6 research outputs found

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    A Review on Steganography Techniques

    Get PDF
    Steganography is the science of hiding a secret message in cover media, without any perceptual distortion of the cover media. Using steganography, information can be hidden in the carrier items such as images, videos, sounds files, text files, while performing data transmission. In image steganography field, it is a major concern of the researchers how to improve the capacity of hidden data into host image without causing any statistically significant modification. Therefore, this paper presents most of the recent works that have been conducted on image steganography field and analyzes them to clarify the strength and weakness points in each work separately in order to be taken in consideration for future works in such field.   

    Robust digital image watermarking algorithms for copyright protection

    Get PDF
    Digital watermarking has been proposed as a solution to the problem of resolving copyright ownership of multimedia data (image, audio, video). The work presented in this thesis is concerned with the design of robust digital image watermarking algorithms for copyright protection. Firstly, an overview of the watermarking system, applications of watermarks as well as the survey of current watermarking algorithms and attacks, are given. Further, the implementation of feature point detectors in the field of watermarking is introduced. A new class of scale invariant feature point detectors is investigated and it is showed that they have excellent performances required for watermarking. The robustness of the watermark on geometrical distortions is very important issue in watermarking. In order to detect the parameters of undergone affine transformation, we propose an image registration technique which is based on use of the scale invariant feature point detector. Another proposed technique for watermark synchronization is also based on use of scale invariant feature point detector. This technique does not use the original image to determine the parameters of affine transformation which include rotation and scaling. It is experimentally confirmed that this technique gives excellent results under tested geometrical distortions. In the thesis, two different watermarking algorithms are proposed in the wavelet domain. The first algorithm belongs to the class of additive watermarking algorithms which requires the presence of original image for watermark detection. Using this algorithm the influence of different error correction codes on the watermark robustness is investigated. The second algorithm does not require the original image for watermark detection. The robustness of this algorithm is tested on various filtering and compression attacks. This algorithm is successfully combined with the aforementioned synchronization technique in order to achieve the robustness on geometrical attacks. The last watermarking algorithm presented in the thesis is developed in complex wavelet domain. The complex wavelet transform is described and its advantages over the conventional discrete wavelet transform are highlighted. The robustness of the proposed algorithm was tested on different class of attacks. Finally, in the thesis the conclusion is given and the main future research directions are suggested

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide
    corecore