90 research outputs found

    Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity

    Get PDF
    Spike-timing-dependent plasticity (STDP) with asymmetric learning windows is commonly found in the brain and useful for a variety of spike-based computations such as input filtering and associative memory. A natural consequence of STDP is establishment of causality in the sense that a neuron learns to fire with a lag after specific presynaptic neurons have fired. The effect of STDP on synchrony is elusive because spike synchrony implies unitary spike events of different neurons rather than a causal delayed relationship between neurons. We explore how synchrony can be facilitated by STDP in oscillator networks with a pacemaker. We show that STDP with asymmetric learning windows leads to self-organization of feedforward networks starting from the pacemaker. As a result, STDP drastically facilitates frequency synchrony. Even though differences in spike times are lessened as a result of synaptic plasticity, the finite time lag remains so that perfect spike synchrony is not realized. In contrast to traditional mechanisms of large-scale synchrony based on mutual interaction of coupled neurons, the route to synchrony discovered here is enslavement of downstream neurons by upstream ones. Facilitation of such feedforward synchrony does not occur for STDP with symmetric learning windows.Comment: 9 figure

    Structure of Spontaneous UP and DOWN Transitions Self-Organizing in a Cortical Network Model

    Get PDF
    Synaptic plasticity is considered to play a crucial role in the experience-dependent self-organization of local cortical networks. In the absence of sensory stimuli, cerebral cortex exhibits spontaneous membrane potential transitions between an UP and a DOWN state. To reveal how cortical networks develop spontaneous activity, or conversely, how spontaneous activity structures cortical networks, we analyze the self-organization of a recurrent network model of excitatory and inhibitory neurons, which is realistic enough to replicate UP–DOWN states, with spike-timing-dependent plasticity (STDP). The individual neurons in the self-organized network exhibit a variety of temporal patterns in the two-state transitions. In addition, the model develops a feed-forward network-like structure that produces a diverse repertoire of precise sequences of the UP state. Our model shows that the self-organized activity well resembles the spontaneous activity of cortical networks if STDP is accompanied by the pruning of weak synapses. These results suggest that the two-state membrane potential transitions play an active role in structuring local cortical circuits

    Functional Brain Oscillations: How Oscillations Facilitate Information Representation and Code Memories

    Get PDF
    The overall aim of the modelling works within this thesis is to lend theoretical evidence to empirical findings from the brain oscillations literature. We therefore hope to solidify and expand the notion that precise spike timing through oscillatory mechanisms facilitates communication, learning, information processing and information representation within the brain. The primary hypothesis of this thesis is that it can be shown computationally that neural de-synchronisations can allow information content to emerge. We do this using two neural network models, the first of which shows how differential rates of neuronal firing can indicate when a single item is being actively represented. The second model expands this notion by creating a complimentary timing mechanism, thus enabling the emergence of qualitive temporal information when a pattern of items is being actively represented. The secondary hypothesis of this thesis is that it can be also be shown computationally that oscillations might play a functional role in learning. Both of the models presented within this thesis propose a sparsely coded and fast learning hippocampal region that engages in the binding of novel episodic information. The first model demonstrates how active cortical representations enable learning to occur in their hippocampal counterparts via a phase-dependent learning rule. The second model expands this notion, creating hierarchical temporal sequences to encode the relative temporal position of cortical representations. We demonstrate in both of these models, how cortical brain oscillations might provide a gating function to the representation of information, whilst complimentary hippocampal oscillations might provide distinct phasic reference points for learning

    Active Hippocampal Networks Undergo Spontaneous Synaptic Modification

    Get PDF
    The brain is self-writable; as the brain voluntarily adapts itself to a changing environment, the neural circuitry rearranges its functional connectivity by referring to its own activity. How the internal activity modifies synaptic weights is largely unknown, however. Here we report that spontaneous activity causes complex reorganization of synaptic connectivity without any external (or artificial) stimuli. Under physiologically relevant ionic conditions, CA3 pyramidal cells in hippocampal slices displayed spontaneous spikes with bistable slow oscillations of membrane potential, alternating between the so-called UP and DOWN states. The generation of slow oscillations did not require fast synaptic transmission, but their patterns were coordinated by local circuit activity. In the course of generating spontaneous activity, individual neurons acquired bidirectional long-lasting synaptic modification. The spontaneous synaptic plasticity depended on a rise in intracellular calcium concentrations of postsynaptic cells, but not on NMDA receptor activity. The direction and amount of the plasticity varied depending on slow oscillation patterns and synapse locations, and thus, they were diverse in a network. Once this global synaptic refinement occurred, the same neurons now displayed different patterns of spontaneous activity, which in turn exhibited different levels of synaptic plasticity. Thus, active networks continuously update their internal states through ongoing synaptic plasticity. With computational simulations, we suggest that with this slow oscillation-induced plasticity, a recurrent network converges on a more specific state, compared to that with spike timing-dependent plasticity alone

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Neural synchrony in cortical networks : history, concept and current status

    Get PDF
    Following the discovery of context-dependent synchronization of oscillatory neuronal responses in the visual system, the role of neural synchrony in cortical networks has been expanded to provide a general mechanism for the coordination of distributed neural activity patterns. In the current paper, we present an update of the status of this hypothesis through summarizing recent results from our laboratory that suggest important new insights regarding the mechanisms, function and relevance of this phenomenon. In the first part, we present recent results derived from animal experiments and mathematical simulations that provide novel explanations and mechanisms for zero and nero-zero phase lag synchronization. In the second part, we shall discuss the role of neural synchrony for expectancy during perceptual organization and its role in conscious experience. This will be followed by evidence that indicates that in addition to supporting conscious cognition, neural synchrony is abnormal in major brain disorders, such as schizophrenia and autism spectrum disorders. We conclude this paper with suggestions for further research as well as with critical issues that need to be addressed in future studies

    Metastability: an emergent phenomenon in networks of spiking neurons

    No full text
    It is widely recognised that different brain areas perform different specialised functions. However, it remains an open question how different brain areas coordinate with each other and give rise to global brain states and high-level cognition. Recent theories suggest that transient periods of synchronisation and desynchronisation provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Empirical evidence from human resting state networks has shown a tendency for multiple brain areas to synchronise for short amounts of time, and for different synchronous groups to appear at different times. In dynamical systems terms, this behaviour resembles metastability — an intrinsically driven movement between transient, attractor-like states. However, it remains an open question what the underlying mechanism is that gives rise to these observed phenomena. The thesis first establishes that oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in the same and different structures. The thesis next explores inter-band frequency modulation between neural oscillators. The results show that oscillations in different neural populations, and in different frequency bands, modulate each other so as to change frequency. Further to this, the interaction of these fluctuating frequencies in the network as a whole is able to drive different neural populations towards episodes of synchrony. Finally, a symbiotic relationship between metastability and underlying network structure is elucidated, in which the presence of plasticity, responding to the interactions between different neural areas, will naturally form modular small-world networks that in turn further promote metastability. This seemingly inevitable drive towards metastabilty in simulation suggests that it should also be present in biological brains. The conclusion drawn is that these key network characteristics, and the metastable dynamics they promote, facilitate versatile exploration, integration, and communication between functionally related neural areas, and thereby support sophisticated cognitive processing in the brain.Open Acces

    Activity-dependent changes in synaptic efficacy at glutamatergic and GABAergic connections in the immature hippocampus

    Get PDF
    During development, correlated network activity plays a crucial role in establishing functional synaptic contacts, thus contributing to the development of adult neuronal circuits. In the hippocampus, a region of the brain involved in the formation of declarative memories, network-driven giant depolarizing potentials or GDPs are generated by the synergistic action of glutamate and GABA, which at this developmental stage is depolarizing and excitatory. The depolarizing action of GABA during GDPs results in calcium flux via NMDA receptors and voltage-dependent calcium channels. Calcium, in turn activates different signaling pathways necessary for several developmental processes including synaptogenesis. In previous work from our laboratory it was demonstrated that GDPs and associated calcium transients act as coincident detectors for enhancing synaptic efficacy at poorly developed mossy fibre-CA3 synapses in a Hebbian type of way..
    corecore