16,391 research outputs found

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    Using SPARQL – the practitioners’ viewpoint

    Get PDF
    A number of studies have analyzed SPARQL log data to draw conclusions about how SPARQL is being used. To complement this work, a survey of SPARQL users has been undertaken. Whilst confirming some of the conclusions of the previous studies, the current work is able to provide additional insight into how users create SPARQL queries, the difficulties they encounter, and the features they would like to see included in the language. Based on this insight, a number of recommendations are presented to the community. These relate to predicting and avoiding computationally expensive queries; extensions to the language; and extending the search paradigm

    Provenance for SPARQL queries

    Full text link
    Determining trust of data available in the Semantic Web is fundamental for applications and users, in particular for linked open data obtained from SPARQL endpoints. There exist several proposals in the literature to annotate SPARQL query results with values from abstract models, adapting the seminal works on provenance for annotated relational databases. We provide an approach capable of providing provenance information for a large and significant fragment of SPARQL 1.1, including for the first time the major non-monotonic constructs under multiset semantics. The approach is based on the translation of SPARQL into relational queries over annotated relations with values of the most general m-semiring, and in this way also refuting a claim in the literature that the OPTIONAL construct of SPARQL cannot be captured appropriately with the known abstract models.Comment: 22 pages, extended version of the ISWC 2012 paper including proof

    Dynamic Provenance for SPARQL Update

    Get PDF
    While the Semantic Web currently can exhibit provenance information by using the W3C PROV standards, there is a "missing link" in connecting PROV to storing and querying for dynamic changes to RDF graphs using SPARQL. Solving this problem would be required for such clear use-cases as the creation of version control systems for RDF. While some provenance models and annotation techniques for storing and querying provenance data originally developed with databases or workflows in mind transfer readily to RDF and SPARQL, these techniques do not readily adapt to describing changes in dynamic RDF datasets over time. In this paper we explore how to adapt the dynamic copy-paste provenance model of Buneman et al. [2] to RDF datasets that change over time in response to SPARQL updates, how to represent the resulting provenance records themselves as RDF in a manner compatible with W3C PROV, and how the provenance information can be defined by reinterpreting SPARQL updates. The primary contribution of this paper is a semantic framework that enables the semantics of SPARQL Update to be used as the basis for a 'cut-and-paste' provenance model in a principled manner.Comment: Pre-publication version of ISWC 2014 pape

    Bioqueries: a collaborative environment to create, explore and share SPARQL queries in Life Sciences

    Get PDF
    Bioqueries provides a collaborative environment to create, explore, execute, clone and share SPARQL queries (including Federated Queries). Federated SPARQL queries can retrieve information from more than one data source.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    How Many and What Types of SPARQL Queries can be Answered through Zero-Knowledge Link Traversal?

    Full text link
    The current de-facto way to query the Web of Data is through the SPARQL protocol, where a client sends queries to a server through a SPARQL endpoint. Contrary to an HTTP server, providing and maintaining a robust and reliable endpoint requires a significant effort that not all publishers are willing or able to make. An alternative query evaluation method is through link traversal, where a query is answered by dereferencing online web resources (URIs) at real time. While several approaches for such a lookup-based query evaluation method have been proposed, there exists no analysis of the types (patterns) of queries that can be directly answered on the live Web, without accessing local or remote endpoints and without a-priori knowledge of available data sources. In this paper, we first provide a method for checking if a SPARQL query (to be evaluated on a SPARQL endpoint) can be answered through zero-knowledge link traversal (without accessing the endpoint), and analyse a large corpus of real SPARQL query logs for finding the frequency and distribution of answerable and non-answerable query patterns. Subsequently, we provide an algorithm for transforming answerable queries to SPARQL-LD queries that bypass the endpoints. We report experimental results about the efficiency of the transformed queries and discuss the benefits and the limitations of this query evaluation method.Comment: Preprint of paper accepted for publication in the 34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019
    corecore