7 research outputs found

    Comprehensive review on risk assessment methodologies for HAZMAT transportation between 1995-2015

    Get PDF
    Issue related to safety, health and environmental has become major priority to be concerned of in the transportation of hazardous materials (HAZMAT) worldwide. Due to the high risk that entailed in the operation of HAZMAT transportation, many accidents in this industry have been reported which include chemicals spillage, fire and explosion. In order to quantify the degree of hazards and risks of these accidents, various assessment methods have been introduced either by the academia, the industry as well as the authority. The methods present various approaches for the assessment, ranging from a simple to highly complicated ones depending on the purpose of the assessment and the available resources and constraints. To date there is yet any study conducted to review those available methods. This paper intends to present a comprehensive review of the existing methods for hazards and risks assessment of HAZMAT transportation between years 1995-2015 which considers road, marine, railway, air and pipeline system. Based on careful screening of the abundance of methods available, 151 of them were selected – that is those specifically meant for hazards and risks assessment of HAZMAT transportation only. The methods are reviewed in terms of the types of assessment; either qualitative, quantitative or hybrid techniques, as well as their specific application in different mode of transportation. Also, statistical analysis was performed to determine the trend of past publications regarding on the type of journal, year of publication and also financial support received in the context of hazard and risk assessment of HAZMAT transportation

    Dispersión de sustancias peligrosas en aire. Metodologías para la determinación del riesgo y distancias de intervención ante escenarios accidentales estocásticos

    Get PDF
    En este trabajo se presenta el desarrollo de un sistema integrado capaz de soportar la tarea de evaluación del riesgo y el cálculo de distancias de impacto ante eventos de dispersión en aire de gases tóxicos, material particulado y bioaerosoles considerando la incertidumbre estocástica de las variables meteorológicas locales. Se muestran las modificaciones realizadas sobre la arquitectura básica del prototipo existente, STRRAP (Stochastic Toxic Release Risk Assessment Package), lográndose la flexibilidad y robustez suficiente como para abordar problemas que involucran tanto a fuentes fijas como móviles, a parámetros concentrados (cisternas, tanques, etc.) como distribuidos (por ejemplo cañerías y/o gasoductos, entre otros sistemas de interés), lo cual se expone en los diferentes casos de estudio abordados a lo largo de la tesis. Asimismo, se analizan las consecuencias de la exposición de las personas a determinados agentes, no sólo desde el punto de vista de emisiones accidentales y de carácter agudo, sino que se aborda la problemática de la exposición crónica por inhalación, de material particulado respirable y microorganismos patógenos. Por otro lado, se propone una metodología para la determinación de distancias de impacto o afectación ante potenciales accidentes asociados a equipos de procesos, orientadas en particular a la estimación del efecto dominó y al diseño del lay out de la planta en la etapa de la ingeniería conceptual. Este enfoque resulta poco utilizado en la literatura, por lo que la herramienta generada al respecto en este trabajo representa un importante avance tanto en el sentido práctico como el conceptual. Para mostrar la versatilidad lograda en STRRAP y la metodología propuesta tanto para el análisis de riesgos como para la determinación de distancias de impacto, se presentan varios casos de estudio para los que se obtienen mapas de iso-riesgo, curvas de riesgo social (F-N), distancias de seguridad o impacto y mapas de concentraciones asociados a la dispersión de gases tóxicos, material particulado y bioaerosoles, ya sean almacenados en tanques, transportados por una cisterna o emitidos desde una chimenea o un foco infeccioso, según el problema planteado.Fil: Godoy, Sandra Mariela. UTN. FRRo. CAIMI; Argentina.Peer Reviewe

    DESIGN AND DEVELOPMENT OF A SMART ADVISORY SYSTEM FOR HAZARDOUS MATERIALS TRANSPORTATION RISK ANALYSIS VIA QUANTITATIVE APPROACHES

    Get PDF
    Safe transportation of hazardous materials is critical as it has a high potential of catastrophic accidents depending on the amount of transported product, its hazardous characteristics and the environmental conditions. Consequently, an efficient, smart and reliable intervention is essential to enhance prediction on the impacts of transportation hazards. Although various risk assessment techniques have been used in industry and regulatory bodies, they were developed for evaluating risk of hazardous materials for fixed installation cases instead of moving risk sources. This study applies the Transportation Risk Analysis (TRA), which is an extension of a well-known Quantitative Risk Analysis (QRA) technique in developing and design a Smart Advisory Systems (SAS), to determine the safest routes for transportation of hazardous materials according to Malaysia scenario

    Facility Siting and Layout Optimization Based on Process Safety

    Get PDF
    In this work, a new approach to optimize facility layout for toxic release, fire and explosion scenarios is presented. By integrating a risk analysis in the optimization formulation, safer assignments for facility layout and siting have been obtained. Accompanying with the economical concepts used in a plant layout, the new model considers the cost of willing to avoid a fatality, i.e. the potential injury cost due to accidents associated with toxic release near residential areas. For fire and explosion scenarios, the building or equipment damage cost replaces the potential injury cost. Two different approaches have been proposed to optimize the total cost related with layout. In the first phase using continuous-plane approach, the overall problem was initially modeled as a disjunctive program where the coordinates of each facility and cost-related variables are the main unknowns. Then, the convex hull approach was used to reformulate the problem as a Mixed Integer Non-Linear Program (MINLP) that identifies potential layouts by minimizing overall costs. This approach gives the coordinates of each facility in a continuous plane, and estimates for the total length of pipes, the land area, and the selection of safety devices. Finally, the 3D-computational fluid dynamics (CFD) was used to compare the difference between the initial layout and the final layout in order to see how obstacles and separation distances affect the dispersion or overpressures of affected facilities. One of the CFD programs, ANSYS CFX was employed for the dispersion study and Flame Acceleration Simulator (FLACS) for the fires and explosions. In the second phase for fire and explosion scenarios, the study is focused on finding an optimal placement for hazardous facilities and other process plant buildings using the optimization theory and mapping risks on the given land in order to calculate risk in financial terms. The given land is divided in a square grid of which the sides have a certain size and in which each square acquires a risk-score. These risk-scores such as the probability of structural damage are to be multiplied by prices of potential facilities which would be built on the grid. Finally this will give us the financial risk. Accompanying the suggested safety concepts, the new model takes into account construction and operational costs. The overall cost of locations is a function of piping cost, management cost, protection device cost, and financial risk. This approach gives the coordinates of the best location of each facility in a 2-D plane, and estimates the total piping length. Once the final layout is obtained, the CFD code, FLACS is used to simulate and consider obstacle effects in 3-D space. The outcome of this study will be useful in assisting the selection of location for process plant buildings and risk management

    Disaster management and its economic implications

    Get PDF
    Das Ziel dieser Arbeit ist es, aktuelle Forschungsschwerpunkte im Bereich des Katastrophenmanagements in der Operational Research Literatur aufzuzeigen. Katastrophenmanagement umfasst in diesem Zusammenhang einerseits Naturkatastrophen wie geophysikalische und hydro-meteorologische Katastrophen, technologische Katastrophen wie industrielle Unfälle, Transportunfälle und sonstige Unfälle, und andererseits die verschiedenen Formen des Terrorismus, allgemeinen Terrorismus sowie Bioterrorismus. Da die Anzahl und das Ausmaß von Katastrophen immer weiter zunehmen ist auch eine immer größere Notwendigkeit für die Entwicklung, den Einsatz und die wirtschaftliche Beurteilung der jeweiligen Strategien gegeben. Der erste Teil dieser Arbeit gibt einen Überblick über die Literatur im Bereich des Katastrophenmanagements und umfasst Simulation, Katastrophenmanagement in Krankenhäusern und die Rolle von Versicherungen im Katastrophenmanagementprozess. Im zweiten Teil wird eine Taxonomie entwickelt, deren Kategorien auf den Modellen und Ergebnissen der Literatur beruhen. Einerseits werden allgemeine Modelleigenschaften wie die Ebene im Katastrophenmanagementprozess, der Modelltyp und die Anwendungsgebiete der Modelle untersucht. Andererseits stellen die Art der Intervention und die Anwendbarkeit für die unterschiedlichen Katastrophenklassen weitere Kategorien der Taxonomie dar. Es wurden 90 Artikel, die beispielhaft für die Forschungsrichtungen im Bereich des Katastrophenmanagements der letzten 25 Jahre stehen, ausgewählt, und entsprechend den jeweiligen Kategorien der Taxonomie zugeordnet. Das Hauptaugenmerk der Taxonomie liegt auf der wirtschaftlichen Analyse, die wirksamkeitsbezogene, ressourcenbezogene und kostenbezogene Parameter umfasst. Es wird gezeigt ob und welche wirtschaftliche Analyse wie beispielsweise die Kosten-Nutzwert- Analyse, die Kosten-Wirksamkeits-Analyse und die Kosten-Nutzen-Analyse angewendet wird um die in den Artikeln beschriebenen Interventionen zu evaluieren. Es wird gezeigt, dass erhebliche Verbesserungen für die verschiedenen Katastrophentypen und in den verschiedenen Situationen erzielt werden können. Eingeschränkte Datenverfügbarkeit schränkt in vielen Fällen die Einsetzbarkeit der Modelle in realen Situationen ein. Im Allgemeinen ist erkennbar, dass Kooperation und Koordination zwischen den beteiligten Einheiten ausschlaggebend für den zeitgerechten und effizienten Einsatz der knappen Ressourcen sind. Oftmals erzielt der gemeinsame Einsatz mehrerer Maßnahme ein deutlich besseres Ergebnis als der Einsatz von lediglich einem einzigen Instrument. Die Taxonomie unterstreicht dass trotz der großen Fülle an Literatur im Bereich des Katastrophenmanagements nur wenige Autoren auf die Kosten-Nutzwert-Analyse, die Kosten-Wirksamkeits-Analyse und die Kosten-Nutzen-Analyse als Hilfsmittel zur wirtschaftlichen Analyse zurückgreifen. In Zukunft, um Interventionen erfolgreich evaluieren zu können oder die beste aus mehreren Interventionen bestimmen zu können wird es immer wichtiger werden, diese Art von wirtschaftlichen Analysen anzuwenden.This thesis intends to demonstrate current research directions in the field of disaster management in the Operational Research literature. Disaster management in this context comprises the management of natural, such as geophysical and hydro-meteorological, and technological disasters, such as industrial accidents, transportation accidents, and miscellaneous accidents, as well as the management of the different terrorism forms, general terrorism and bioterrorism. As the occurrence of disasters is getting more and more frequent and the accumulated loss of these events is getting higher and higher, there is a strong need for the development, implication and economic evaluation of strategies to counter these disasters. In the first part of the thesis, a general overview of the literature is given, including a focus on simulation, disaster management in hospitals, and the role of insurances in the disaster management process. The second part encompasses the taxonomy which focuses on models and outcomes presented in the literature. As a result of the review of the literature, appropriate categories for the disaster management taxonomy are derived. On the one hand, an overview of general model features, i.e., the level of disaster management, model type and methods of application is given. On the other hand, the type of intervention used and the practicability for different disaster types are discussed. 90 papers, illustrative main examples of the research directions of the last 25 years, were selected for deeper investigation and classified according to the main criteria analyzed in the articles. The main focus of the taxonomy lies on the economic analysis, which encompasses effectiveness-related, resource-related, and cost-related parameters and shows the type of economic analysis used in the literature. We analyze whether economic analysis, i.e., costutility, cost-effectiveness, and cost-benefit are used to investigate different interventions and what type of analysis has been chosen by the authors. Policy implications and results show that considerable improvements can be achieved for different disastrous events and in different situations. Limited data availability constrains the outcomes of the models and their applicability to real-world situations. In general, cooperation and coordination of the entities involved are crucial to guarantee timely and efficient assignment of scarce resources. Furthermore, different authors confirm that a combination of various measures often achieves a better outcome than if tools are used autonomously. The taxonomy has underlined that although there exists a vast disaster management literature dealing with various problems related to mitigation, preparedness, response and recovery from disasters, there are only a few authors evaluating the actions taken through economic analyses such cost-utility, cost-effectiveness, or cost-benefit analysis. In the future, to be able to evaluate interventions, or to figure out the most effective intervention among several interventions, it is crucial to stronger rely on the abovementioned economic analyses

    Contribution à l'évaluation des risques liés au TMD (transport de matières dangereuses) en prenant en compte les incertitudes

    Get PDF
    When an accidental event is occurring, the process of technological risk assessment, in particular the one related to Dangerous Goods Transportation (DGT), allows assessing the level of potential risk of impacted areas in order to provide and quickly take prevention and protection actions (containment, evacuation ...). The objective is to reduce and control its effects on people and environment. The first issue of this work is to evaluate the risk level for areas subjected to dangerous goods transportation. The quantification of the intensity of the occurring events needed to do this evaluation is based on effect models (analytical or computer code). Regarding the problem of dispersion of toxic products, these models mainly contain inputs linked to different databases, like the exposure data and meteorological data. The second problematic is related to the uncertainties affecting some model inputs. To determine the geographical danger zone where the estimated risk level is not acceptable, it is necessary to identify and take in consideration the uncertainties on the inputs in aim to propagate them in the effect model and thus to have a reliable evaluation of the risk level. The first phase of this work is to evaluate and propagate the uncertainty on the gas concentration induced by uncertain model inputs during its evaluation by dispersion models. Two approaches are used to model and propagate the uncertainties. The first one is the set-membership approach based on interval calculus for analytical models. The second one is the probabilistic approach (Monte Carlo), which is more classical and used more frequently when the dispersion model is described by an analytic expression or is is defined by a computer code. The objective is to compare the two approaches to define their advantages and disadvantages in terms of precision and computation time to solve the proposed problem. To determine the danger zones, two dispersion models (Gaussian and SLAB) are used to evaluate the risk intensity in the contaminated area. The risk mapping is achieved by using two methods: a probabilistic method (Monte Carlo) which consists in solving an inverse problem on the effect model and a set-membership generic method that defines the problem as a constraint satisfaction problem (CSP) and to resolve it with an set-membership inversion method. The second phase consists in establishing a general methodology to realize the risk mapping and to improve performance in terms of computation time and precision. This methodology is based on three steps: - Firstly the analysis of the used effect model. - Secondly the proposal of a new method for the uncertainty propagationbased on a mix between the probabilistic and set-membership approaches that takes advantage of both approaches and that is suited to any type of spatial and static effect model. -Finally the realization of risk mapping by inversing the effect models. The sensitivity analysis present in the first step is typically addressed to probabilistic models. The validity of using Sobol indices for interval models is discussed and a new interval sensitivity indiceis proposed.Le processus d'évaluation des risques technologiques, notamment liés au Transport de Matières Dangereuses (TMD), consiste, quand un événement accidentel se produit, à évaluer le niveau de risque potentiel des zones impactées afin de pouvoir dimensionner et prendre rapidement des mesures de prévention et de protection (confinement, évacuation...) dans le but de réduire et maitriser les effets sur les personnes et l'environnement. La première problématique de ce travail consiste donc à évaluer le niveau de risque des zones soumises au transport des matières dangereuses. Pour ce faire, un certain nombre d'informations sont utilisées, comme la quantification de l'intensité des phénomènes qui se produisent à l'aide de modèles d'effets (analytique ou code informatique). Pour ce qui concerne le problème de dispersion de produits toxiques, ces modèles contiennent principalement des variables d'entrée liées à la base de données d'exposition, de données météorologiques,… La deuxième problématique réside dans les incertitudes affectant certaines entrées de ces modèles. Pour correctement réaliser une cartographie en déterminant la zone de de danger où le niveau de risque est jugé trop élevé, il est nécessaire d'identifier et de prendre en compte les incertitudes sur les entrées afin de les propager dans le modèle d'effets et ainsi d'avoir une évaluation fiable du niveau de risque. Une première phase de ce travail a consisté à évaluer et propager l'incertitude sur la concentration qui est induite par les grandeurs d'entrée incertaines lors de son évaluation par les modèles de dispersion. Deux approches sont utilisées pour modéliser et propager les incertitudes : l'approche ensembliste pour les modèles analytiques et l'approche probabiliste (Monte-Carlo) qui est plus classique et utilisable que le modèle de dispersion soit analytique ou défini par du code informatique. L'objectif consiste à comparer les deux approches pour connaitre leurs avantages et inconvénients en termes de précision et temps de calcul afin de résoudre le problème proposé. Pour réaliser les cartographies, deux modèles de dispersion (Gaussien et SLAB) sont utilisés pour évaluer l'intensité des risques dans la zone contaminée. La réalisation des cartographies a été abordée avec une méthode probabiliste (Monte Carlo) qui consiste à inverser le modèle d'effets et avec une méthode ensembliste générique qui consiste à formuler ce problème sous la forme d'un ensemble de contraintes à satisfaire (CSP) et le résoudre ensuite par inversion ensembliste. La deuxième phase a eu pour but d'établir une méthodologie générale pour réaliser les cartographies et améliorer les performances en termes de temps du calcul et de précision. Cette méthodologie s'appuie sur 3 étapes : l'analyse préalable des modèles d'effets utilisés, la proposition d'une nouvelle approche pour la propagation des incertitudes mixant les approches probabiliste et ensembliste en tirant notamment partie des avantages des deux approches précitées, et utilisable pour n'importe quel type de modèle d'effets spatialisé et statique, puis finalement la réalisation des cartographies en inversant les modèles d'effets. L'analyse de sensibilité présente dans la première étape s'adresse classiquement à des modèles probabilistes. Nous discutons de la validité d'utiliser des indices de type Sobol dans le cas de modèles intervalles et nous proposerons un nouvel indice de sensibilité purement intervalle cette fois-ci
    corecore