numerical one. In some special cases, however, numerical integration can be more advantageous than analytical integration. In our paper we show this benefit for the case of electric potential and field computation of charged triangles and rectangles applied in the boundary element method (BEM). Analytical potential and field formulas are rather complicated (even in the simplest case of constant charge densities), they have usually large computation times, and at field points far from the elements they suffer from large rounding errors. On the other hand, Gaussian cubature, which is an efficient numerical integration method, yields simple and fast potential and field formulas that are very accurate far from the elements. The simplicity of the method is demonstrated by the physical picture: the triangles and rectangles with their continuous charge distributions are replaced by discrete point charges, whose simple potential and field formulas explain the higher accuracy and speed of this method. We implemented the Gaussian cubature method for the purpose of BEM computations both with CPU and GPU, and we compare its performance with two different analytical integration methods. The ten different Gaussian cubature formulas presented in our paper can be used for arbitrary high-precision and fast integrations over triangles and rectangles.Comment: 28 pages, 13 figure

    An Analysis of Solution Point Coordinates for Flux Reconstruction Schemes on Tetrahedral Elements

    Get PDF
    The flux reconstruction (FR) approach offers an efficient route to high-order accuracy on unstructured grids. In this work we study the effect of solution point placement on the stability and accuracy of FR schemes on tetrahedral grids. To accomplish this we generate a large number of solution point candidates that satisfy various criteria at polynomial orders ℘=3,4,5℘=3,4,5 . We then proceed to assess their properties by using them to solve the non-linear Euler equations on both structured and unstructured meshes. The results demonstrate that the location of the solution points is important in terms of both the stability and accuracy. Across a range of cases it is possible to outperform the solution points of Shunn and Ham for specific problems. However, there appears to be a degree of problem-dependence with regards to the optimal point set, and hence overall it is concluded that the Shunn and Ham points offer a good compromise in terms of practical utility
    • …
    corecore