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Analytical computation of moderate-degree
fully-symmetric cubature rules on the triangle

Stefanos-Aldo Papanicolopulos∗

November 16, 2011

Abstract

A method is developed to compute analytically fully symmetric cubature rules on the triangle by using
symmetric polynomials to express the two kinds of invariance inherent in these rules. Rules of degree up to
15, some of them new and of good quality, are computed and presented.

Keywords: Cubature, triangle, fully symmetric rules, symmetric polynomials

1 Introduction
The term “cubature” indicates the numerical computation of a multiple integral. This is an important topic
in many different disciplines, with a correspondingly large body of literature. A description of the different
kinds of cubature rules that exist, as well as of the mathematics used to derive them, is given in the classical
book of Stroud (1971), with more updated information to be found, among others, in (Cools, 1997) and in
chapter 6 of (Krommer and Ueberhuber, 1998). Stroud (1971) also presents a compilation of known (at the
time) cubature rules, while newer rules are catalogued in (Cools and Rabinowitz, 1993; Cools, 1999) and online
at the Encyclopedia of Cubature Formulas (Cools, 2003).

A commonly used method to derive specific cubature rules is based on moment equations and invariant
theory (Krommer and Ueberhuber, 1998, pp. 170–182). This method, which will be used in the present paper,
exploits symmetries and invariant theory to set up a non-linear system of equations, whose unknowns are the
positions and weights of the integration points. The use of invariants, together with appropriate analytical
computations, can lead to a significant simplification of the system of equations, which however in most cases
still has to be solved numerically.

Although appropriate iterative numerical methods have been successfully used to obtain individual numerical
solutions to the aforementioned system of equations, obtaining a solution in this way provides no information on
its uniqueness. Conversely, inability to obtain a solution does not prove its inexistence (though it is a strong
indication, when sufficiently robust numerical methods are employed). It is thus interesting and useful to be able
to compute analytically all the solutions for a cubature rule.

In this paper we focus on fully symmetric cubature rules on the triangle and provide results of the analytical
computation for cubature rules of moderate degree, extending significantly the analytical results given by Lyness
and Jespersen (1975). The theory of symmetric polynomials (Macdonald, 1998) is used in the generation of
the non-linear system of equations, resulting in a straightforward way to formulate a system which is simpler
than those resulting from the use of polar coordinates (Lyness and Jespersen, 1975; Berntsen and Espelid, 1990)
or Cartesian coordinates (Wandzura and Xiao, 2003). Additionally, symmetric polynomials are also used to
significantly simplify the computation and presentation of the analytical solution.

2 Symmetric polynomials
Although the formulation presented here is actually based on invariant theory, the relevant theory is not used
directly but is “implied” by using the theory of symmetric polynomials (Macdonald, 1998). As we will see in the
following, the use of symmetric polynomials provides a concise formulation of the non-linear system of equations,
while also leading to simpler computation and presentation of the solution.
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A symmetric polynomial is a multivariate polynomial in n variables, say x1, x2, . . . , xn, which is invariant
under any permutation of its variables. We define the elementary symmetric polynomials x̃k as the sums of all
products of k distinct variables xi, with negative sign when k is odd, that is

x̃k = (−1)k
∑

i1<i2<...<ik

xi1xi2 · · ·xik (1)

with x̃0 = 1. The alternating sign (−1)k in equation (1), which does not appear in the usual definition of the
elementary symmetric polynomials, is introduced here as it leads to simpler expressions. While elementary
symmetric polynomials are usually denoted using a letter (e.g. Πk, sk or ek) which is different from the variable
name, we use here the superimposed tilde over the variable name since we will be dealing with elementary
symmetric polynomials of different sets of variables.

The fundamental theorem of symmetric polynomials states that any symmetric polynomial in the variables xi
can be expressed as a polynomial in the elementary symmetric polynomials x̃k.

Equation (1) allows computing the elementary symmetric polynomials x̃k in terms of the n variables xi.
Conversely, the values xi can be calculated from x̃k as the solutions for x of the polynomial equation

n∑
j=0

x̃n−jx
j = 0 (2)

3 Formulating the system of equations

3.1 Moment equations
Our objective is to derive a cubature formula (or rule) for the approximate evaluation of the integral of a function
f over the area A of a triangle

Ī =

np∑
i=1

w̄if
(i) ≈ 1

A

∫
A

f dA (3)

where f (i) is the value of f at point i, w̄i is the corresponding weight and np is the number of points used in
the cubature. We only consider rules of (polynomial) degree d, that is rules where equation (3) is exact for all
polynomials of degree less or equal to d, while it is not exact for at least one polynomial of degree d+ 1.

A polynomial of degree d on the triangle can be written as a linear combination of terms Li
1L

j
2L

d−i−j
3 , where

L1, L2 and L3 are the areal coordinates. The cubature rule can therefore be determined by requiring that
equation (3) is exact for each of these terms. The resulting equations are known as the moment equations. The
number n̄e of different terms Li

1L
j
2L

d−i−j
3 , which is the number of equations to be solved, is

n̄e = (d+ 1)(d+ 2)/2 (4)

We only consider fully symmetric rules where, if a point with areal coordinates (L1,L2,L3) is used in the
cubature, then all points resulting from the permutation of the areal coordinates are also used, with the same
weight. Integration points in a fully symmetric rule can thus belong to one of three different types of point sets,
or orbits, depending on the number of areal coordinates which are equal. If all areal coordinates are equal, we
get a single “type-0” orbit, with one point (the centroid). If only two areal coordinates are equal, then we get
“type-1” orbits with three points which lie on the medians of the triangle. Finally, if all three coordinates are
different we get “type-2” orbits with six points. A rule that uses n0 type-0 orbits, n1 type-1 orbits and n2 type-2
orbits is called a rule of type [n0, n1, n2]. The number of points for such a rule is

np = n0 + 3n1 + 6n2 (5)

Due to the full symmetry employed, when integrating any of the quantities Li
1L

j
2L

d−i−j
3 the sum in equation (3)

will only contain terms of the form

Li
1L

j
2L

d−i−j
3 + Li

1L
j
3L

d−i−j
2 + Li

2L
j
1L

d−i−j
3 + Li

2L
j
3L

d−i−j
1 + Li

3L
j
1L

d−i−j
2 + Li

3L
j
2L

d−i−j
1 (6)

These terms are symmetric polynomials, and can therefore be written in terms of the elementary polynomials
L̃1 = −(L1 + L2 + L3), L̃2 = L1L2 + L2L3 + L3L1 and L̃3 = −L1L2L3. It is easily seen that only terms of the
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form L̃k
1L̃

l
2L̃

m
3 with k + 2l + 3m = d will be used. Indeed, since L̃1 = −1, only terms of the form L̃l

2L̃
m
3 with

2l + 3m ≤ d are actually needed.
The cubature rule of order d can therefore be obtained by requiring that equation (3) is exact when the

function f is any of the terms L̃l
2L̃

m
3 with 2l+ 3m ≤ d. The number of non-negative solutions of 2l+ 3m ≤ d for

l and m, and therefore the number of equations that must be solved, is given by (OEIS)

ne = 1 +

⌊
d2 + 6d

12

⌋
(7)

with bxc denoting the largest integer that is less or equal to x. This is a significant reduction in the number of
equations, approximately by a factor of 6 for large values of d, compared to the value n̄e given in equation (4)
for the general case.

While areal coordinates allow for simple formulations of expressions on a generic triangle, they have the
disadvantage of introducing three coordinates, instead of the two independent coordinates needed. For this
reason, moment equations have generally been obtained using Cartesian or polar coordinates and referring to a
specific triangle (exploiting the fact that all triangles are affine). In the fully symmetric case, however, we see
that using areal coordinates we easily end up with only two “coordinates”, the symmetric polynomials L̃2 and L̃3.

As will be seen shortly, the moment equations can be further simplified by using, instead of L̃2 and L̃3, the
quantities

p = 1− 3L̃2 and q = 1− 27

2
L̃3 −

9

2
L̃2 (8)

The cubature rule of order d can therefore be obtained by requiring that equation (3) is exact when the function
f is any of the terms piqj with 2i+ 3j ≤ d and i, j ≥ 0. The moment equations for a fully symmetric rule of
degree d and type [n0, n1, n2] can thus be written as

n0∑
k=1

w̄0,kp
i
0,kq

j
0,k +

n1∑
k=1

3w̄1,kp
i
1,kq

j
1,k +

n2∑
k=1

6w̄2,kp
i
2,kq

j
2,k = Ii,j with 2i+ 3j ≤ d (9)

The right hand sides are the integrals

Ii,j =
1

A

∫
A

piqj dA (10)

which can be easily computed analytically to give

I0,0 = 1, I1,0 = 1/4, I0,1 = 1/10, I2,0 = 1/10, I1,1 = 2/35, I3,0 = 29/560, I0,2 = 7/160, I2,1 = 1/28, . . . (11)

The main advantage of using the quantities p and q is that for type-1 orbits we can introduce a new variable
u so that p = u2 and q = u3 and therefore piqj = u2i+3j , while for the type-0 orbit p = q = 0. Setting w0 = w̄0,1,
vk = 3w̄1,k and wk = 6w̄2,k, after some computations, the moment equations are finally written as

w0 +

n1∑
k=1

vk +

n2∑
k=1

wk = I0,0 (12a)

n1∑
k=1

vku
2i+3j
k +

n2∑
k=1

wkp
i
kq

j
k = Ii,j with 2i+ 3j ≤ d, j ≤ 1 (12b)

n2∑
k=1

wk(p3k − q2k)pikq
j
k = Ii+3,j − Ii,j+2 with 2i+ 3j ≤ d− 6 (12c)

where in equation (12a) we set w0 = 0 if n0 = 0.
For both d = 0 and d = 1 the only moment equation is (12a). This means that any (fully symmetric) rule

exact for d = 0 will also be exact for d = 1, thus there are no rules of degree 0. For this reason in the following
we always assume that d ≥ 1.

3.2 Consistency conditions
To set up the moment of equations for a rule of degree d, it is first necessary to determine the type of the rule,
i.e. the number of orbits of each type.
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The moment equations (12) form a system of ne equations in nv variables, where ne is given in equation (7)
while nv = n0 + 2n1 + 3n2. Similarly, the subsystem (12c) has ne − d equations and 3n2 variables.

We assume that both the system (12) and its subsystem (12c) are inconsistent (i.e. have no solutions) if and
only if they are overdetermined (i.e. have more equations than variables). This assumption, together with the
fact that there may be at most one type 0 orbit, yields the following consistency conditions

3n2 ≥ ne − d (13a)
3n2 + 2n1 + n0 ≥ ne (13b)

n0 ≤ 1 (13c)

which must be satisfied to obtain a solution of the moment equations, and thus they restrict the choice of the
rule type. For a given degree d, a minimal-point rule is sought, that is a rule that satisfies the consistency
conditions with the lowest total number of points, as given by equation (5). This yields

n2 =
⌊
(ne − d+ 2)/3

⌋
, n1 =

⌊
(ne − 3n2)/2

⌋
, n0 = ne − 3n2 − 2n1 (14)

It is conceivable that a rule that violates the consistency conditions may lead to a system of moment equations
that, although overdetermined, has solutions. These so-called fortuitous rules have great theoretical interest, as
well as practical interest in the case where they have fewer integration points compared to the minimal-point
rules described above. No fortuitous rules are encountered in the present paper, however, nor in the available
literature on cubature rules on the triangle.

The system of moment equations (12) can be inconsistent, zero-dimensional or positive-dimensional (with
zero solutions, a finite number of solutions or infinite solutions respectively). We use here the same terms to
identify the corresponding rule types and individual rules, thus we have inconsistent rule types, which yield no
rules, zero-dimensional rule types, which yield a finite number of zero-dimensional rules, and positive-dimensional
rule types which yield an infinite number of positive dimensional rules. In the case of positive-dimensional rule
types, the analytical solution can be expressed using a number of free parameters.

3.3 Advantages of the suggested form of the moment equations
The development of the method given in Sections 3.1 and 3.2 to formulate the moment equations using symmetric
polynomials follows in some main points the classic one presented by Lyness and Jespersen (1975). It has,
however, the obvious benefit of providing polynomial moment equations, while (Lyness and Jespersen, 1975) also
uses cosines. In this, the present method is similar to the one presented by Wandzura and Xiao (2003).

All three methods are equivalent, in that they yield the same rules. Indeed, it is relatively easy to pass
from one method to the other: setting pi = r2i , qi = r3i cos 3αi and ui = ri in equations (12) yields the moment
equations in (Lyness and Jespersen, 1975), while it is easily seen that, for the triangle used in (Wandzura and
Xiao, 2003), p and q are equal to the invariants x2 + y2 and x3 − 3xy2.

The present method is arguably simpler and more intuitive in its formulation, while it provides simpler
formulas. Additionally, this method is elegantly formulated without reference to a specific triangle. From a
practical point of view, however, the main advantage is that the resulting polynomial equations are of significantly
lower degree than those provided by the other methods, for example the maximum degree of equations (12c) is
bd/2c+ 1 instead of d+ 1. This is especially important when solving the equations analytically.

4 Analytical solution of the moment equations

4.1 The usefulness of analytical solutions
Except for some trivial low-degree rules, the moment equations are generally solved numerically, e.g. using a
multivariate Newton-Raphson solver. The cubature rule is then given as a table of integration point coordinates
and weights, expressed as floating point approximations of a given precision. This numerical approximation of
the cubature rule is the one actually required when using the rule in applications.

Numerical methods have the advantage of being able to provide cubature rules of high degree (see e.g. Xiao
and Gimbutas, 2010). Convergence of the method to a solution is not guaranteed, however, as it most often
depends on the selection of an appropriate “initial guess” required by the solver. This means that inability to
obtain a solution does not prove that the solution does not exist. Additionally, when a solution is obtained
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numerically, no information is obtained regarding the existence of other solutions. For this reason, in this paper
we investigate the analytical solution of the moment equations, in order to obtain a definitive answer regarding
the different cubature rules for a given degree and type.

There exist algorithms for solving analytically arbitrary systems of polynomial equations, for example using
Gröbner bases (see (Lazard, 2009) for an informal overview of the state of the art). Unfortunately, their
requirements in both computer memory and computation time are such that in practice they fail to provide a
solution even for rules of relatively low degree. To obtain solutions for higher degrees, it is therefore necessary to
exploit as much as possible the structure of the moment equations.

An interesting alternative to the analytical solution of the moment equations is to use homotopy continuation
methods to compute all solutions of the system numerically (Verschelde, 1999). This is however clearly beyond
the scope of the present paper.

4.2 Solution strategy
The subsystems (12a), (12b) and (12c) have respectively 1, d− 1 and ne − d equations. The weight w0 (if it is
non-zero) appears only in equation (12a) while the variables vk and uk appear only in equations (12a) and (12b).

Consider first the case of a rule with a type-0 orbit (n0 = 1). Equation (12a) is then just used to determine
w0 when all other weights have been calculated. The weights vk of type-1 orbits can be eliminated from
equations (12b), as described in (Rabinowitz and Richter, 1969, pp. 771–773) for cubature rules on other regions,
to obtain the (linear in the symmetric polynomials ũk) system of equations

n1∑
k=0

Ji−kũk = 0, i = n1 + 2, . . . , d (15)

where

Ji =


Ij,0 −

n2∑
k=1

wkp
j
k if i = 2j

Ij,1 −
n2∑
k=1

wkp
j
kqk if i = 2j + 3

(16)

The system (15) has n1 unknowns ũk (since ũ0 = 1) and d − n1 − 1 equations. If n1 = (d − 1)/2 then
equations (12c) are sufficient to evaluate the variables wk, pk and qk of type-2 orbits, and then equations (15),
(12b) and (12a) yield in turn the values of ũk, vk and w0. The same happens if n1 > (d− 1)/2, but in this case
the system is positive-dimensional and some of the ũk remain as free parameters in the solution. Finally, if
n1 < (d − 1)/2 then obtaining a solution is more difficult, since to evaluate wk, pk and qk we need not only
equations (12c) but also the equations that remain after eliminating ũk from (15).

When the type-0 orbit is not used (n0 = 0), it is generally easier to introduce an additional equation

n1∑
k=1

vkuk = J1 (17)

where J1 is an unknown quantity, which is not defined by (16). Eliminating the weights vk from equations (12a),
(12b) and (17) leads to a system of equations like (15), only that the index i is now in the range i = n1, . . . , d
and J1 is an additional unknown that must be eliminated.

In all cases, equations (12c) must be solved, possibly together with the equations that remain after eliminating
ũk from (15). Unfortunately, no easy way has been found to simplify these equations as we did to derive the
system (15). The use of symmetric polynomials can, however, again lead to somehow simpler expressions.

4.3 Permutation invariance of the orbits
In Section 3 we exploited the fact that the cubature rule is invariant with respect to a permutation of the
integration points within a given orbit, and expressed this invariance using symmetric polynomials.

Another obvious property of the cubature rules, which however has received much less attention in the
literature, is their invariance with respect to permutation of orbits of the same type. This is reflected in the
fact that the moment equations (12) are polynomials which are “symmetric” (i.e. invariant with respect to
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permutation) in the pairs (uk,vk) and in the triplets (pk, qk, wk). This can be seen from the system (15) where,
having eliminated the vk, the resulting polynomials are symmetric in the uk and have thus been expressed in
terms of the elementary symmetric polynomials ũk. In a similar way, eliminating qk and wk allows us to express
the moment equations in terms of the symmetric polynomials p̃k.

The system that results by eliminating the vk, qk and wk from the moment equations and expressing the
results in terms of the ũk and p̃k is in most cases more complicated than the moment equations. It has however
fewer variables, and it leads to a much simpler expression for the solution, when such a solution is actually found.

Indeed, one important advantage of expressing the moment equations in terms of symmetric polynomials
is that the number of solutions of the system is equal to the number of different cubature rules that can be
obtained. Consider for example the degree-4 [0, 2, 0] rule, for which Lyness and Jespersen (1975) mention that,
in the present notation, u1 and u2 are the roots of 15x4 + 20x3 − 30x2 + 4. This does not mean, however, than
any combination of the roots is a valid solution for u1 and u2, indeed only two pairs of solutions give a cubature
rule. In terms of symmetric polynomials, on the other hand, the solution is obtained by solving the equations
3ũ21 − 4ũ1 − 2 = 0 and 5ũ2 + 2ũ1 + 2 = 0, where it is seen that two different rules are obtained, one for each
solution of the system.

It is worth considering that even when solving the moment equations numerically, considering the invariance
with respect to permutation of orbits of the same type can have a significant effect on the solution method. As
an example, there is only one degree-15 [1,7,4] rule. The system (12c) however has 4! = 24 solutions, while if we
were to solve all equations (12) together we would have 7!4! = 120960 solutions. It is thus conceivable that an
iterative numerical solution algorithm may fail to converge by being “attracted” in turn by different solutions.

4.4 Solution quality
Once a cubature rule is determined by solving the moment equations, the sign of the weights and the position of
the integration points is examined, to determine the quality of the solution. The quality is described using a
two-letter label: the first letter is P if all weights are positive and N if at least one weight is negative, while the
second letter is I if all points are inside the triangle, O if there is at least one point outside the triangle, and B if
no points are outside the triangle but at least one is on the boundary of the triangle. The following qualities are
therefore encountered: PI, NI, PB, NB, PO, NO.

In all the above cases, the coordinates and weights of the integration points are considered to be real. Though
it is well-known that complex solutions may exist, these are not taken into account, since a cubature rule with
complex-valued coordinates of the integration points would be of little, if any, use. Moreover, the moment
equations are usually solved using numerical methods that only return real solutions, as these methods perform
significantly better than methods that could return complex solutions.

On the other hand, when obtaining the solutions analytically it costs nothing to also consider complex
solutions. For this reason, we expand the above definition of the quality of cubature rules by setting the first
letter of the label to C if at least one weight is complex-valued and by setting the second letter of the label to C
if at least one integration point has complex coordinates. Interestingly, while it is not possible to have complex
weights without complex coordinates, it is possible to have real weights with complex coordinates. The following
three additional qualities are therefore obtained: CC, PC, NC.

Including complex solutions allows us to make the distinction between moment equations that have no
solution and those that have solutions, even though they may all be complex. Considering as an example a
degree-15 rule, there are no solutions for type [0, 7, 4] (which does not satisfy the consistency conditions), while
there is a single complex (NC) solution for type [1, 7, 4] (which satisfies the consistency conditions). It is generally
expected that all types satisfying the consistency conditions will yield at least one solution, but with complex
solutions appearing with increasing frequency as the degree of the rule increases.

Although we compute all solutions, independently of their quality, in most applications we need rules of
PI (or at most NI) quality. For this reason, if a minimal-point rule does not yield any PI rules, we investigate
rules with increasingly more points until a rule is found that has a PI solution. When considering rules with
additional points, it is possible to have rules with the same degree and number of points, but different type and
different number of free parameters appearing in the solution.

Consider for example the degree-7 rules. The minimal-point rule [1, 2, 1] has 13 points and the best quality
achievable with it is NI. Increasing the number of points, we get either a [0, 3, 1] or a [0, 1, 2] rule, both with 15
points, where the first has one free parameter while the second has none. In this case, where both types can
yield PI rules, we prefer the zero-dimensional one as it has more type-2 orbits, so less integration points are
restricted to be located on the medians.
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Table 1: Summary of the properties of all computed rules
degree type points solutions PI NI PB PO NO PC NC CC

1 [1, 0, 0] 1 1 1 – – – – – – –
2 [0, 1, 0] 3 2 1 – 1 – – – – –
3 [1, 1, 0] 4 1 – 1 – – – – – –

[0, 0, 1] 6 1 1 – – – – – – –
4 [0, 2, 0] 6 2 1 – – 1 – – – –
5 [1, 2, 0] 7 1 1 – – – – – – –
6 [0, 2, 1] 12 6 2 – – 2 – – – 2
7 [1, 2, 1] 13 4 – 1 – 1 – – – 2

[0, 1, 2] 15 4 2 – – – – – – 2
8 [1, 3, 1] 16 2 1 1 – – – – – –
9 [1, 4, 1] 19 1 1 – – – – – – –
10 [0, 4, 2] 24 14 – – – 4 1 – – 9

[1, 2, 3] 25 15 4 – – – 2 – 3 6
11 [0, 5, 2] 27 6 – – – 1 – – 2 3

[1, 3, 3] 28 23 – 2 – 5 3 2 4 7
[0, 2, 4] 30 34 4 – – 1 1 4 2 22

12 [0, 5, 3] 33 24 2 1 – – – – – 21
13 [0, 6, 3] 36 8 – – – – 1 – 1 6

[1, 4, 4] 37 54 2 3 – 4 5 2 8 30
14 [0, 6, 4] 42 38 1 – – 3 3 – 3 28
15 [1, 7, 4] 46 1 – – – – – – 1 –

In general, among rules with the same number of points and the same quality, we would prefer those with
more type-2 orbits and thus less free parameters. The presence of free parameters in the solution of the moment
equations, on the other hand, allows for much greater flexibility in obtaining a rule of PI quality. Moreover, the
use of more type-1 orbits leads to simpler moment equations, which are easier to solve analytically.

Note that the numerical, iterative solution of the moment equations for positive-dimensional rules (see e.g.
Wandzura and Xiao, 2003) yields only one of the infinite solutions. Though it is possible to consider numerically
the variation of the solution with the variation of a parameter (see e.g. Berntsen and Espelid, 1990), analytical
solutions are much more powerful in studying parametrically positive-dimensional cubature rules and their
quality. The study and presentation of such rules, however, requires a much more extensive discussion which
goes well beyond the scope of the present paper. For this reason, in Section 5 we only present results for
zero-dimensional cubature rules.

5 Results and discussion
Using the method described in Sections 3 and 4 we compute here analytically cubature rules for degree up to 15.
As described in Section 4.3, the permutation invariance of the orbits should be exploited to express the moment
equations (12) in a form more suitable for analytical solution, for example in terms of the symmetric polynomials
ũk and p̃k. This has been achieved for each degree and rule type in a heuristic way, which involved (for higher
degrees) extensive calculations until the initial system was transformed into a new one, solvable (on the available
hardware and software) using Gröbner bases. The actual calculations performed in each case are obviously too
lengthy to be written out here. Indeed, in the non-trivial cases, the analytical solution itself becomes too long,
as is already apparent in Appendix A for the degree-6 rule.

Table 1 gives a summary of the properties of all cubature rules thus computed. As already mentioned, we
only consider zero-dimensional rules. We calculate for each degree the minimal-point rules and, if none of these
are of quality PI, we calculate additional rule types with more points until a rule with PI quality is found (except
for d = 15 where additional rules were not computed). Appendix A provides analytical expressions for evaluating
some of the cubature rules, while Appendix B provides numerical values for new rules of PI or NI quality.

The only case where three rule types must be computed to obtain PI quality is d = 11. This is therefore the
only case (for d < 15) where a positive-dimensional rule of PI quality (type [1, 5, 2] with 28 points) has less points
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than the best possible zero-dimensional rule of the same quality (type [0, 2, 4] with 30 points). 1 Where NI rules
are acceptable, the two [1, 3, 3] rules can be used, since they have the same number of points as the [1, 5, 2] rules
and have less points on the medians. The second [1, 3, 3] NI rule given in Appendix B is then to be preferred as
it has a small negative weight for a single point, while the first one has a large negative weight for three points.

The results summarised in Table 1 confirm the general expectation that as the rule degree increases the
number of solutions will increase, though with most solutions being complex ones. This is not always the case,
however, as evidenced by the existence of a single [1, 7, 4] rule for d = 15. It is thus clear that it is not possible to
detect in these results a specific pattern in the number of solutions, the number of real solutions or the number
of PI (or NI) solutions.

An interesting side effect of computing analytically the cubature rules is that we can prove the non-existence
of specific fortuitous rules. Consider for example the case of degree-10 rules where we compute the 24-point
[0, 4, 2] rule. If there were a fortuitous rule with two type-2 orbits and less than 24 points, then the [0, 4, 2] rule
should be positive-dimensional in order to depend on some parameters which, for specific values, would yield the
fortuitous rule. Computing analytically the [0, 4, 2] rule, however, shows that it is zero-dimensional, as expected.
Similarly, since the [1, 2, 3] rule is zero-dimensional, there exist no fortuitous rules with three type-2 orbits and
less than 25 points. Since it is easily shown that for degree 10 no rules exist with one or zero type-2 orbits and
also that no [0, 0, 4] rules exist (which would have 24 points) we see that there are no fortuitous degree-10 rules
with 24 points or less. Similar tests can be performed for all other rule degrees considered here.

A list of numerical values for all computed rules, independently of their quality, is provided together with this
paper as supplemental material. This list includes the zero-dimensional rules found in (Stroud, 1971; Cowper,
1973; Lyness and Jespersen, 1975; Laursen and Gellert, 1978; Dunavant, 1985). An interesting property of
some rules of bad quality (i.e. neither PI nor NI) is that the orbits that have points outside the triangle or
with complex coordinates have a much smaller weight (in absolute value). This is the case for example for
d = 11 and the fourth [1, 3, 3] NC rule, or for d = 15 and the [1, 7, 4] NC rule. These rules, together with a node
elimination algorithm (Xiao and Gimbutas, 2010), could possibly be used to derive cubature rules that are not
fully symmetric with fewer points than the fully symmetric ones.

6 Conclusions
In this paper we have used symmetric polynomials to express the double invariance inherent in fully symmetric
cubature rules in the triangle (invariance with respect to permutation of points within an orbit and with respect
to permutation of orbits of the same type). This has allowed us to formulate the moment equations in such a
way that analytical solutions have been derived for zero-dimensional rules of degree up to 15.

A few new rules of good quality have been thus derived and are given in Appendix B. Additionally, the
analytical solutions ensure that all possible rules of a given type and degree were computed, independently of
their quality. This allows us, for example, to prove that indeed no rules of good quality (PI or even NI) exist for
some cases where no such rules were encountered in the literature.

Though only zero-dimensional rules have been computed here, the proposed analytical approach is also
well-suited for the thorough study of positive-dimensional rules. In this case, however, an additional difficulty
lies in finding intuitive and useful ways to present the (infinite) solutions and their properties.

In all cases, combining a better understanding of the structure of the moment equations together with
better-performing algorithms, software implementations and hardware platforms, should allow determining rules
of increasingly high degree.

Acknowledgements
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European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC grant agreement no 228051
[MEDIGRA].

1Type [1, 5, 2] fully symmetric PI rules exist, and are easy to obtain using the method presented in this paper, yet no such rule
was encountered in the literature. Lyness and Jespersen (1975) present a [1, 5, 2] PB rule, Wandzura and Xiao (2003) compute what
is most probably a [1, 5, 2] PI rule but do not present it, while the 28-point PB rule given by Taylor et al. (2007) and the 27-point
PI rule given by Taylor (2008) are asymmetric rules.
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A Analytical expressions for the cubature rules
This appendix lists analytical expressions for some of the rule types considered in this paper. For each rule type
we list the degree d, the rule type and a list of expressions. Using these expressions, it is easy to obtain the
coordinates and weights of the integration points for all rules of the given type.

• d = 1 [1, 0, 0]: w0 = 1

• d = 2 [0, 1, 0]: u21 = 1/4, v1 = 1

• d = 3 [1, 1, 0]: u1 = 2/5, v1 = 25/16, w0 = −9/16

• d = 3 [0, 0, 1]: p1 = 1/4, q1 = 1/10, w1 = 1

• d = 4 [0, 2, 0]:
3ũ21 − 4ũ1 − 2 = 0, ũ2 = −2/5(ũ1 + 1), vi =

(
(81/248)ũ1 − 6/31

)
ui + (15/124)ũ1 + 151/248

• d = 5 [1, 2, 0]: ũ1 = −2/7, ũ2 = −2/7, vi = −(7/400)ui + 39/100, w0 = 9/40

• d = 6 [0, 2, 1]:
p61 − 2943

896 p
5
1 + 12577377

3211264 p
4
1 − 6335029

2809856p
3
1 + 211997025

314703872p
2
1 − 7914723

78675968p1 + 14953009
2517630976 = 0,

q1 = 6773849
1180960 −

17597477
258335 p1 + 618894079

2066680 p21 − 2009158
3355 p31 + 20120576

36905 p41 − 6422528
36905 p51,

w1 = 88271353265388941906672
1552328339949698669325 −

2093018886005051378041487
3104656679899397338650 p1 + 4677969412268735483683874

1552328339949698669325 p21
− 874483029603676756153618

141120758177245333575 p31 + 8938712246012353125723136
1552328339949698669325 p41 − 2885760563751222732259328

1552328339949698669325 p51,
ũ1 = − 5647577278829

5843759130 + 219725386019839
17838843660 p1 − 4934508553334726

84734507385 p21
+ 965776421126167

7703137035 p31 − 538505362157056
4459710915 p41 + 3379769853673472

84734507385 p51,
ũ2 = 15104616525664

20453156955 − 581971572152849
62435952810 p1 + 3683852401439816

84734507385 p21
− 709365733908202

7703137035 p31 + 389416992756736
4459710915 p41 − 2417750126231552

84734507385 p51,
vi =

(
409434268039529549940720811615256576
158205456880303475487279097255725 p51 − 410497105230467053184700451899528704

52735152293434491829093032418575 p41
+ 114666485932207310484775951381500251

14382314261845770498843554295975 p31 − 1141034063408380347314793772529581321
316410913760606950974558194511450 p21

+ 153804297816157841896911608744616331
210940609173737967316372129674300 p1 − 68148358857994347902974327222077377

1265643655042427803898232778045800

)
ui

− 660366862842903249663697383981056
606151175786603354357391177225 p51 + 17884598780372115712297691281128448

5455360582079430189216520595025 p41
− 1660804293851424897302836415981834

495941871098130017201501872275 p31 + 2716663212121457459566848039780239
1818453527359810063072173531675 p21

− 3169975113118311937146770957038031
10910721164158860378433041190050 p1 + 220460485921384140338311776720617

10910721164158860378433041190050

• d = 7 [1, 2, 1]:
p41 − 23

12p
3
1 + 655

448p
2
1 − 85

196p1 + 1619
37632 = 0,

q1 = 73
160 −

63
20p1 + 273

40 p
2
1 − 21

5 p
3
1, w1 = 5559373039

1374543450 −
4035503891
196363350 p1 + 3029805464

98181675 p21 − 577446688
32727225 p

3
1,

ũ1 = 204779
4630 −

616196
2315 p1 + 978558

2315 p21 − 585648
2315 p31, ũ2 = − 86623

2315 + 511579
2315 p1 − 811132

2315 p21 + 484512
2315 p31,

vi =
(
− 637366793665532978264

9052562883613960471 p31+ 3156091037460298906045
27157688650841881413 p21− 9803429487627684799252

135788443254209407065 p1+ 14666951220214040085227
1267358803705954465940

)
ui

+ 7823399076093706515424
135788443254209407065 p

3
1− 39124895515170463542614

407365329762628221195 p21+ 98256377831808794616331
1629461319050512884780 p1−

109198370776069008639239
11406229233353590193460 ,

w0 = − 3660769728
100486445 p

3
1 + 4347049032

703405115 + 6057843876
100486445 p

2
1 − 752902776

20097289 p1

• d = 7 [0, 1, 2]:
u41 − (4/9)u31 − (1/3)u21 + (1/36), v1 = 156673

8817780 + 2159752
2204445u1 + 5368006

2204445u
2
1 − 3133452

734815 u
3
1,

p̃1 = − 1079
1281 −

310
1281u1 −

128
427u

2
1 + 720

427u
3
1, p̃2 = 1493

11956 + 1130
8967u1 + 2116

8967u
2
1 − 2046

2989u
3
1,

qi =
(

489
427 + 465

854u1 + 288
427u

2
1 − 1620

427 u
3
1

)
pi − 653

2989 −
1695
5978u1 −

1587
2989u

2
1 + 9207

5978u
3
1, wi =

(
− 21117033567

4098798070 u
3
1 +

34215330023
8197596140 u

2
1 + 676519529

409879807u1 −
22884360891
16395192280

)
pi + 7377613908

2049399035u
3
1 − 123702006967

49185576840 u
2
1 − 10640567105

9837115368 u1 + 103431908839
98371153680

• d = 8 [1, 3, 1]:
p1 = 2/5, q21 − 116

355q1 + 443
17750 , w1 = 1286875

529326 q1 −
561275
4234608 , w0 = 197671347

256973920 −
32981985
6424348 q1,

ũ1 = 181760
50289 q1 −

70340
50289 , ũ2 = − 124960

50289 q1 + 10642
50289 , ũ3 = − 50410

50289q1 + 14008
50289 ,

vi =
(
− 18610928498796911607672845

2275833709245992090597766 u
2
i + 19252524428004364259122223

4551667418491984181195532 ui + 12430296145585635931273841
4551667418491984181195532

)
q1

+ 11189621308192975569101651
22758337092459920905977660u

2
i − 2452756844382101152643719

5689584273114980226494415ui + 10275755611647081695669293
182066696739679367247821280
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• d = 9 [1, 4, 1]:
p1 = 2/5, q1 = 2/11, w1 = 3025

11648 , w0 = 85293
878080 ũ1 = − 212

407 , ũ2 = − 1002
2035 , ũ3 = 212

2035 , ũ4 = 112
2035 ,

vi = 506023048885425107
1503746382262924800 + 11465050245708013

334165862725094400ui −
10064998401780383
12531219852191040u

2
i + 52676213406614851

109363373255485440u
3
i

B Numerical values for new cubature rules of good quality
This appendix lists all the computed cubature rules of quality PI and NI that are not listed in the Encyclopedia
of Cubature Formulas (Cools, 2003). For each rule we first list the degree d, the number of points np, the rule
type and the rule quality. We then provide a list of the orbits, where the first column is the number of points in
the orbit, the second is the weight for each integration point and the last three columns are the areal coordinates
defining a point in the orbit.

d = 7, np = 15, type [0, 1, 2], quality PI

3 1.253936074493031e-01 5.134817203287849e-01 2.432591398356075e-01 2.432591398356075e-01
6 7.630633834054171e-02 5.071438430720704e-02 3.186441898475371e-01 6.306414258452559e-01
6 2.766352460147343e-02 4.572082984632032e-02 8.663663134174900e-02 8.676425388119307e-01

d = 10, np = 25, type [1, 2, 3], quality PI

1 8.321973698645014e-02 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 5.265194946824459e-02 6.741737642518105e-01 1.629131178740948e-01 1.629131178740948e-01
3 1.095128834026841e-02 9.429929994232243e-01 2.850350028838784e-02 2.850350028838784e-02
6 5.627727971081118e-02 1.468115053939304e-01 3.366958752782316e-01 5.164926193278379e-01
6 3.539494779153839e-02 2.930760450457947e-02 3.633626169945705e-01 6.073297785008500e-01
6 2.932286409565224e-02 3.368569868061029e-02 1.533030551695614e-01 8.130112461498283e-01

d = 11, np = 28, type [1, 3, 3], quality NI

1 1.918874890144834e-01 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 4.494673641886435e-02 3.618633512713571e-02 4.819068324364321e-01 4.819068324364321e-01
3 4.110012887519764e-02 8.110470430369368e-01 9.447647848153162e-02 9.447647848153162e-02
3 -3.968990834546128e+00 5.167437799769402e-01 2.416281100115299e-01 2.416281100115299e-01
6 2.034937507030261e+00 2.273118971929394e-01 2.539744293918833e-01 5.187136734151773e-01
6 3.401519357474532e-02 3.065503892384041e-02 2.512520556604245e-01 7.180929054157351e-01
6 7.204702518612579e-03 1.500937328757639e-03 6.561155330342952e-02 9.328875093678128e-01

d = 11, np = 28, type [1, 3, 3], quality NI

1 -6.240162943348243e-02 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 8.172717083864956e-02 4.327128944999808e-01 2.836435527500096e-01 2.836435527500096e-01
3 4.896465250586733e-02 7.112097470078995e-01 1.443951264960502e-01 1.443951264960502e-01
3 1.380135388627025e-02 9.345387060670882e-01 3.273064696645591e-02 3.273064696645591e-02
6 5.340235179593824e-02 1.163964134004934e-01 3.353500785250607e-01 5.482535080744460e-01
6 2.632505873531205e-02 2.261151330038821e-02 3.724949218910710e-01 6.048935648085408e-01
6 2.509293909226987e-02 2.799022568208098e-02 1.649013104719147e-01 8.071084638460043e-01

d = 11, np = 30, type [0, 2, 4], quality PI

3 5.623165917468111e-02 4.470587017120257e-01 2.764706491439872e-01 2.764706491439872e-01
3 4.776140553308587e-02 7.160355004191862e-01 1.419822497904069e-01 1.419822497904069e-01
6 5.473425616511274e-02 1.230230372259886e-01 3.322412718141577e-01 5.447356909598537e-01
6 2.801405891803870e-02 2.440399719079145e-02 3.726974607915782e-01 6.028985420176303e-01
6 2.479873781819909e-02 2.785386480846610e-02 1.671151632795214e-01 8.050309719120125e-01
6 7.123081411432649e-03 2.715094170950369e-02 3.934509469602969e-02 9.335039635944666e-01
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d = 11, np = 30, type [0, 2, 4], quality PI

3 7.217804239720927e-02 2.128984074010406e-01 3.935507962994797e-01 3.935507962994797e-01
3 4.321543561536084e-02 4.041868382205103e-02 4.797906580889745e-01 4.797906580889745e-01
6 5.817371032216302e-02 1.253995635366209e-01 2.659762019033016e-01 6.086242345600775e-01
6 1.697584832298340e-02 1.240997015369853e-02 2.853641853869646e-01 7.022258444593369e-01
6 2.759146415644959e-02 5.279205798821771e-02 1.372353674781709e-01 8.099725745336114e-01
6 6.228904858785596e-03 5.100344564582806e-03 5.681715578857245e-02 9.380824996468447e-01

d = 11, np = 30, type [0, 2, 4], quality PI

3 5.832566212744962e-02 4.504543641757660e-01 2.747728179121170e-01 2.747728179121170e-01
3 1.387599563149455e-02 9.343162547117883e-01 3.284187264410585e-02 3.284187264410585e-02
6 5.336354239334048e-02 1.214249938587573e-01 3.347953592492709e-01 5.437796468919718e-01
6 2.781232090455112e-02 2.400046762583091e-02 3.718599950903680e-01 6.041395372838011e-01
6 2.525341262993140e-02 1.270006888757827e-01 1.580400095523586e-01 7.149593015718587e-01
6 2.413656185937158e-02 2.703971256481997e-02 1.649223432616415e-01 8.080379441735386e-01

d = 11, np = 30, type [0, 2, 4], quality PI

3 4.888313586239229e-02 7.118787020151916e-01 1.440606489924042e-01 1.440606489924042e-01
3 1.381436845965494e-02 9.345094686995734e-01 3.274526565021330e-02 3.274526565021330e-02
6 3.511195082989262e-02 2.404698682473196e-01 3.020758710955400e-01 4.574542606571404e-01
6 5.015309687490970e-02 1.100051862098844e-01 3.372221080172993e-01 5.527727057728163e-01
6 2.503977132164279e-02 2.152075977107619e-02 3.731132768172773e-01 6.053659634116466e-01
6 2.501309547919794e-02 2.787575641695829e-02 1.650070701309573e-01 8.071171734520844e-01

d = 12, np = 33, type [0, 5, 3], quality PI

3 6.254121319590276e-02 4.570749859701478e-01 2.714625070149261e-01 2.714625070149261e-01
3 4.991833492806094e-02 1.197767026828138e-01 4.401116486585931e-01 4.401116486585931e-01
3 2.426683808145203e-02 2.359249810891690e-02 4.882037509455416e-01 4.882037509455416e-01
3 2.848605206887754e-02 7.814843446812914e-01 1.092578276593543e-01 1.092578276593543e-01
3 7.931642509973638e-03 9.507072731273288e-01 2.464636343633559e-02 2.464636343633559e-02
6 4.322736365941421e-02 1.162960196779266e-01 2.554542286385173e-01 6.282497516835561e-01
6 2.178358503860756e-02 2.303415635526714e-02 2.916556797383410e-01 6.853101639063919e-01
6 1.508367757651144e-02 2.138249025617059e-02 1.272797172335894e-01 8.513377925102400e-01

d = 12, np = 33, type [0, 5, 3], quality NI

3 5.992157930040981e-02 4.529711389058645e-01 2.735144305470678e-01 2.735144305470678e-01
3 2.807875643954752e-02 2.368917770665134e-02 4.881554111466743e-01 4.881554111466743e-01
3 5.252899601772313e-02 7.321646206597614e-01 1.339176896701193e-01 1.339176896701193e-01
3 1.617355627623166e-03 9.927521106062486e-01 3.623944696875718e-03 3.623944696875718e-03
3 -1.062024194350891e-01 8.745335893925173e-01 6.273320530374134e-02 6.273320530374134e-02
6 5.491810838782295e-02 1.202241316165672e-01 3.319346641205961e-01 5.478412042628367e-01
6 2.544555194057983e-02 2.405691547178780e-02 2.633690807904016e-01 7.125740037378106e-01
6 6.833087236315665e-02 4.346701716737803e-02 7.887216477846390e-02 8.776608180541581e-01

d = 13, np = 37, type [1, 4, 4], quality PI

1 6.666531183964321e-02 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 5.637138317907531e-02 1.416807749137785e-01 4.291596125431107e-01 4.291596125431107e-01
3 5.703687953133591e-02 5.483198542641960e-01 2.258400728679020e-01 2.258400728679020e-01
3 2.704770288106011e-02 2.514270940526753e-02 4.874286452973662e-01 4.874286452973662e-01
3 3.254577710106209e-02 7.510843558720015e-01 1.244578220639993e-01 1.244578220639993e-01
6 3.846210380706763e-02 7.127447151191104e-02 2.845207640198182e-01 6.442047644682707e-01
6 9.138438814371032e-03 4.935323489543055e-03 2.862147535443420e-01 7.088499229661149e-01
6 1.751340205091933e-02 2.673280979433629e-02 1.245254158513282e-01 8.487417743543355e-01
6 3.940965341434761e-03 1.635078050759145e-02 3.285424868085981e-02 9.507949708115487e-01
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d = 13, np = 37, type [1, 4, 4], quality PI

1 6.796003658683164e-02 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 5.560196753045333e-02 1.461171714803992e-01 4.269414142598004e-01 4.269414142598004e-01
3 5.827848511919998e-02 5.572554274163342e-01 2.213722862918329e-01 2.213722862918329e-01
3 2.399440192889473e-02 2.184610709492130e-02 4.890769464525393e-01 4.890769464525393e-01
3 6.052337103539172e-03 9.569806377823136e-01 2.150968110884318e-02 2.150968110884318e-02
6 3.464127614084837e-02 6.801224355420665e-02 3.084417608921178e-01 6.235459955536756e-01
6 2.417903981159382e-02 8.789548303219732e-02 1.635974010678505e-01 7.485071158999522e-01
6 9.590681003543263e-03 5.126389102382369e-03 2.725158177734297e-01 7.223577931241880e-01
6 1.496540110516567e-02 2.437018690109383e-02 1.109220428034634e-01 8.647077702954428e-01

d = 13, np = 37, type [1, 4, 4], quality NI

1 -1.056360738456401e-01 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 9.690034727804083e-02 4.242813469723264e-01 2.878593265138368e-01 2.878593265138368e-01
3 5.018216635227328e-02 1.131979829755801e-01 4.434010085122100e-01 4.434010085122100e-01
3 2.102855973694512e-02 2.147839246570478e-02 4.892608037671476e-01 4.892608037671476e-01
3 2.672599067349385e-02 8.000919735991067e-01 9.995401320044664e-02 9.995401320044664e-02
6 4.607891261373841e-02 1.192644209390402e-01 2.495054689443353e-01 6.312301101166245e-01
6 2.135290362787687e-02 2.361515966854858e-02 3.017346932372817e-01 6.746501470941697e-01
6 1.450394248637925e-02 2.089774464177895e-02 1.430257663819780e-01 8.360764889762430e-01
6 4.918388225902278e-03 1.497391087216802e-02 3.985330690077000e-02 9.451727822270620e-01

d = 13, np = 37, type [1, 4, 4], quality NI

1 -9.794282830779282e-01 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 3.851843248196896e-01 3.731714975085028e-01 3.134142512457486e-01 3.134142512457486e-01
3 4.707074375139372e-02 1.036731386947847e-01 4.481634306526077e-01 4.481634306526077e-01
3 1.947159860023236e-02 1.876094369614878e-02 4.906195281519256e-01 4.906195281519256e-01
3 8.598559295098043e-03 9.482924272447965e-01 2.585378637760174e-02 2.585378637760174e-02
6 4.686871755715881e-02 1.280748545621051e-01 2.559060504714026e-01 6.160190949664922e-01
6 2.321458227198339e-02 2.466575888342652e-02 2.937275637422268e-01 6.816066773743466e-01
6 1.865886541493881e-02 7.660504708654196e-02 1.303752945362578e-01 7.930196583772002e-01
6 1.099993536903349e-02 1.517155770635715e-02 1.295372633260821e-01 8.552911789675607e-01

d = 13, np = 37, type [1, 4, 4], quality NI

1 -6.961938918173517e-01 3.333333333333333e-01 3.333333333333333e-01 3.333333333333333e-01
3 2.916465048495467e-01 3.802409844193277e-01 3.098795077903361e-01 3.098795077903361e-01
3 4.702284598963952e-02 1.047710914472636e-01 4.476144542763682e-01 4.476144542763682e-01
3 2.943707721076129e-02 7.979373791902761e-01 1.010313104048620e-01 1.010313104048620e-01
3 7.060478452030929e-03 9.526826973365726e-01 2.365865133171368e-02 2.365865133171368e-02
6 4.748213927210297e-02 1.255412745019193e-01 2.552672945625177e-01 6.191914309355630e-01
6 1.837479881995625e-02 2.035044354178874e-02 3.990878803018775e-01 5.805616761563338e-01
6 1.907290693660829e-02 2.679648266402744e-02 2.407898961433650e-01 7.324136211926076e-01
6 1.018568368990188e-02 1.643529593541106e-02 1.139836801912405e-01 8.695810238733484e-01
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