
HAL Id: hal-00904961
https://hal.inria.fr/hal-00904961

Submitted on 15 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Answering SPARQL queries modulo RDF Schema with
paths

Faisal Alkhateeb, Jérôme Euzenat

To cite this version:
Faisal Alkhateeb, Jérôme Euzenat. Answering SPARQL queries modulo RDF Schema with paths.
[Research Report] RR-8394, INRIA. 2013, pp.46. �hal-00904961�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49714052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00904961
https://hal.archives-ouvertes.fr

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

8
3

9
4

--
F

R
+

E
N

G

RESEARCH

REPORT

N° 8394
November 2013

Project-Teams Exmo

Answering SPARQL

queries modulo RDF

Schema with paths

Faisal Alkhateeb, Jérôme Euzenat

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Answering SPARQL queries modulo RDF
Schema with paths

Faisal Alkhateeb∗, Jérôme Euzenat†

Project-Teams Exmo

Research Report n° 8394 — November 2013 — 46 pages

Abstract: SPARQL is the standard query language for RDF graphs. In its strict instantiation,
it only offers querying according to the RDF semantics and would thus ignore the semantics of data
expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL
have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS
semantics and/or considering external ontologies.
We introduce a general framework which allows for expressing query answering modulo a particular
semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use
regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS
semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions
are interpreted within the proposed framework and their drawbacks are presented. In particular,
we show that the PSPARQL query language, a strict extension of SPARQL offering transitive
closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as
SPARQL through a simple transformation of the queries. We also consider languages which, in
addition to paths, provide constraints. In particular, we present and compare nSPARQL and our
proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL
queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL
and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both
languages have the same complexity through cpSPARQL, being a proper extension of SPARQL
graph patterns, is more expressive than nSPARQL.

Key-words: Semantic web – Query language – Query modulo schema – Resource Descrip-
tion Framework (RDF) – RDF Schema – SPARQL – Regular expression – Constrained regular
expression – Path – PSPARQL – NSPARQL – nSPARQL – CPSPARQL – cpSPARQL.

This research report sums up our knowledge about the various ways to query RDF graph modulo RDFS,
providing improvements on all the existing proposals. Part of it will be published as [6].

∗ Computer Science Department, Yarmouk University, Jordan
† INRIA & LIG, Grenoble, France

Évaluation de requêtes SPARQL en fonction d’un schéma
RDF par les chemins

Résumé : SPARQL est le langage de requête standard pour interroger des graphes RDF. Dans
son instanciation stricte, il ne propose que des requêtes en fonction de la sémantique de RDF
et n’interprète donc pas les vocabulaires exprimés en RDFS ou OWL. Plusieurs extensions de
SPARQL ont été proposées pour interroger les données RDF en fonction de vocabulaires RDFS et
d’ontologies OWL. Par ailleurs, les extensions de SPARQL qui utilisent des expressions régulières
pour naviguer dans les graphes RDF peuvent être utilisées pour répondre aux requêtes sous la
sémantique de RDFS. Nous introduisons un cadre général qui permet d’exprimer d’une manière
homogène l’interprétation de SPARQL en fonction de différentes sémantiques. Les extensions de
SPARQL sont interprétées dans ce cadre et leurs inconvénients sont présentés. En particulier,
nous montrons que le langage de requête PSPARQL, une extension stricte de SPARQL, permet
de répondre aux requêtes SPARQL sous la sémantique de RDFS avec la même complexité que
SPARQL par une transformation des requêtes. Nous considérons également CPSPARQL, une
extension de PSPARQL, qui permet de poser des contraintes sur les chemins. Nous montrons que
CPSPARQL est suffisamment expressif pour répondre aux requêtes PSPARQL et CPSPARQL
sous la sémantique de RDFS. Nous présentons également nSPARQL, un langage de chemins
inspiré de XPath permettant d’évaluer des requêtes sous la sémantique de RDFS. Nous comparons
l’expressivité et la complexité de nSPARQL et le fragment correspondant de CPSPARQL, que
nous appelons cpSPARQL. Les deux langages ont la même complexité bien que cpSPARQL,
étant une extension stricte de SPARQL, soit plus expressif que nSPARQL.

Mots-clés : Web Sémantique – langage de requêtes – RDF – RDFS – SPARQL – expres-
sions régulières – expressions régulières avec contraintes – Chemin - PSPARQL - NSPARQL -
nSPARQL - CPSPARQL - cpSPARQL.

Answering SPARQL queries modulo RDF Schema with paths 3

1 Introduction

RDF (Resource Description Framework [22]) is a standard knowledge representation language
dedicated to the description of documents and more generally of resources within the semantic
web.

SPARQL [35] is the standard language for querying RDF data. It has been well-designed for
that purpose, but very often, RDF data is expressed in the framework of a schema or an ontology
in RDF Schema or OWL.

RDF Schema (or RDFS) [12] together with OWL [26] are two ontology languages recom-
mended by the W3C for defining the vocabulary used in RDF graphs. Extending SPARQL for
dealing with RDFS and OWL semantics when answering queries is thus a major issue. Recently,
SPARQL 1.1 entailment regimes have been introduced to incorporate RDFS and OWL seman-
tics [18]. We consider here the case of RDF Schema (RDFS) or rather a large fragment of RDF
Schema [28].

Query answering with regard to RDFS semantics can be specified by indicating the inference
regime of the SPARQL evaluator, but this does not tell how to implement it. It is possible to
implement a specific query evaluator, embedding an inference engine for a regime or to take
advantage of existing evaluators. For that purpose, one very often transforms the data or the
query to standard languages. Two main approaches may be developed for answering a SPARQL
query Q modulo a schema S against an RDF graph G: the eager approach transforms the data
so that the evaluation of the SPARQL query Q against the transformed RDF graph τ(G) returns
the answer, while the lazy approach transforms the query so that the transformed query τ(Q)
against the RDF graph G returns the answers. These approaches are not exclusive, as shown by
[30], though no hybrid approach has been developed so far for SPARQL.

There already have been proposals along the second approach. For instance, [33] provides a
query language, called nSPARQL, allowing for navigating graphs in the style of XPath. Then
queries are rewritten so that query evaluation navigates the data graph for taking the RDF
Schema into account. One problem with this approach is that it does not preserve the whole
SPARQL: not all SPARQL queries are nSPARQL queries.

Other attempts, such as SPARQ2L [7] and SPARQLeR [24] are not known to address queries
with respect to RDF Schema. SPARQL-DL [36] addresses OWL but is restricted with respect
to SPARQL. [25] provides a sound and complete algorithm for implementatiing the OWL 2 DL
Direct Semantics entailment regime of SPARQL 1.1. This regime does not consider projection
(SELECT) within queries and answering queries is reduced to OWL entailment.

On our side, we have independently developed an extension of SPARQL, called PSPARQL
[5], which adds path expressions to SPARQL. Answering SPARQL queries modulo RDF Schema
could be achieved by transforming them into PSPARQL queries [4]. PSPARQL fully preserves
SPARQL, i.e., any SPARQL query is a valid PSPARQL query. The complexity of PSPARQL is
the same as that of SPARQL [2].

Nonetheless, the transformation cannot be generally applied to PSPARQL and thus it is
not generally sufficient for answering PSPARQL queries modulo RDFS [4]. To overcome this
limitation, we use an extension of PSPARQL, called CPSPARQL [3, 4], that uses constrained
regular expressions instead of regular expressions.

This report mainly contributes in two different ways, of different nature, to the understanding
of SPARQL query answering modulo ontologies.

First, it introduces a framework in which SPARQL query answering modulo a logical theory
can be expressed. This allows for comparing different approaches that can be used on a semantic
basis. For that purpose, we reformulate previous work and definitions and show their equivalence.
This also provides a unified strategy for proving properties that we use in the proof section.

RR n° 8394

4 Faisal Alkhateeb, Jérôme Euzenat

Second, we show that cpSPARQL, a restriction of CPSPARQL, can express all nSPARQL
queries with the same complexity. The advantage of using CPSPARQL is that, contrary to
nSPARQL, it is a strict extension of SPARQL and cpSPARQL graph patterns are a strict exten-
sion of SPARQL graph patterns as well as a strict extension of PSPARQL graph patterns. Hence,
using a proper extension of SPARQL like CPSPARQL is preferable to a restricted path-based
language. In particular, this allows for implementing the SPARQL RDFS entailment regime.

In order to compare cpSPARQL and nSPARQL, we adopt in this paper a notation similar
to nSPARQL, i.e., adding XPath axes, which is slightly different from the original CPSPARQL
syntax presented in [3, 4]. After presenting the syntax and semantics of both nSPARQL and
CPSPARQL, we show that:

– CPSPARQL can answer full SPARQL (and CPSPARQL) queries modulo RDFS (Sec-
tion 6.4);

– cpSPARQL has the same complexity as nSPARQL and there exist an efficient algorithm
for answering cpSPARQL queries (Section 6.3);

– Any nSPARQL triple pattern can be expressed as a cpSPARQL triple pattern, but not vice
versa (Section 7).

Outline. The remainder of the report is organized as follows. In Section 2, we introduce
RDF and the SPARQL language. Then we present RDF Schema and the existing attempts at
answering queries modulo RDF Schemas (Section 3). The PSPARQL language is presented with
its main results in Section 4, and we show how to use them for answering SPARQL queries modulo
RDF Schemas. Section 5 is dedicated to the presentation of the nSPARQL query language. The
cpSPARQL and CPSPARQL languages are presented in detail with their main results in Section 6
and we show how to use them for answering SPARQL and CPSPARQL queries modulo RDF
Schemas. Complexity results as well as a comparison between the expressiveness of cpSPARQL
and nSPARQL are presented in Section 7. We report on preliminary implementations (Section 8)
and discuss more precisely other related work (Section 9). Finally, we conclude in Section 10.

2 Querying RDF with SPARQL

The Resource Description Framework (RDF [22]) is a W3C recommended language for expressing
data on the web. We introduce below the syntax and the semantics of the language as well as
that of its recommended query language SPARQL.

2.1 RDF

This section introduces Simple RDF (RDF with simple semantics, i.e., without considering RDFS
semantics of the language [22]).

2.1.1 RDF syntax

RDF graphs are constructed over sets of URI references (or urirefs), blanks, and literals [15].
Because we want to stress the compatibility of the RDF structure with classical logic, we will use
the term variable instead of that of “blank” which is a vocabulary specific to RDF. The specificity
of blanks with regard to variables is their quantification. Indeed, a blank in RDF is a variable
existentially quantified over a particular graph. We prefer to retain this classical interpretation
which is useful when an RDF graph is placed in a different context. To simplify notations, and
without loss of generality, we do not distinguish here between simple and typed literals.

Inria

Answering SPARQL queries modulo RDF Schema with paths 5

gene

bcd cad

tll hb
kni

Kr

inhibits_translation

in
hi
bi
ts

prom
otes

promotesp
ro

m
o
te

s

rdf:type

regulates

rd
f:ty

p
e

prom
otes

inhibits

pr
om

ot
es

inhibits

Figure 1: An RDF graph representing some interactions between genes within the early devel-
opment of drosophila embryo.

In the following, we treats blank nodes in RDF simply as constants (as if they were URIs)
as done in the official specification of SPARQL without considering their existential semantics.
However, if the existential semantics of blank nodes is considered when querying RDF, the results
of this paper indirectly apply by using the graph homomorphism technique [11].

Terminology. An RDF terminology, noted T , is the union of 3 pairwise disjoint infinite sets
of terms : the set U of urirefs, the set L of literals and the set B of variables. The vocabulary V
denotes the set of names, i.e., V = U ∪L. We use the following notations for the elements of these
sets: a variable will be prefixed by ? (like ?x1), a literal will be expressed between quotation
marks (like "27"), remaining elements will be urirefs (like price or simply gene).

This terminology grounds the definition of RDF graphs and GRDF graphs. Basically, an
RDF graph is a set of triples of the form 〈subject, predicate, object〉 whose domain is defined in
the following definition.

Definition 1 (RDF graph, GRDF graph). An RDF triple is an element of (U ∪ B) × U × T .
An RDF graph is a set of RDF triples. A GRDF graph (for generalized RDF) is a set of triples
of (U ∪ B)× (U ∪ B)× T .

So, every RDF graph is a GRDF graph. If G is an RDF graph, we use T (G), U(G), L(G),
B(G), V(G) or voc(G) to denote the set of terms, urirefs, literals, variables or names appearing
in at least one triple of G.

In a triple 〈s, p, o〉, s is called the subject, p the predicate and o the object. It is possible to
associate to a set of triples G a labeled directed multi-graph, such that the set of nodes is the
set of terms appearing as a subject or object at least in a triple of G, the set of arcs is the set of

triples of G, i.e., if 〈s, p, o〉 is a triple, then s
p
−→ o is an arc (see Figure 1 and 2). By drawing

these graphs, the nodes resulting from literals are represented by rectangles while the others are
represented by rectangles with rounded corners. In what follows, we do not distinguish the two
views of the RDF syntax (as sets of triples or labeled directed graphs). We will then mention
interchangeably its nodes, its arcs, or the triples it is made of.

Example 1 (RDF). RDF can be used for exposing a large variety of data. For instance, Figure 1
shows the RDF graph representing part of the gene regulation network acting in the fruitfly
(Drosophila melanogater) embryo. Nodes represent genes and properties express regulation links,
i.e., the fact that the expression of the source gene has an influence on the expression of the
target gene. The triples of this graph are the following:

RR n° 8394

6 Faisal Alkhateeb, Jérôme Euzenat

Grenoble

France Paris Madrid Spain

Italy Roma Amman Jordan

TGV train

plane

transport

TGVcityIn TGV

planecityIn cityIn

cityIncityIn

planeplane

plane

sp

sp

sp M

G

Figure 2: An RDF graph (G) with its schema (M) representing information about transportation
means between several cities.

dm:bcd rdf:type rn:gene.

dm:bcd rn:inhibits_translation dm:cad.

dm:bcd rn:promotes dm:hb.

dm:bcd rn:promotes dm:kni.

dm:bcd rn:promotes dm:Kr.

dm:bcd rn:inhibits dm:tll.

dm:cad rn:promotes dm:kni.

dm:hb rn:inhibits dm:kni.

dm:hb rn:promotes dm:Kr.

dm:kni rn:inhibits dm:Kr.

dm:tll rn:regulates dm:Kr.

dm:tll rdf:type rn:gene.

This example uses only urirefs.

Example 2 (RDF Graph). RDF can be used for representing information about cities, trans-
portation means between cities, and relationships between the transportation means. The follow-
ing triples are part of the RDF graph of Figure 2:

Grenoble TGV Paris .

Paris plane Amman .

TGV subPropertyOf transport .

...

For instance, a triple 〈Paris, plane, Amman〉 means that there exists a transportation mean plane

from Paris to Amman.

2.1.2 RDF semantics

The formal semantics of RDF expresses the conditions under which an RDF graph describes
a particular world, i.e., an interpretation is a model for the graph [22]. The usual notions of
validity, satisfiability and consequence are entirely determined by these conditions.

Definition 2 (RDF Interpretation). Let V ⊆ (U ∪ L) be a vocabulary. An RDF interpretation
of V is a tuple I = 〈IR, IP , IEXT , ι〉 such that:

– IR is a set of resources that contains V ∩ L;
– IP ⊆ IR is a set of properties;
– IEXT : IP → 2IR×IR associates to each property a set of pairs of resources called the

extension of the property;
– the interpretation function ι : V → IR associates to each name in V a resource of IR, such

that if v ∈ L, then ι(v) = v.

Inria

Answering SPARQL queries modulo RDF Schema with paths 7

Definition 3 (RDF model). Let V ⊆ V be a vocabulary, and G be an RDF graph such that
voc(G) ⊆ V . An RDF interpretation I = 〈IR, IP , IEXT , ι〉 of V is an RDF model of G iff there
exists a mapping ι′ : T (G) → IR that extends ι, i.e., t ∈ V ∩ T (G) ⇒ ι′(t) = ι(t), such that for
each triple 〈s, p, o〉 ∈ G, ι′(p) ∈ IP and 〈ι′(s), ι′(o)〉 ∈ IEXT (ι

′(p)). The mapping ι′ is called a
proof of G in I.

Consequence (or entailment) is defined in the standard way:

Definition 4 (RDF entailment). A graph G RDF-entails a graph P (denoted by G |=RDF P) if
and only if each RDF model of G is also an RDF model of P .

The entailment of RDF graphs (respectively, GRDF graphs) can be characterized in terms
of subset for the case of graphs without variables (respectively, in terms of homomorphism when
the graphs have variables).

Proposition 1 (RDF, GRDF entailment [22]). G |=RDF P iff ∀〈s, p, o〉 ∈ P , then 〈s, p, o〉 ∈ G.
An RDF graph G RDF-entails a GRDF graph P iff there exists a mapping σ : T (P) → T (G)
such that ∀〈s, p, o〉 ∈ P , 〈σ(s), σ(p), σ(o)〉 ∈ G.

2.2 SPARQL

SPARQL is the RDF query language developed by the W3C [35]. SPARQL query answering is
characterized by defining a mapping (shortened here as “map”) from the query to the RDF graph
to be queried.

We define in the following subsections the syntax and the semantics of SPARQL. For a
complete description of SPARQL, the reader is referred to the SPARQL specification [35] or to
[32, 34] for its formal semantics. Unless stated otherwise, the report concentrates on SPARQL
1.0, but some features considered in the presented languages are planned to be integrated in
SPARQL 1.1.

2.2.1 SPARQL syntax

The basic building blocks of SPARQL queries are graph patterns which are shared by all SPARQL
query forms. Informally, a graph pattern can be a triple pattern, i.e., a GRDF triple, a basic
graph pattern, i.e., a set of triple patterns such as a GRDF graph, the union (UNION) of graph
patterns, an optional (OPT) graph pattern, or a constraint (FILTER).

Definition 5 (SPARQL graph pattern). A SPARQL graph pattern is defined inductively in the
following way:

– every GRDF graph is a SPARQL graph pattern;
– if P , P ′ are SPARQL graph patterns and K is a SPARQL constraint, then (P AND P ′),

(P UNION P ′), (P OPT P ′), and (P FILTER K) are SPARQL graph patterns.

A SPARQL constraintK is a boolean expression involving terms from (V∪B), e.g., a numeric
test. We do not specify these expressions further (see [28] for a more complete treatment).

A SPARQL SELECT query is of the form SELECT ~B FROM u WHERE P where u is the URI of
an RDF graph G, P is a SPARQL graph pattern and ~B is a tuple of variables appearing in P .
Intuitively, such a query asks for the assignments of the variables in ~B such that, under these
assignments, P is entailed by the graph identified by u.

Example 3 (Query). The following query searches, in the regulatory network of Figure 1, a
gene ?x which inhibits a product that regulates a product that ?x promotes, and returns these
three entities:

RR n° 8394

8 Faisal Alkhateeb, Jérôme Euzenat

SELECT ?x, ?y, ?z

FROM ...

WHERE {

?x rn:inhibits ?y

?x rn:promotes ?z

?y rn:regulates ?z

?x rdf:type rn:gene.

}

Example 4 (Query). The following query searches in the RDF graph of Figure 2 if there exists
a direct plane between a city in France and a city in Jordan:

SELECT ?city1 ?city2

FROM ...

WHERE

?city1 plane ?city2 .

?city1 cityIn France .

?city2 cityIn Jordan .

SPARQL provides several other query forms that can be used for formatting query results:
CONSTRUCT which can be used for building an RDF graph from the set of answers, ASK which
returns true if there is an answer to a given query and false otherwise, and DESCRIBE which
can be used for describing a resource RDF graph. We concentrate on the SELECT query form
and modify SPARQL basic graph patterns, leaving the remainder of the query forms unchanged.

2.2.2 SPARQL semantics

In the following, we characterize query answering with SPARQL as done in [32]. The approach
relies upon the correspondence between GRDF entailment and maps from RDF graph of the
query graph patterns to the RDF knowledge base. SPARQL query constructs are defined through
algebraic operations on maps: assignments from a set of variables to terms that preserve names.

Definition 6 (Map). Let V1 ⊆ T , and V2 ⊆ T be two sets of terms. A map from V1 to V2 is a
function σ : V1 → V2 such that ∀x ∈ (V1 ∩ V), σ(x) = x.

Operations on maps. If σ is a map, then the domain of σ, denoted by dom(σ), is the
subset of T on which σ is defined. The restriction of σ to a set of terms X is defined by
σ|X = {〈x, y〉 ∈ σ| x ∈ X} and the completion of σ to a set of terms X is defined by σ|X =
σ ∪ {〈x, null〉| x ∈ X and x /∈ dom(σ)}1.

If P is a graph pattern, then B(P) is the set of variables occurring in P and σ(P) is the
graph pattern obtained by the substitution of σ(b) to each variable b ∈ B(P). Two maps σ1
and σ2 are compatible when ∀x ∈ dom(σ1) ∩ dom(σ2), σ1(x) = σ2(x). Otherwise, they are said
to be incompatible and this is denoted by σ1⊥σ2. If σ1 and σ2 are two compatible maps, then
we denote by σ = σ1 ⊕ σ2 : T1 ∪ T2 → T the map defined by ∀x ∈ T1, σ(x) = σ1(x) and
∀x ∈ T2, σ(x) = σ2(x). The join and difference of two sets of maps Ω1 and Ω2 are defined as
follows [32]:

– (join) Ω1 ⋊⋉ Ω2 = {σ1 ⊕ σ2 | σ1 ∈ Ω1, σ2 ∈ Ω2 are compatible};
– (difference) Ω1 \ Ω2 = {σ1 ∈ Ω1 | ∀σ2 ∈ Ω2, σ1 and σ2 are not compatible}.

The answers to a basic graph pattern query are those maps which warrant the entailment
of the graph pattern by the queried graph. In the case of SPARQL, this entailment relation is
RDF-entailment. Answers to compound graph patterns are obtained through the operations on
maps.

1The null symbol is used for denoting the NULL values introduced by the OPTIONAL clause.

Inria

Answering SPARQL queries modulo RDF Schema with paths 9

Definition 7 (Answers to compound graph patterns). Let |=RDF be the RDF entailment relation
on basic graph patterns, P , P ′ be SPARQL graph patterns, K be a SPARQL constraint, and G
be an RDF graph. The set S(P,G) of answers to P in G is the set of maps from B(P) to T (G)
defined inductively in the following way:

S(P,G) = {σ|B(P)| G |=RDF σ(P)} if P is a basic graph pattern

S((P AND P ′), G) = S(P,G) ⋊⋉ S(P ′, G)

S(P UNION P ′, G) = S(P,G) ∪ S(P ′, G)

S(P OPT P ′, G) = (S(P,G) ⋊⋉ S(P ′, G)) ∪ (S(P,G) \ S(P ′, G))

S(P FILTER K,G) = {σ ∈ S(P,G) | σ(K) = ⊤}

The symbol |=RDF is used to denote the RDF entailment relation on basic graph patterns
and we will use simply |= when it is clear from the context. Moreover, the conditions K are
interpreted as boolean functions from the terms they involve. Hence, σ(K) = ⊤ means that this
function is evaluated to true once the variables in K are substituted by σ. If not all variables
of K are bound, then σ(K) 6= ⊤. One particular operator that can be used in SPARQL filter
conditions is “bound(?x)”. This operator returns true if the variable ?x is bound and in this case
σ(K) is not true whenever a variable is not bound.

As usual for this kind of query language, an answer to a query is an assignment of the
distinguished variables (those variables in the SELECT part of the query). Such an assignment is
a map from variables in the query to nodes of the graph. The defined answers may assign only
one part of the variables, those sufficient to prove entailment. The answers are these assignments
extended to all distinguished variables.

Definition 8 (Answers to a SPARQL query). Let SELECT ~B FROM u WHERE P be a SPARQL
query, G be the RDF graph identified by the URI u, and S(P,G) be the set of answers to P in

G, then the answers A(~B,G, P) to the query are the restriction and completion to ~B of answers
to P in G, i.e.,

A(~B,G, P) = {σ|
~B
~B
| σ ∈ S(P,G)}.

The completion to null does not prevent that blank nodes remain in answers: null values
only replace unmatched variables. [34] defines a different semantics for the join operation when
the maps contain null values. This semantics could be adopted instead without changing the
remainder of this paper.

Example 5 (Query evaluation). The evaluation of the query of Example 4 against the RDF
graph of Example 1 returns only one answer:

〈dm:bcd, dm:tll, dm:Kr〉

In the following, we use an alternate characterization of SPARQL query answering that relies
upon the correspondence between GRDF entailment and maps from the query graph patterns
to the RDF graph [32]. The previous definition can be rewritten in a more semantic style by
extending entailment to compound graph patterns modulo a map σ [5].

Definition 9 (Compound graph pattern entailment). Let |= be an entailment relation on basic
graph patterns, P , P ′ be SPARQL graph patterns, K be a SPARQL constraint, and G be an RDF

RR n° 8394

10 Faisal Alkhateeb, Jérôme Euzenat

graph, graph pattern entailment by an RDF graph modulo a map σ is defined inductively by:

G |= σ(P AND P ′) iff G |= σ(P) and G |= σ(P ′)

G |= σ(P UNION P ′) iff G |= σ(P) or G |= σ(P ′)

G |= σ(P OPT P ′) iff G |= σ(P) and [G |= σ(P ′) or ∀σ′;G |= σ′(P ′), σ⊥σ′]

G |= σ(P FILTER K) iff G |= σ(P) and σ(K) = ⊤

The following proposition is an equivalent characterization of SPARQL answers, closer to a
semantic definition.

Proposition 2 (Answer to a SPARQL query [5]). Let SELECT ~B FROM u WHERE P be a SPARQL
query with P a SPARQL graph pattern and G be the (G)RDF graph identified by the URI u,
then the set of answers to this query is

A(~B,G, P) = {σ|
~B
~B
| G |=(G)RDF σ(P)}.

The proof given in [5] starts from a slightly different definition than Definition 7 based on
RDF-entailment. However, in the case of RDF entailment of a ground triple, these are equivalent
thanks to the interpolation lemma [22].

In order to evaluate the complexity of query answering, we use the following problem, usually
named query evaluation but better named answer checking:
Problem: A-Answer checking

Input: an RDF graph G, a SPARQL graph pattern P , a tuple of variables ~B, and a map σ.
Question: Does σ ∈ A(~B,G, P)?

This problem has usually the same complexity as checking if an answer exists. For SPARQL,
the problem has been shown to be PSPACE-complete.

Proposition 3 (Complexity of A-Answer checking [32]). A-Answer checking is PSPACE-
complete.

The complexity of checking RDF-entailment and GDRF-entailment is NP-complete [21]. This
means that A-Answer checking when queries are reduced to basic graph patterns is NP-
complete. In fact, the addition of AND, FILTER, and UNION does not increase complexity
which remains NP-complete. This complexity comes from the addition of the OPT construction
[32].

Hence, for every language in which entailment is NP-complete, used as a basic graph pattern
language, the problem for this language will have the same complexity since Definition 9 shows
the independence of subquery evaluation.

3 Querying RDF modulo RDF Schema

RDF Schema (or RDFS) [12] together with OWL [26] are formal logics recommended by the
W3C for defining the vocabulary used in RDF graphs.

RDF Schema further constrains RDF interpretations. Thus RDF graphs when interpreted
under a schema may have less models, and thus more consequences. This provides more an-
swers to a query relying on RDFS semantics. However, SPARQL query answers (under RDF
entailment) ignore this semantics.

Example 6 (RDF and RDFS entailment). For instance, in RDF, it is possible to deduce
〈rn:inhibits rdf:type rdf:Property〉 from 〈dm:hb rn:inhibits dm:kni〉; in RDFS, one can deduce 〈dm:hb
rn:regulates dm:kni〉 from {〈dm:hb rn:inhibits dm:kni〉, 〈rn:inhibits rdfs:subPropertyOf rn:regulates〉}.

Inria

Answering SPARQL queries modulo RDF Schema with paths 11

rdfs:domain[dom] rdfs:Container[cont] rdf:Bag[bag]
rdfs:range[range] rdfs:isDefinedBy[isDefined] rdf:Seq[seq]
rdfs:Class[class] rdfs:Literal[literal] rdf:List[list]
rdf:value[value] rdfs:subClassOf[sc] rdf:Alt[alt]
rdfs:label[label] rdfs:subPropertyOf[sp] rdf: 1[1]
rdf:nil[nil] rdfs:comment[comment] . . .
rdf:type[type] rdf:predicate[pred] rdf: i[2]
rdf:object[obj] rdf:Statement[stat] rdf:first[first]
rdf:subject[subj] rdfs:seeAlso[seeAlso] rdf:rest[rest]
rdf:Property[prop] rdfs:Datatype[datatype] rdfs:member[member]
rdfs:Resource[res] rdf:XMLLiteral[xmlLit]

rdfs:ContainerMembershipProperty[contMP]

Table 1: The RDF Schema vocabulary.

3.1 RDF Schema

This section focusses on RDF and RDFS as extensions of the Simple RDF language presented
in Section 2.1. Both extensions are defined in the same way:

– They consider a particular set of urirefs of the vocabulary prefixed by rdf: and rdfs:,
respectively.

– They add additional constraints on the resources associated to these terms in interpreta-
tions.

We present them together below.

3.1.1 RDF Schema vocabulary

There exists a set of reserved words, the RDF Schema vocabulary [12], designed to describe
relationships between resources like classes, e.g., dm:gap rdfs:subClassOf rn:gene, and relationships
between properties, e.g., rn:inhibits rdfs:subPropertyOf rn:regulates. The RDF Schema vocabu-
lary is given in Table 1 as it appears in [22]. The shortcuts that we will use for each of the terms
are given in brackets. We use rdfsV to denote the RDF Schema vocabulary.

We will consider here a core subset of RDFS, ρdf [28], also called the description logic fragment
of RDFS [13]. It contains the following vocabulary:

ρdf = {sc, sp, type, dom, range}

Example 7 (RDFS). The RDF graph of Example 1 can be expressed in the context of an RDF
Schema which provides more information about the vocabulary that it uses. It specifies subtypes
of genes and subtypes of regulation relations.

dm:maternal rdfs:subClassOf rn:gene.

dm:gap rdfs:subClassOf rn:gene.

rn:regulates rdfs:domain rn:gene.

rn:regulates rdfs:range rn:gene.

rn:inhibits rdfs:subPropertyOf rn:regulates.

rn:promotes rdfs:subPropertyOf rn:regulates.

rn:inhibits_translation rdfs:subPropertyOf rn:inhibits.

rn:inhibits_transcription rdfs:subPropertyOf rn:inhibits.

dm:kni rdf:type dm:gap.

dm:hb rdf:type dm:gap.

dm:Kr rdf:type dm:gap.

dm:tll rdf:type dm:gap.

dm:bcd rdf:type dm:maternal.

dm:cad rdf:type dm:maternal.

RR n° 8394

12 Faisal Alkhateeb, Jérôme Euzenat

3.1.2 RDF Schema semantics

In addition to the usual interpretation mapping, a special mapping is used in RDFS interpreta-
tions for interpreting the set of classes which is a subset of IR.

Definition 10 (RDFS interpretation). An RDFS interpretation of a vocabulary V is a tuple
〈IR, IP , Class, IEXT , ICEXT , Lit, ι〉 such that:

– 〈IR, IP , IEXT , ι〉 is an RDF interpretation;
– Class ⊆ IR is a distinguished subset of IR identifying if a resource denotes a class of

resources;
– ICEXT : Class → 2IR is a mapping that assigns a set of resources to every resource

denoting a class;
– Lit ⊆ IR is the set of literal values, Lit contains all plain literals in L ∩ V .

Specific conditions are added to the resources associated to terms of RDFS vocabularies in
an RDFS interpretation to be an RDFS model of an RDFS graph. These conditions include the
satisfaction of the RDF Schema axiomatic triples as appearing in the normative semantics of
RDF [22].

Definition 11 (RDFS Model). Let G be an RDFS graph, and I = 〈IR, IP , Class, IEXT , ICEXT ,
Lit, ι〉 be an RDFS interpretation of a vocabulary V ⊆ rdfsV ∪ V such that V(G) ⊆ V . Then I
is an RDFS model of G if and only if I satisfies the following conditions:

1. Simple semantics:

a) there exists an extension ι′ of ι to B(G) such that for each triple 〈s, p, o〉 of G, ι′(p) ∈ IP
and 〈ι′(s), ι′(o)〉 ∈ IEXT (ι

′(p)).

2. RDF semantics:

a) x ∈ IP ⇔ 〈x, ι′(prop)〉 ∈ IEXT (ι
′(type)).

b) If ℓ ∈ term(G) is a typed XML literal with lexical form w, then ι′(ℓ) is the XML literal
value of w, ι′(ℓ) ∈ Lit, and 〈ι′(ℓ), ι′(xmlLit)〉 ∈ IEXT (ι

′(type)).

3. RDFS Classes:

a) x ∈ IR, x ∈ ICEXT (ι
′(res)).

b) x ∈ Class, x ∈ ICEXT (ι
′(class)).

c) x ∈ Lit, x ∈ ICEXT (ι
′(literal)).

4. RDFS Subproperty:

a) IEXT (ι
′(sp)) is transitive and reflexive over IP .

b) if 〈x, y〉 ∈ IEXT (ι
′(sp)) then x, y ∈ IP and IEXT (x) ⊆ IEXT (y).

5. RDFS Subclass:

a) IEXT (ι
′(sc)) is transitive and reflexive over Class.

b) 〈x, y〉 ∈ IEXT (ι
′(sc)), then x, y ∈ Class and ICEXT (x) ⊆ ICEXT (y).

6. RDFS Typing:

a) x ∈ ICEXT (y), (x, y) ∈ IEXT (ι
′(type)).

b) if 〈x, y〉 ∈ IEXT (ι
′(dom)) and 〈u, v〉 ∈ IEXT (x) then u ∈ ICEXT (y).

c) if 〈x, y〉 ∈ IEXT (ι
′(range)) and 〈u, v〉 ∈ IEXT (x) then v ∈ ICEXT (y).

Inria

Answering SPARQL queries modulo RDF Schema with paths 13

〈p, sp, q〉 〈q, sp, r〉

〈p, sp, r〉

〈A, sc, B〉 〈B, sc, C〉

〈A, sc, C〉

〈p, dom, A〉 〈x, p, y〉

〈x, type, A〉

〈p, sp, q〉 〈x, p, y〉

〈x, q, y〉

〈A, sc, B〉 〈x, type, A〉

〈x, type, B〉

〈p, range, A〉 〈x, p, y〉

〈y, type, A〉

Table 2: RDFS inference rules (from [28]).

7. RDFS Additionals:

a) if x ∈ Class then 〈x, ι′(res)〉 ∈ IEXT (ι
′(sc)).

b) if x ∈ ICEXT (ι
′(datatype)) then 〈x, ι′(literal)〉 ∈ IEXT (ι

′(sc)).

c) if x ∈ ICEXT (ι
′(contMP)) then 〈x, ι′(member)〉 ∈ IEXT (ι

′(sp)).

Definition 12 (RDFS entailment). Let G and P be two RDFS graphs, then G RDFS-entails P
(denoted by G |=RDFS P) if and only if every RDFS model of G is also an RDFS model of P .

[28] has introduced the reflexive relaxed semantics for RDFS in which rdfs:subClassOf and
rdfs:subPropertyOf do not have to be reflexive. The entailment relation with this semantics is
noted |=nrx

RDFS.
The reflexive relaxed semantics does not change much RDFS. Indeed, from the standard

(reflexive) semantics, we can deduce that any class (respectively, property) is a subclass (respec-
tively, subproperty) of itself. For instance, 〈dm:hb rn:inhibits dm:kni〉 only entails 〈rn:inhibits sp rn:inhibits〉
and variations of this triple in which occurrences of rn:inhibits are replaced by variables. The
reflexivity requirement only entails reflectivity assertions which do not interact with other triples
unless constraints are added to the rdfs:subPropertyOf or rdfs:subClassOf predicates. Therefore,
it is assumed that elements of the RDFS vocabulary appear only in the predicate position. We
will call genuine, RDFS graphs which do not constrain the elements of the ρdf vocabulary (and
thus these two predicates), and restrict us to querying genuine RDFS graphs.

However, when issuing queries involving these relations, e.g., with a graph pattern like
〈?x sp ?y〉, all properties in the graph will be answers. Since this would clutter results, we
assume, as done in [28], that queries use the reflexive relaxed semantics. It is easy to recover the
standard semantics by providing the additional triples when sp or sc are queried.

In the following, we use the closure graph of an RDF graph G, denoted by closure(G), which
is defined by the graph obtained by saturating G with all triples that can be deduced using rules
of Table 2.

The SPARQL specification [35] introduces the notion of entailment regimes. These regimes
contain several components (query language, graph language, inconsistency handling) [19]. We
concentrate here on the definition of answers which, in particular, replace simple RDF entailment
for answering queries. It is possible to define answers to SPARQL queries modulo RDF Schema,
by using RDFS entailment as the entailment regime.

Definition 13 (Answers to a SPARQL query modulo RDF Schema). Let SELECT ~B FROM u
WHERE P be a SPARQL query with P a GRDF graph and G be the RDFS graph identified by the
URI u, then the set of answers to this query modulo RDF Schema is:

A#(~B,G, P) = {σ|
~B
~B
|G |=nrx

RDFS σ(P)}

This definition is justified by the analogy between RDF entailment and RDFS entailment in
the definition of answers to queries (see [5]). It does not fully correspond to the RDFS entailment
regime defined in [19] since we do not restrict the answer set to be finite. This is not strictly
necessary, however, the same restrictions as in [19] can be applied.

The problem is to specify a query engine that can find such answers.

RR n° 8394

14 Faisal Alkhateeb, Jérôme Euzenat

3.2 Querying against ter Horst closure

One possible approach for querying an RDFS graph G in a sound and complete way is by
computing the closure graph of G, i.e., the graph obtained by saturating G with all information
that can be deduced using a set of predefined rules called RDFS rules, before evaluating the
query over the closure graph.

Definition 14 (RDFS closure). Let G be an RDFS graph on an RDFS vocabulary V . The RDFS
closure of G, denoted Ĝ, is the smallest set of triple containing G and satisfying the following
constraints:

[RDF1] all RDF axiomatic triples [22] are in Ĝ;

[RDF2] if 〈s, p, o〉 ∈ Ĝ, then 〈p, type, prop〉 ∈ Ĝ;

[RDF3] if 〈s, p, ℓ〉 ∈ Ĝ, where ℓ is an xmlLit typed literal and the lexical representation
s is a well-formed XML literal,

then 〈s, p, xml(s)〉 ∈ Ĝ and 〈xml(s), type, xmlLit〉 ∈ Ĝ;

[RDFS 1] all RDFS axiomatic triples [22] are in Ĝ;

[RDFS 6] if 〈a, dom, x〉 ∈ Ĝ and 〈u, a, y〉 ∈ Ĝ, then 〈u, type, x〉 ∈ Ĝ;

[RDFS 7] if 〈a, range, x〉 ∈ Ĝ and 〈u, a, v〉 ∈ Ĝ, then 〈v, type, x〉 ∈ Ĝ;

[RDFS 8a] if 〈x, type, prop〉 ∈ Ĝ, then 〈x, sp, x〉 ∈ Ĝ;

[RDFS 8b] if 〈x, sp, y〉 ∈ Ĝ and 〈y, sp, z〉 ∈ Ĝ, then 〈x, sp, z〉 ∈ Ĝ;

[RDFS 9] if 〈a, sp, b〉 ∈ Ĝ and 〈x, a, y〉 ∈ Ĝ, then 〈x, b, y〉 ∈ Ĝ;

[RDFS 10] if 〈x, type, class〉 ∈ Ĝ, then 〈x, sc, res〉 ∈ Ĝ;

[RDFS 11] if 〈u, sc, x〉 ∈ Ĝ and 〈y, type, u〉 ∈ Ĝ, then 〈y, type, x〉 ∈ Ĝ;

[RDFS 12a] if 〈x, type, class〉 ∈ Ĝ, then 〈x, sc, x〉 ∈ Ĝ;

[RDFS 12b] if 〈x, sc, y〉 ∈ Ĝ and 〈y, sc, z〉 ∈ Ĝ, then 〈x, sc, z〉 ∈ Ĝ;

[RDFS 13] if 〈x, type, contMP〉 ∈ Ĝ, then 〈x, prop, member〉 ∈ Ĝ;

[RDFS 14] if 〈x, type, datatype〉 ∈ Ĝ, then 〈x, sc, literal〉 ∈ Ĝ.

It is easy to show that this closure always exists and can be obtained by turning the constraints
into rules, thus defining a closure operation.

Example 8 (RDFS Closure). The RDFS closure of the RDF graph of Example 1 augmented by
the RDFS triples of Example 7 contains, in particular, the following assertions:

dm:bcd rn:inhibits dm:cad. // [RDFS 9]

dm:hb rn:regulates dm:kni. // [RDFS 9]

dm:hb type rn:gene. // [RDFS 6]

Because of axiomatic triples, this closure may be infinite, but a finite and polynomial closure,
called partial closure, has been proposed independently in [10] and [38].

Definition 15 (Partial RDFS closure). Let G and H be two RDFS graphs on an RDFS vo-
cabulary V , the partial RDFS closure of G given H, denoted Ĝ\H, is obtained in the following
way:

1. let k be the maximum of i’s such that rdf:_i is a term of G or of H;
2. replace the rule [RDF 1] by the rule

[RDF 1P] add all RDF axiomatic triples [22] except those that use rdf:_i with i > k;
In the same way, replace the rule [RDFS 1] by the rule
[RDFS 1P] add all RDFS axiomatic triples except those that use rdf:_i with i > k;

3. apply the modified rules.

Inria

Answering SPARQL queries modulo RDF Schema with paths 15

Applying the partial closure to an RDFS graph permits to reduce RDFS entailment to simple
RDF entailment.

Proposition 4 (Completeness of partial RDFS closure [22]). Let G be a satisfiable RDFS graph
and H an RDFS graph, then G |=RDFS H if and only if (Ĝ\H) |=RDF H.

The completeness does not hold if G is not satisfiable because in such a case, any graph H is
a consequence of G and |=RDF does not reflect this (no RDF graph can be inconsistent). In case
G is unsatisfiable, the RDFS entailment regime allows for raising an error [19]. An RDFS graph
can be unsatisfiable only if it contains datatype conflicts [38] which can be found in polynomial
time.

Since queries must adopt the reflexive relaxed semantics, we have to further restrict this
closure. It can be obtained by suppressing constraints RDFS8a and RDFS12a from the closure
operation. We denote the partial non reflexive closure Ĝ\\H .

Proposition 5 (Completeness of partial non reflexive RDFS closure). Let G be a satisfiable
genuine RDFS graph and H an RDFS graph, then G |=nrx

RDFS H if and only if (Ĝ\\H) |=RDF H.

This has the following corollary:

Corollary 1.

A#(~B,G, P) = A(~B, Ĝ\\P, P)

Example 9 (SPARQL evaluation modulo RDFS). If the query of Example 4 is evaluated against
the RDFS closure of Example 8, it will return the three expected answers:

{〈dm:hb, dm:kni, dm:Kr〉

〈dm:bcd, dm:tll, dm:Kr〉

〈dm:bcd, dm:cad, dm:kni〉}

This can be obtained easily from the simple graph of Example 1 augmented by the triples of
Example 8.

This shows the correctness and completeness of the closure approach. This approach has
several drawbacks which limit its use: It still tends to generate a very large graph which makes
it not very convenient, especially if the transformation has to be made on the fly, i.e., when the
query is evaluated; It takes time proportional to |H |× |G|2 in the worst case [28]; Moreover, it is
not applicable if one has no access to the graph to be queried but only to a SPARQL endpoint.
In this case, it is not possible to compute the closure graph.

Since the complexity of the partial closure has been shown to be polynomial [38], A#-Answer

checking remains PSPACE-complete.

Proposition 6 (Complexity of A#-Answer checking). A#-Answer checking is PSPACE-
complete.

4 The PSPARQL query language

In order to address the problems raised by querying RDF graphs modulo RDF Schemas, we first
present the PSPARQL query language for RDF which we introduced in [5]. Unlike SPARQL,
PSPARQL can express queries with regular path expressions instead of relations and variables
on the edges. For instance, it allows for finding all maternal genes regulated by the dm:bcd gene
through an arbitrary sequence of inhibitions.

RR n° 8394

16 Faisal Alkhateeb, Jérôme Euzenat

We will, in the next section, show how the additional expressive power provided by PSPARQL
can be used for answering queries modulo RDF Schema.

The added expressiveness of PSPARQL is achieved by extending SPARQL graph patterns,
hence any SPARQL query is a PSPARQL query. SPARQL graph patterns, based on GRDF
graphs, are replaced by PRDF graphs that are introduced below through their syntax (§4.1) and
semantics (§4.2). They are then naturally replaced within the PSPARQL context (§4.3).

4.1 PRDF syntax

Let Σ be an alphabet. A language over Σ is a subset of Σ∗: its elements are sequences of elements
of Σ called words. A (non empty) word 〈a1, . . . , ak〉 is denoted a1 · . . . · ak. If A = a1 · . . . · ak
and B = b1 · . . . · bq are two words over Σ, then A · B is the word over Σ defined by A · B =
a1 · . . . · ak · b1 · . . . · bq.

Definition 16 (Regular expression pattern). Let Σ be an alphabet, X be a set of variables, the
set R(Σ, X) of regular expression patterns is inductively defined by:

– ∀a ∈ Σ, a ∈ R(Σ, X) and !a ∈ R(Σ, X);
– ∀x ∈ X, x ∈ R(Σ, X);
– ǫ ∈ R(Σ, X);
– If A ∈ R(Σ, X) and B ∈ R(Σ, X) then A|B, A ·B, A∗, A+ ∈ R(Σ, X).

A regular expression over (U ,B) can be used to define a language over the alphabet made of
U ∪ B. PRDF graphs are GRDF graphs where predicates in the triples are regular expression
patterns constructed over the set of URI references and the set of variables.

Definition 17 (PRDF graph). A PRDF triple is an element of U ∪B × R(U ,B) × T . A PRDF
graph is a set of PRDF triples.

Hence all GRDF graphs are PRDF graphs.

Example 10 (PRDF Graph). PRDF graphs can express interesting features of regulatory net-
works. For instance, one may observe that dm:bcd promotes dm:Kr without knowing if this action
is direct or indirect. Hence, this can be expressed by dm:bcd rn:promotes+ dm:Kr.

A generalized version of the graph pattern of the query of Example 4 can be expressed by:

?x rn:inhibits.rn:regulates* ?z.

?x rn:promotes+ ?z.

?x rdf:type rn:gene.

4.2 PRDF semantics

To be able to define models of PRDF graphs, we have first to express path semantics within
RDF semantics to support regular expressions.

Definition 18 (Support of a regular expression). Let I = 〈IR, IP , IEXT , ι〉 be an interpretation
of a vocabulary V = U ∪ L, ι′ be an extension of ι to B ⊆ B, and R ∈ R(U , B), a pair 〈x, y〉 of
(IR × IR) supports R in ι′ if and only if one of the two following conditions are satisfied:

(i) the empty word ǫ ∈ L∗(R) and x = y;

(ii) there exists a word of length n ≥ 1 w = w1 · . . . · wn where w ∈ L∗(R) and a sequence of
resources of IR x = r0, . . . , rn = y such that 〈ri−1, ri〉 ∈ IEXT (ι

′(wi)), 1 ≤ i ≤ n.

Inria

Answering SPARQL queries modulo RDF Schema with paths 17

Instead of considering paths in RDF graphs, this definition considers paths in the interpre-
tations of PRDF graphs, i.e., paths are now relating resources. This is used in the following
definition of PRDF models in which it replaces the direct correspondences that exist in RDF
between a relation and its interpretation, by a correspondence between a regular expression and
a sequence of relation interpretations. This allows for matching regular expressions, e.g., r+,
with variable length paths.

Definition 19 (Model of a PRDF graph). Let G be a PRDF graph, and I = 〈IR, IP , IEXT , ι〉 be
an interpretation of a vocabulary V ⊇ V(G), I is a PRDF model of G if and only if there exists
an extension ι′ of ι to B(G) such that for every triple 〈s,R, o〉 ∈ G, 〈ι′(s), ι′(o)〉 supports R in ι′.

This definition extends the definition of RDF models, and they are equivalent when all regular
expression patterns R are reduced to atomic terms, i.e., urirefs or variables. PRDF entailment
is defined as usual:

Definition 20 (PRDF entailment). Let P and G be two PRDF graphs, G PRDF-entails P
(noted G |=PRDF P) if and only if all models of G are models of P .

It is possible to define the interpretation of a regular expression evaluation as those pairs of
resources which support the expression in all models.

Definition 21 (Regular expression interpretation). The interpretation [[R]]G of a regular expres-
sion R in a PRDF graph G is the set of nodes which satisfy the regular expression in all models
of the graph:

[[R]]G = {〈x, y〉| ∀I PRDF model of G, 〈x, y〉 supports R in I}

It is thus possible to formulate the regular expression evaluation problem:
Problem: Regular expression evaluation
Input: An RDF graph G, a regular expression R, and a pair 〈a, b〉
Question: Does 〈a, b〉 ∈ [[R]]G?

We will use this same problem with different type of regular expressions.

4.3 PSPARQL

PSPARQL is an extension of SPARQL introducing the use of paths in SPARQL graph patterns.
PSPARQL graph patterns are built on top of PRDF in the same way as SPARQL is built on top
of GRDF.

Definition 22 (PSPARQL graph pattern). A PSPARQL graph pattern is defined inductively
by:

– every PRDF graph is a PSPARQL graph pattern;
– if P1 and P2 are two PSPARQL graph patterns and K is a SPARQL constraint, then (P1

AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER K) are PSPARQL graph patterns.

A PSPARQL query for the select form is SELECT ~B FROM u WHERE P such that P is a PSPARQL
graph pattern.

Analogously to SPARQL, the set of answers to a PSPARQL query is defined inductively from
the set of maps of the PRDF graphs of the query into the RDF knowledge base. The definition of
an answer to a PSPARQL query is thus identical to Definition 9, but it uses PRDF entailment.

RR n° 8394

18 Faisal Alkhateeb, Jérôme Euzenat

Definition 23 (Answers to a PSPARQL query). Let SELECT ~B FROM u WHERE P be a PSPARQL
query with P a PRDF graph pattern, and G be the RDF graph identified by the URI u, then the
set of answers to this query is:

A⋆(~B,G, P) = {σ|
~B
~B
|G |=PRDF σ(P)}

4.4 SPARQL queries modulo RDFS with PSPARQL

To overcome the limitations of previous approaches when querying RDF graphs modulo an RDF
Schema, we provide a new approach which rewrites a SPARQL query into a PSPARQL query
using a set of rules, and then evaluates the transformed query over the graph to be queried. In
particular, we show that every SPARQL query Q to evaluate over an RDFS graph G can be
transformed into a PSPARQL query τ(Q) such that evaluating Q over Ĝ, the closure graph of
G, is equivalent to evaluating τ(Q) over G.

The query rewriting approach is similar in spirit to the query rewriting methods using a set
of views [31, 14, 20]. In contrast to these methods, our approach uses the data contained in the
graph, i.e., the rules are inferred from RDFS entailment rules. We define a rewriting function τ
from RDF graph patterns to PRDF graph patterns through a set of rewriting rules over triples
(which naturally extends to basic graph patterns and queries). τ(Q) is obtained from Q by
applying the possible rule(s) to each triple in Q.

Definition 24 (Basic RDFS graph pattern expansion). Given an RDF triple t, the RDFS
expansion of t is a finite PSPARQL graph pattern τ(t) defined as:

τ(〈s, sc, o〉) ={〈s, sc+, o〉}

τ(〈s, sp, o〉) ={〈s, sp+, o〉}

τ(〈s, p, o〉) ={〈s, ?x, o〉, 〈?x, sp∗, p〉}(p 6∈ {sc, sp, type})

τ(〈s, type, o〉) ={〈s, type · sc∗, o〉}

UNION {〈s, ?p, ?y〉, 〈?p, sp∗ · dom · sc∗, o〉}

UNION {〈?y, ?p, s〉, 〈?p, sp∗ · range · sc∗, o〉}

The first rule handles the transitive semantics of the subclass relation. Finding the subclasses
of a given class can be achieved by navigating all its direct subclasses. The second rule handles
similarly the transitive semantics of the subproperty relation. The third rule tells that the
subject-object pairs occurring in the subproperties of a given property are inherited to it. Finally,
the fourth rule expresses that the instance mapped to s has for type the class mapped to o (we
use the word “mapped” since s and/or o can be variables) if one of the following conditions holds:

1. the instance mapped to s has for type one of the subclasses of the class mapped to o by
following the subclass relationship zero or several times. The zero times is used since s can
be directly of type o;

2. there exists a property of which s is subject and such that the instances appearing as a
subject must have for type one of the subclasses of the class mapped to o;

3. there exists a property of which s is object and such that the instances appearing as an
object must have for type one of the subclasses of the class mapped to o.

The latter rule takes advantage of a feature of PSPARQL: the ability to have variables in
predicates.

Example 11 (PSPARQL Query). The result of transforming the query of Example 4 with τ is:

Inria

Answering SPARQL queries modulo RDF Schema with paths 19

SELECT ?x, ?y, ?z

FROM ...

WHERE {

?x ?r ?y. ?r sp* rn:inhibits.

?y ?t ?z.?t sp* rn:regulates.

?x ?s ?z. ?s sp* rn:promotes.

(?x rdf:type.sc* rn:gene.

UNION

{ ?x ?u ?v. ?u sp*.dom.sc* rn:gene.}

UNION

{ ?v ?u ?x. ?u sp*.range.sc* rn:gene.}

)

}

This query provides the correct set of answers for the RDF graph of Example 1 modulo the RDF
Schema of Example 7 (given in Example 9).

Any SPARQL query can be answered modulo an RDF Schema by rewriting the resulting
query in PSPARQL and evaluating the PSPARQL query.

Proposition 7 (Answers to a SPARQL query modulo RDF Schema by PSPARQL).

A#(~B,G, P) = A⋆(~B,G, τ(P))

This transformation does not increase the complexity of PSPARQL which is the same as the
one of SPARQL:

Proposition 8 (Complexity of A⋆-Answer checking). A⋆-Answer checking is PSPACE-
complete.

5 nSPARQL and NSPARQL

An alternative to PSPARQL was proposed with the nSPARQL language, a simple query language
based on nested regular expressions for navigating RDF graphs [33]. We present it as well as
NSPARQL, an extension more comparable to PSPARQL.

5.1 nSPARQL syntax

Definition 25 (Regular expression). A regular expression is an expression built from the fol-
lowing grammar:

re ::= axis | axis ::a | re | re/re | re|re | re∗

with a ∈ U and axis ∈{self, next, next−1, edge, edge−1, node, node−1 }.

In the following, we use the positive closure of a path expression R denoted by R+ and defined
as R+ = R/R∗.

Regarding the precedence among the regular expression operators, it is as follows: *, /, then
|. Parentheses may be used for breaking precedence rules.

The model underlying nSPARQL is that of XPath which navigates within XML structures.
Hence, the axis denotes the type of node object which is selected at each step, respectively, the
current node (self or self−1), the nodes reachable through an outbound triple (next), the nodes
that can reach the current node through an incident triple (next−1), the properties of outbound
triples (edge), the properties of incident triples (edge−1), the object of a predicate (node) and the
predicate of an object (node−1). This is illustrated by Figure 3.

RR n° 8394

20 Faisal Alkhateeb, Jérôme Euzenat

subject objet
predicate

self

next

next−1

edge

edge−1

node

node−1 self−1

Figure 3: nSPARQL axes.

Definition 26 (Nested regular expression). A nested regular expression is an expression built
from the following grammar (with a ∈ U):

nre ::= axis | axis ::a | axis ::[nre] | nre | nre/nre | nre|nre | nre∗

Contrary to simple regular expressions, nested regular expressions may constrain nodes to
satisfy additional secondary paths.

Nested regular expressions are used in triple patterns in predicate position, to define nSPARQL
triple patterns.

Definition 27 (nSPARQL triple pattern). An nSPARQL triple pattern is a triple 〈s, p, o〉 such
that s ∈ T , o ∈ T and p is a nested regular expression.

Example 12 (nSPARQL triple pattern). Assume that one wants to retrieve the pairs of cities
such that there is a way of traveling by any transportation mean. The following nSPARQL pattern
expresses this query:

P = 〈?city1, (next :: [(next :: sp)
∗/self :: transport])+, ?city2〉

This pattern expresses a sequence of properties such that each property (predicate) is a sub-
property of the property "transport".

Example 13 (nSPARQL triple pattern). In the context of molecular biology, nSPARQL expres-
sions may be very useful. For instance, part of the graph patterns used for the query of Example 4
can be expressed by:

?x next::rn:inhibits / next::rn:regulates ?z

which finds all pairs of nodes such that the first one inhibits a regulator of the second one. It can
be further enhanced by using transitive closure:

?x next::rn:inhibits / next::rn:regulates+ ?z

expressing that we want a path between two nodes going through a first inhibition and then an
arbitrary non null number of regulatory steps (+ is the usual notation such that a+ corresponds to
a/a*). Nested expressions allow for going further by constraining any step in the path. So,

?x next::rn:inhibits[next::rdf:type/self::dm:gap] / next::rn:regulates+ ?z

requires, in addition, the second node in the path to be a gap gene.

Inria

Answering SPARQL queries modulo RDF Schema with paths 21

From nSPARQL triple patterns, it is also possible to create a query language from nSPARQL
triple patterns. As in SPARQL, a set of nSPARQL triple patterns is called an nSPARQL basic
graph pattern. nSPARQL graph patterns may be defined in the usual way, i.e., by replacing
triple patterns by nSPARQL triple patterns.

Definition 28 (nSPARQL graph pattern). An nSPARQL graph pattern is defined inductively
by:

– every nSPARQL triple pattern is an nSPARQL graph pattern;
– if P1 and P2 are two nSPARQL graph patterns and K is a SPARQL constraint, then (P1

AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER K) are nSPARQL graph patterns.

For time complexity reasons the designers of the nSPARQL language choose to define a
more restricted language than SPARQL [33]. Contrary to SPARQL queries, nSPARQL queries
are reduced to nSPARQL graph patterns, constructed from nSPARQL triple patterns, plus
SPARQL operators AND, UNION, FILTER, and OPT. They do not allow for the projection
operator (SELECT). This prevents, when checking answers, that uncontrolled variables have to
be evaluated.

5.2 nSPARQL semantics

In order to define the semantics of nSPARQL, we need to know the semantics of nested regular
expressions [33]. Here we depart from the semantics given in [33] by adding a third variable in the
interpretation whose sole purpose is to compact the set of rules. Both definitions are equivalent.

Definition 29 (Nested path interpretation). Given a nested path p and an RDF graph G, the
interpretation of p in G (denoted [[p]]G) is defined by:

[[self]]G = {〈x, x, x〉;x ∈ T }

[[next]]G = {〈x, y, z〉; ∃z; 〈x, z, y〉 ∈ G}

[[edge]]G = {〈x, z, z〉; ∃z; 〈x, z, y〉 ∈ G}

[[node]]G = {〈z, y, z〉; ∃z; 〈x, z, y〉 ∈ G}

[[nre::a]]G = {〈x, y, a〉 ∈ [[nre]]G}
[[

nre-1
]]

G
= {〈y, x, z〉; 〈x, y, z〉 ∈ [[nre]]G}

[[nre1[nre2]]]G = {〈x, y, z〉 ∈ [[nre1]]G ; ∃w, k; 〈z, w, k〉 ∈ [[nre2]]G}

[[nre1/nre2]]G = {〈x, y, z〉; 〈x,w, k〉 ∈ [[nre1]]G& 〈w, y, z〉 ∈ [[nre2]]G}

[[nre1|nre2]]G = [[nre1]]G ∪ [[nre2]]G
[[nre*]]G = [[self]]G ∪ [[nre]]G ∪ [[nre/nre]]G ∪ [[nre/nre/nre]]G ∪ . . .

The evaluation of a nested regular expression R over an RDF graph G is defined as the sets of
pairs 〈a, b〉 of nodes in G, such that b is reachable from a in G by following a path that conforms
to R. We will write 〈x, y〉 ∈ [[R]]G as a shortcut for ∃z such that 〈x, y, z〉 ∈ [[R]]G.

Definition 30 (Satisfaction of a nSPARQL triple pattern). Given a basic nested path graph
pattern 〈s, p, o〉 and an RDF graph G, 〈s, o〉 satisfies p in G (denoted G |=nSPARQL 〈s, p, o〉) if
and only if ∃σ; 〈σ(s), σ(o)〉 ∈ [[p]]G

This nested regular expression evaluation problem is solved efficiently through an effective
procedure provided in [33].

RR n° 8394

22 Faisal Alkhateeb, Jérôme Euzenat

Theorem 1 (Complexity of nested regular expression evaluation [33]). The evaluation problem
for a nested regular expression R over an RDF graph G can be solved in time O(|G| × |R|).

Answers to nSPARQL queries follow the same definition as for SPARQL (Definition 9) but
with maps satisfying nSPARQL triple patterns.

Definition 31 (Evaluation of a nSPARQL triple pattern). The evaluation of a nSPARQL triple
pattern 〈x,R, y〉 over an RDF graph G is:

[[〈x,R, y〉]]G = {σ|dom(σ) = {x, y} ∩ B and 〈σ(x), σ(y)〉 ∈ [[R]]G}

[33] shows that avoiding the projection operator (SELECT), keeps the complexity of nSPARQL
basic, i.e., conjunctive, graph pattern evaluation to polynomial and mentions that adding pro-
jection would make it NP-complete.

Clearly, nSPARQL is a good navigational language, but there still are useful queries that could
not be expressed. For example, it cannot be used to find nodes connected with transportation
mean that is not a bus or transportation means belonging to Air France, i.e., containing the URI
of the company.

5.3 NSPARQL

It is also possible to create a query language from nSPARQL triple patterns by simply replacing
SPARQL triple patterns by nSPARQL triple patterns. We call such a language NSPARQL for
differentiating it from the original nSPARQL [33]. However, the merits of the approach are
directly inherited from the original nSPARQL.

A NSPARQL query for the select form is SELECT ~B FROM u WHERE P such that P is a
nSPARQL graph pattern (see Definition 28). Hence, NSPARQL graph patterns are built on top
of nSPARQL in the same way as SPARQL is built on top of GRDF and PSPARQL is built on
top of PRDF.

Answers to NSPARQL queries are based on the extension of |=nSPARQL nSPARQL graph
patterns following Definition 9 using |=nSPARQL as the entailment relation.

Definition 32 (Answers to an NSPARQL query). Let SELECT ~B FROM u WHERE P be a NSPARQL
query with P a nSPARQL graph pattern and G be the (G)RDF graph identified by the URI u,
then the set of answers to this query is:

Ao(~B,G, P) = {σ|
~B
~B
| G |=nSPARQL σ(P)}.

The complexity of NSPARQL query evaluation is likely to be PSPACE-complete as SPARQL
(see §2.2.2).

5.4 SPARQL queries modulo RDFS with nSPARQL

Definition 33. The evaluation of an nSPARQL triple pattern 〈x,R, y〉 over an RDF graph G
modulo RDFS is defined as

[[〈x,R, y〉]]rdfsG = [[〈x,R, y〉]]closure(G)

Definition 34 (Answers to an nSPARQL basic graph pattern modulo RDFS). Let P be a basic
nSPARQL graph pattern and G be an RDF graph, then the set of answers to P over G modulo
RDFS is:

So(P,G) =
⋂

t∈P

[[t]]rdfsG

Inria

Answering SPARQL queries modulo RDF Schema with paths 23

As presented in [33], nSPARQL can evaluate queries with respect to RDFS by transforming
the queries with rules [28]:

φ(sc) = (next::sc)+

φ(sp) = (next::sp)+

φ(dom) = next::dom

φ(range) = next::range

φ(type) = next::type/next::sc*

|edge/next::sp*/next::dom/next::sc*

|node−1/next::sp*/next::range

/next::sc*

φ(p) = next[(next::sp)*/self::p] (p 6∈ {sp, sc, type, dom, range})

Example 14 (nSPARQL evaluation modulo RDFS). The following nSPARQL graph pattern
could be used as a query to retrieve the set of pairs of cities connected by a sequence of trans-
portation means such that one city is from France and the other city is from Jordan:

{〈?city1, (next ::transport)
+, ?city2〉,

〈?city1, next ::cityIn, France〉,

〈?city2, next ::cityIn, Jordan〉}

When evaluating this graph pattern against the RDF graph of Figure 2, it returns the empty set
since there is no explicit “transport” property between the two queried cities. However, considering
the RDFS semantics, it should return the following set of pairs:

{〈?city1 ← Paris, ?city2 ← Amman〉, 〈?city1 ← Grenoble, ?city2 ← Amman〉}

To answer the above graph pattern considering RDFS semantics, it could be transformed to
the following nSPARQL graph pattern:

{〈?city1, (next ::[(next :: sp)
∗/self :: transport])+, ?city2〉,

〈?city1, next ::cityIn, France〉,

〈?city2, next ::cityIn, Jordan〉}

This encoding is correct and complete with respect to RDFS entailment.

Theorem 2 (Completeness of φ on triples [33] (Theorem 3)). Let 〈x, p, y〉 be a SPARQL triple
pattern with x, y ∈ (U ∪ B) and p ∈ U , then for any RDF graph G:

[[〈x, p, y〉]]rdfsG = [[〈x, φ(p), y〉]]G

This results uses the natural extension of φ to nSPARQL graph patterns to answer SPARQL
queries modulo RDFS.

Proposition 9 (Completeness of φ on graph patterns [33]). Given a basic graph pattern P and
an RDFS graph G,

G |=nrx

RDFS P iff G |=nSPARQL φ(P)

RR n° 8394

24 Faisal Alkhateeb, Jérôme Euzenat

5.5 SPARQL queries modulo RDFS with NSPARQL

These results about nSPARQL can be transferred to NSPARQL query answering:

Proposition 10 (Answers to a SPARQL query modulo RDFS by NSPARQL). Let SELECT ~B
FROM u WHERE P be a SPARQL query with P a SPARQL graph pattern and G the RDFS graph
identified by the URI u, then the set of answers to this query is:

A#(~B,G, P) = {σ|
~B
~B
| σ ∈ So(φ(P), G)}

Example 15 (NSPARQL Query). The result of transforming the query of Example 4 with φ is:

SELECT ?x, ?y, ?z

FROM ...

WHERE {

?x next[(next::sp)*/self::rn:inhibits] ?y.

?y next[(next::sp)*/self::rn:regulates] ?z.

?x next[(next::sp)*/self::rn:promotes] ?z.

?x next::rdf:type/next::sc*

|edge/next::sp*/next::dom/next::sc*

|node-1/next::sp*/next::range/next::sc* rn:gene.

}

This query provides the correct set of answers for the RDF graph of Example 1 modulo the RDF
Schema of Example 7 (given in Example 9).

The main problem with NSPARQL is that, because nested regular expressions do not contain
variables, it does not preserve SPARQL queries. Indeed, it is impossible to express a query
containing the simple triple 〈?x ?y ?z〉. This may seem like a minor problem, but in fact
NSPARQL graph patterns prohibits dependencies between two variables as freely as it is possible
to express in SPARQL. For instance, querying a gene regulation network for self-regulation cycles
(such that a product which inhibits another product that indirectly activates itself or which
activates a product which indirectly inhibit itself), can be achieved with the following SPARQL
query:

SELECT ?a

WHERE {

?a ?p ?b.

?b rn:promotes ?c.

?c ?q ?a.

?a rdf:type rn:gene.

?b rdf:type rn:gene.

?c rdf:type rn:gene.

?p sp rn:regulates.

?q sp rn:regulates.

?p owl:inverseOf ?q.

}

Such queries are representative of queries in which two different predicates (?p and ?q) are de-
pendent of each others2. They are not expressible by a language like NSPARQL. An nSPARQL
expression can express (abstracting for the type constraints):

?a next[(next::sp)*/self::rn:regulates] / next[(next::sp)*/self::rn:regulates]

/ next[(next::sp)*/self::rn:regulates] ?a

but it cannot express the owl:inverseof constraints because it defines a dependency between two
places in the path (this is not anymore a regular path).

The same type of query can be used for querying a banking system for detecting money
laundering in which a particular amount is moving and coming back through an account through
buy/sell or debit/credit operations with an intermediary transfer.

2Here through owl:inverseOf, but the use of OWL vocabulary is not at stake here, it could have been
rdfs:subPropertyOf or any other property.

Inria

Answering SPARQL queries modulo RDF Schema with paths 25

6 cpSPARQL and CPSPARQL

CPSPARQL has been defined for addressing two main issues. The first one comes from the need
to extend PSPARQL and thus to allow for expressing constraints on nodes of traversed paths;
while the second one comes from the need to answer PSPARQL queries modulo RDFS so that
the transformation rules could be applied to PSPARQL queries [2].

In addition to CPSPARQL, we present cpSPARQL [6], a language using CPSPARQL graph
patterns in the same way as nSPARQL does.

6.1 CPSPARQL syntax

The notation that we use for the syntax of CPSPARQL is slightly different from the one defined in
the original proposal [2]. The original one uses edge and node constraints to express constraints
on predicates (or edges) and nodes of RDF graphs, respectively. In this paper, we adopt the
axes borrowed from XPath, with which the reader may be more familiar, as done for nSPARQL.
This also will allow us to better compare cpSPARQL and nSPARQL. Additionally, in the original
proposal, ALL and EXISTS keywords are used to express constraints on all traversed nodes or to
check the existence of a node in the traversed path that satisfies the given constraint. We do not
use these keywords in the fragment presented below since they do not add expressiveness with
respect to RDFS semantics, i.e., the fragment still captures RDFS semantics.

Constraints act as filters for paths that must be traversed by constrained regular expressions
and select those whose nodes satisfy encountered constraint.

Definition 35 (Constrained regular expression). A constrained regular expression is an expres-
sion built from the following grammar:

cre ::= axis | axis ::a | axis ::[?x : ψ] | axis ::]?x : ψ[| cre | cre/cre | cre|cre | cre∗

with ψ a set of triples belonging to U ∪B ∪ {?x}× cre×T ∪ {?x} and FILTER-expressions over
B ∪ {?x}. ψ is called a CPRDF-constraint and ?x its head variable.

Constrained regular expressions allow for constraining the item in one axis to satisfy a par-
ticular constraint, i.e., to satisfy a particular graph pattern (here an RDF graph) or filter. We
introduce the closed square brackets and open square brackets notation for distinguishing between
constraints which export their variable (it may be assigned by the map) and constraints which do
not export it (the variable is only notational). This is equivalent to the initial CPSPARQL for-
mulation, in which the variable was always exported, since CPSPARQL can ignore such variables
through projection.

We use B(R) for the set of variables occurring as the head variable of an open bracket
constraint in R.

Constraint nesting is allowed because constrained regular expressions may be used in the
graph pattern of another constrained regular expression as in Example 16.

Example 16 (Constrained regular expression). The following constrained regular expression
could be used to find nodes connected by transportation means that are not buses:

(next :: [?p : {〈?p, (next :: sp)∗, transport〉FILTER(?p! = bus)}])+

In contrast to nested regular expressions, constrained regular expressions can apply constrains
(such as SPARQL constraints) in addition to simple nested path constraints.

Constrained regular expressions are used in triple patterns, precisely in predicate position, to
define CPSPARQL.

RR n° 8394

26 Faisal Alkhateeb, Jérôme Euzenat

Definition 36 (CPSPARQL triple pattern). A CPSPARQL triple pattern is a triple 〈s, p, o〉
such that s ∈ T , o ∈ T and p is a constrained regular expression.

Definition 37 (CPSPARQL graph pattern). A CPSPARQL graph pattern is defined inductively
by:

– every CPSPARQL triple pattern is a CPSPARQL graph pattern;
– if P1 and P2 are two CPSPARQL graph patterns and K is a SPARQL constraint, then (P1

AND P2), (P1 UNION P2), (P1 OPT P2), and (P1 FILTER K) are CPSPARQL graph patterns.

Example 17 (CPSPARQL graph pattern). The following CPSPARQL graph pattern could be
used to retrieve the set of pairs of cities connected by a sequence of transportation means (which
are not buses) such that one city in France and the other one in Jordan:

{〈?city1, (next :: [?p : {〈?p, (next :: sp)∗, transport〉FILTER(?p! = bus)}])+, ?city2〉

〈?city1, next :: cityIn, France〉

〈?city2, next :: cityIn, Jordan〉}

If open square brackets were used, this graph pattern would, in addition, bind the ?p variable to
a matching value, i.e., the transportation means used.

By restricting CPRDF constraints, it is possible to define a far less expressive language.
cpSPARQL is such a language.

Definition 38 (cpSPARQL regular expression [6]). A cpSPARQL regular expression is an ex-
pression built from the following grammar:

cpre ::= axis | axis::a | axis::]?x : TRUE[

| axis::[?x : {〈?x, cpre, v〉}{FILTER(?x)}]

| cpre | cpre/cpre | cpre|cpre | cpre∗

such that v is either a distinct variable ?y or a constant (an element of U ∪L) and FILTER(?x)
is the usual SPARQL filter condition containing at most the variable ?x and v if v is a variable.

The first specific form, with open square brackets, has been preserved so that cpSPARQL
triples cover SPARQL basic graph patterns, i.e., allow for variables in predicate position. In the
other specific forms, a cpSPARQL constraint is either a cpSPARQL regular expression containing
?x as the only variable and/or a SPARQL FILTER constraint. Hence, such a regular expression
may have several constraints, but each constraint can only expose one variable and it cannot refer
to variables defined elsewhere. It is clear that any cpSPARQL regular expression is a constrained
regular expression.

Deciding if a CPSPARQL triple is a cpSPARQL triple can be decided in linear time in the
size of the regular expression used.

Example 18 (cpSPARQL triple patterns). The query of Example 12 could be expressed by the
following cpSPARQL pattern:

〈?city1, (next :: [?p : {〈?p, (next :: sp)∗, transport〉}])+, ?city2〉

The constraint ψ=?p :{〈?p, (next ::sp)∗, transport〉} is used to restrict the properties (in this pat-
tern the constraint is applied to properties since the axis next is used) to be only a transportation
mean.

Inria

Answering SPARQL queries modulo RDF Schema with paths 27

Example 16 provides another cpSPARQL regular expression. By contrast, CPSPARQL graph
patterns allow for queries like:

next :: [?p; {〈?p, (next :: sp)∗, ?z〉,

〈?q, (next :: sp)∗, ?z〉,

〈?p, owl : inverseOf, ?q〉,

F ILTER(regex(?z, iata.org)}]

which is not a cpSPARQL regular expression since it uses more than two variables.

It is possible to develop languages based on cpSPARQL regular expressions following what
is done with constrained regular expressions.

6.2 CPSPARQL semantics

Intuitively, a constrained regular expression next::[ψ] (where ψ =?p : {〈?p, sp∗, transport〉}) is
equivalent to next::p if p satisfies the constraint ψ, i.e., p should be a sub-property of transport
(when p is substituted to the variable ?p).

Definition 39 (Satisfied constraint in an RDF graph). Let G be an RDF graph, s and o be two
nodes of G and ψ = x :C be a constraint, then s and o satisfies ψ in G (denoted 〈s, o〉 ∈ [[ψ]]G)
if and only if one of the following conditions is satisfied:

1. C is a triple pattern C = 〈x,R, y〉, and 〈xxs , y
y
o 〉 ∈ [[Rx

s]]G, where Kz
r means that r is

substituted to the variable z if K = z or K contains the variable z. If z is a constant then
z = r.

2. C is a SPARQL filter constraint and Cx,y
s,o = ⊤, where Cx,y

s,o = ⊤ means that the constraint
obtained by the substitution of s to each occurrence of the variable x and o to each occurrence
of the variable y in C is evaluated to true3.

3. C = P FILTER K, then 1 and 2 should be satisfied

As for nested regular expressions, the evaluation of a constrained regular expression R over
an RDF graph G is defined as a binary relation [[R]]G, by a pair of nodes 〈a, b〉 such that a is
reachable from b in G by following a path that conforms to R. The following definition extends
Definition 29 to take into account the semantics of terms with constraints.

Definition 40 (Constrained path interpretation). Given a constrained regular expression P and
an RDF graph G, if P is unconstrained then the interpretation of P in G (denoted [[P]]G) is as
in Definition 29, otherwise the interpretation of P in G is defined as:

[[self :: [ψ]]]G = {〈x, x〉| ∃z;x ∈ voc(G) ∧ 〈x, z〉 ∈ [[ψ]]G}

[[next :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈x, z, y〉 ∈ G ∧ 〈z, w〉 ∈ [[ψ]]G}

[[edge :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈x, y, z〉 ∈ G ∧ 〈z, w〉 ∈ [[ψ]]G}

[[node :: [ψ]]]G = {〈x, y〉| ∃z, w; 〈z, x, y〉 ∈ G ∧ 〈z, w〉 ∈ [[ψ]]G}
[[

axis−1 :: [ψ]
]]

G
= {〈x, y〉| 〈y, x〉 ∈ [[axis :: [ψ]]]G}

Definition 41 (Answer to a CPSPARQL triple pattern). The evaluation of a CPSPARQL triple
pattern 〈x,R, y〉 over an RDF graph G is defined as the following set of maps:

[[〈x,R, y〉]]G = {σ | dom(σ) = {x, y} ∩ B ∪ B(R) and 〈σ(x), σ(y)〉 ∈ [[σ(R)]]G}

3Except for the case of bound (see Definition 7 and the discussion after it).

RR n° 8394

28 Faisal Alkhateeb, Jérôme Euzenat

such that σ(R) is the constrained regular expression obtained by substituting the variable ?x
appearing in a constraint with open brackets in R by σ(?x).

This semantics also applies to cpSPARQL graph patterns.

6.3 Evaluating cpSPARQL regular expressions

In order to establish the complexity of cpSPARQL we follow [33] to store an RDF graph as
an adjacency list: every u ∈ voc(G) is associated with a list of pairs α(u). For instance, if
〈s, p, o〉 ∈ G, then 〈next::p, o〉 ∈ α(s) and 〈edge−1::o, s〉 ∈ α(p). Also, 〈self::u, u〉 ∈ α(u), for
u ∈ voc(G). The set of terms of a constrained regular expression R, denoted by T (R), is
constructed as follows:

T (R) ={R}if R is either axis, axis::a, or axis::ψ

T (R1/R2) =T (R1|R2) = T (R1) ∪ T (R2)

T (R∗
1) =T (R1)

Let AR = (Q, T (R), s0, F, δ) be the ǫ − NFA of R constructed in the usual way using the
terms T (R), where δ : Q× (T (R)∪{epsilon})→ 2Q be its transition function. In the evaluation
algorithm, we use the product automaton G × AR (in which δ′ : 〈voc(G) × Q〉 × (T (R) ∪
{epsilon})→ 2voc(G)×Q is its transition function). We construct G×AR as follows:

– 〈u, q〉 ∈ voc(G) ×Q, for every u ∈ voc(G) and q ∈ Q;

– 〈v, q〉 ∈ δ′(〈u, p〉, s) iff q ∈ δ(p, s); and one of the following conditions satisfied:

– s = axis and there exists a s.t. 〈axis::a, v〉 ∈ α(u)
– s = axis::a and 〈axis::a, v〉 ∈ α(u)
– s = axis::ψ and there exists b s.t. 〈axis::b, v〉 ∈ α(u) and b ∈ [[ψ]]G

Algorithm 2 (Eval) solves the evaluation problem for a constrained regular expression R over
an RDF graphG. This algorithm is almost the same as the one in [33] which solves the evaluation
problem for nested regular expressions R over an RDF graph G. The Eval algorithm calls the
Algorithm 1 (LABEL), which is an adaptation of the LABEL algorithm of [33] in which we
modify only the first two steps. These two steps are based on the transformation rules from
nSPARQL expressions to cpSPARQL expressions (see §7.4).

Algorithm 1 LABEL(G, exp):

1. for each axis :: [ψ] ∈ D0(exp) do

2. call Label(G, exp’) //where exp′ = exp1/self :: p if ψ =?x :<?x, exp1, p >; exp′ =
exp1/self :: p if ψ =?x :<?x, exp1, ?y >
3. construct Aexp, and assume that q0 is its initial state and F is its set of final states
4. construct G×Aexp

5. for each state (u, q0) that is connected to a state (v, qf) in G×Aexp, with qf ∈ F do

6. label(u) := label(u) ∪ exp

The algorithm as the same O(|G| × |R|) time complexity as usual regular expressions [39, 27]
and nested regular expressions [33] evaluation.

Theorem 3 (Complexity of cpSPARQL regular expression evaluation). Eval solves the evalua-
tion problem for constrained regular expression in time O(|G| × |R|).

Inria

Answering SPARQL queries modulo RDF Schema with paths 29

Algorithm 2 Eval(G,R, 〈a, b〉)

Data: An RDF graph G, a constrained regular expression R, and a pair 〈a, b〉.
Result: yes if 〈a, b〉 ∈ [[R]]G; otherwise no.

for each u ∈ voc(G) do

label(u) := ∅
LABEL (G,R)
construct AR (assume q0 : initial state and F : set of final states)
construct the product automaton G×AR

if a state 〈b, qf 〉 with qf ∈ F , is reachable from 〈a, q0〉 in G×AR then

return yes;
else

return no;
end if

6.4 SPARQL queries modulo RDFS with CPSPARQL

Like for nSPARQL, constraints allow for encoding RDF Schemas within queries.

Definition 42 (RDFS triple pattern expansion [2]). Given an RDF triple t, the RDFS expansion
of t, denoted by τ(t), is defined as:

τ(〈s, sc, o〉) =〈s, next::sc+, o〉

τ(〈s, sp, o〉) =〈s, next::sp+, o〉

τ(〈s, dom, o〉) =〈s, next::dom, o〉

τ(〈s, range, o〉) =〈s, next::range, o〉

τ(〈s, type, o〉) =〈s, next::type/next::sc∗|

edge/(next::sp)∗/next::dom/(next::sc)∗|

node
−1/(next::sp)∗/next::range/(next::sc)∗, o〉

τ(〈s, p, o〉) =〈s, (next::[?x : {〈?x, (next::sp)∗, p〉}]), o〉

p 6∈ {sp, sc, type, dom, range}

The RDFS expansion of an RDF triple is a cpSPARQL triple.
The extra variable ?x introduced in the last item of the transformation, is only used inside the

constraint of the constrained regular expression and so it is not considered to be in dom(σ), i.e.,
only variables occurring as a subject or an object in a CPSPARQL triple pattern are considered
in maps (see Definition 41). Therefore, the projection operator (SELECT) is not needed to
restrict the results of the transformed triple as in the case of PSPARQL [5], as illustrated in the
following example.

Example 19 (SPARQL query transformation). Consider the following SPARQL query that
searches pairs of nodes connected with a property p

SELECT ?X ?Y

WHERE ?X p ?Y .

It is possible to answer this query modulo RDFS by transforming this query into the following
PSPARQL query:

SELECT ?X ?Y

WHERE ?X ?P ?Y . ?P sp* p .

RR n° 8394

30 Faisal Alkhateeb, Jérôme Euzenat

The evaluation of the above PSPARQL query is the map {?X ← a, ?P ← b, ?Y ← c}. So, to
actually obtain the desired result, a projection (SELECT) operator must be performed since an
extra variable ?P is used in the transformation. It is argued in [33] that including the projection
(SELECT) operator to the conjunctive fragment of PSPARQL makes the evaluation problem
NP-hard.

On the other hand, the query could be answered by transforming it, with the τ function of
Definition 42, to the following cpSPARQL query (in which there is no need for the projection
operator):

?X next::[?z: ?z (next::sp)* p] ?Y

Since the variable ?z is used inside the constraint, the answer to this query will be {?X ←
a, ?Y ← b} (see Definition 40).

This has the important consequence that any nSPARQL graph pattern can be translated in a
cpSPARQL graph pattern with similar structure and no additional variable. Hence, no additional
projection operation (SELECT) is required for answering nSPARQL queries in cpSPARQL.

Theorem 4. Let 〈x, p, y〉 be a SPARQL triple pattern with x, y ∈ (U ∪ B) and p ∈ U , then

[[〈x, p, y〉]]rdfsG = [[〈x, τ(p), y〉]]G for any RDF graph G.

7 On the respective expressiveness of cpSPARQL and nSPARQL

In this section, we compare the expressiveness of cpSPARQL with that of nSPARQL. We iden-
tify several assertions which together show that cpSPARQL is strictly more expressive than
nSPARQL and that even if nSPARQL were added projection, it would remain strictly less ex-
pressive than CPSPARQL. These are the core results of [6].

7.1 Nested regular expressions (nSPARQL) cannot express all (SPARQL)
triple patterns

Although it is explained in [33] that SPARQL triple patterns can be encoded by nested reg-
ular expressions, triple patterns with three variables (subject, predicate, object) could not be
expressed by nested regular expressions since variables are not allowed in nested regular expres-
sions. The reader may wonder whether this is useful or not. The following query is a useful
example:

SELECT *

WHERE ?s foaf:name "Faisal". ?s ?p ?o .

That could be used to retrieve all RDF data about a person named "Faisal". However,
cpSPARQL triple patterns are proper extension of SPARQL triple patterns and thus the above
query could be expressed by the following query:

SELECT *

WHERE ?s next::foaf:name "Faisal".

?s next::]?p:TRUE[?o .

7.2 nSPARQL without SELECT cannot express all CPSPARQL

We show in the following that some queries, which can be expressed by CPSPARQL, can only
be expressed in nSPARQL with projection (SELECT):

Inria

Answering SPARQL queries modulo RDF Schema with paths 31

Assume that one wants to retrieve pairs of distinct nodes having a common ancestor. Then
the following nSPARQL pattern can express this query:

{〈?person1,(next::ascendant)+/(next−1
::ascendant)+, ?person2〉,

F ILTER(!(?person1 =?person2))}

The same query with the restriction that the name of the common ancestor should contain a
given family name, for instance "alkhateeb", requires the use of an extra variable to pose the
constraint:

{〈?person1, (next::ascendant)+, ?ancestor〉,

〈?person2, (next::ascendant)+, ?ancestor〉,

F ILTER(!(?person1 =?person2)&&(regex(?ancestor, ”̂alkhateeb”))}

The evaluation of this graph pattern is the map {?person1← p1, ?ancestor ← p3, ?person2 ←
p2}. Therefore, to obtain the desired result, projection must be performed:

σ?person1,?person2(

{〈?person1, (next::ascendant)+, ?ancestor〉,

〈?person2, (next::ascendant)+, ?ancestor〉,

F ILTER(!(?person1 =?person2)&&(regex(?ancestor, ”̂alkhateeb”))})

So, the above query cannot be expressed in nSPARQL without the use of SELECT, which
is not allowed in nSPARQL [33]. Besides, any SPARQL query that uses SELECT over a set of
variables such that there exists at least one existential variable, i.e., a variable not in the SELECT
clause, used in a FILTER constraint cannot be expressed by nSPARQL graph patterns.

However, the following CPSPARQL graph pattern could be used to express the above query:

{〈?person1, (next::ascendant)+

/self::[?ancestor : FILTER(regex(?ancestor, ”̂alkhateeb”))]

/(next−1
::ascendant)+, ?person2〉, F ILTER(!(?person1 =?person2))}

7.3 nSPARQL cannot express all cpSPARQL, even with SELECT

In the following discussion, we show that there exists a cpSPARQL regular expression that cannot
be expressed in a nested regular expression as well as some natural and useful queries that can
be expressed in CPSPARQL patterns cannot be expressed in nSPARQL patterns even with the
SELECT operator.

If one wants to restrict the query of Example 12 such that every stop is a city in the same
country (for example, France), then the following nested regular expression expresses this query:

〈?city1, (next :: [(next :: sp)
∗/self :: transport]/self :: [next :: cityIn/self :: France])+, ?city2〉

This query could also be expressed in the following constrained regular expressions:

〈?city1, (next :: [ψ1]/self :: [ψ2])
+, ?city2〉

where ψ1 =?x : {〈?x, (next :: sp)∗, transport〉}
and ψ2 =?x : {〈?x, next :: cityIn, France〉}

If one wants that each stop satisfies a specific constraint, e.g., cities with a population size
larger than 20, 000 inhabitants, and each transportation mean belongs to Air France, i.e., its

RR n° 8394

32 Faisal Alkhateeb, Jérôme Euzenat

URI is in the airfrance domain name. Then this query is expressed by the following constrained
regular expression:

P = 〈?city1, (next :: [ψ1]/self :: [ψ2])
+, ?city2〉

where ψ1 =?x : {〈?x, (next :: sp)∗, transport〉. F ILTER (regex(?x, ”www.AirFrance.fr/”))}
and ψ2 =?x : {〈?x, next :: size, ?size〉. F ILTER (?size > 20, 000)}

However, this query cannot be expressed by a nested regular expression, since it is not possible
to apply constraints, such as SPARQL constraints, in the traversed nodes. Only navigational
constraints can be expressed.

In this case, the variables ?x and ?size are not exported. Hence, the above query can be
expressed by a cpSPARQL regular expression without requiring the SELECT operation. This
cannot be expressed by a nested regular expression.

Theorem 5. Not all constrained regular expression R can be expressed as a nested regular
expression R′ such that [[R]]G = [[R′]]G, for every RDF graph G.

The type of counter-examples exhibited by the proof of Theorem 5 may seem caricatural.
However, it illustrates the capability to apply (non navigational) constraints to values which
nSPARQL lacks. Beside such a minimal example set forth for proving the theorem the same
capability is used in more elaborate path queries seen in examples of previous sections (selecting
path with intermediate nodes or intermediate predicates satisfying some constraints).

This capability to express constraints on values in path expressions, available in XPath as
well, is invaluable for selecting exactly those paths that are useful instead of being constrained
to resort to a posteriori selection. This provides interesting computational properties discussed
in Section 8.

The following is another counter-example that could not be expressed as a nested regular
expression.

Example 20. Consider the following RDF graph representing flights belonging to different airline
companies and other transportation means between cities:

{〈city1, airfrance : flight1, city2〉

{〈city2, airfrance : flight2, city3〉

...

{〈cityi, anothercomapny : flight1, cityj〉

Assume that one wants to search pairs of cities connected by a sequence of flights belonging
to the airfrance company. Since there is no way to select (constrain) the transportation means
in nested regular expressions, the only way the user can express such a query is to list all flights
belonging to airfrance as follows:

(airfrance : flight1|...|airfrance : flightn)
+

However, this requires the user to know in advance these flights. Hence, independent of
the RDF graph, the exact meaning of the above query cannot be expressed by nested regular
expressions.

Inria

Answering SPARQL queries modulo RDF Schema with paths 33

7.4 cpSPARQL can express all nSPARQL

On the other hand, any nested regular expression R could be translated to a constrained regular
expression R1 = trans(R) as follows:

1. if R is either axis or axis::a, then trans(R) = R;

2. if R = R1/R2, then trans(R) = trans(R1)/trans(R2);

3. if R = R1|R2, then trans(R) = trans(R1)|trans(R2);

4. if R = (R1)
∗, then trans(R) = (trans(R1))

∗;

5. if R = exp1 :: [exp2], then trans(R) = exp1 :: [ψ], such that:

– ψ =?x : {〈?x, trans(exp3), p〉}, if exp2 = exp3/self :: p
– ψ =?x : {〈?x, trans(exp2), ?y〉}, otherwise.

In the last clause of this transformation, when the nested regular expression R = exp1 ::
[exp2], it is required to check the existence of two pairs of nodes that satisfies the sub-expression
exp2 (see Definition 29). Similarly, in cpSPARQL it is necessary to express this nested regular
expression as a triple in which the constraint is satisfied by the existence of two pairs of nodes
that replace the variables ?x and ?y.

This transformation process is illustrated by the following example.

Example 21 (From nSPARQL to cpSPARQL). Consider the following nested regular expression:

R1 = (next :: [(next :: sp)∗/self :: transport])+

according to the transformation rules above, the constrained regular expression equivalent to this
expression R2

= trans(R1)

= trans((next :: [(next ::sp)∗/self :: transport])+)

= (trans(next :: [(next ::sp)∗/self :: transport]))+

= next :: [?x :{〈?x, trans((next ::sp)∗), transport〉}]

= next :: [?x :{〈?x, (trans(next ::sp))∗ , transport〉}]

= next :: [?x :{〈?x, (next ::sp)∗ , transport〉}]

by successively using rules 4, 5, 4, 1, and 5.

Theorem 6. Any nested regular expression R can be transformed into a constrained regular
expression trans(R) such that [[R]]G = [[trans(R)]]G, for every RDF graph G.

8 Implementation

CPSPARQL has been implemented in order to evaluate its feasibility4. cpSPARQL does not
exist as an independent language but is covered by CPSPARQL. This implementation has not
been particularly optimised. It passes the W3C compliance tests for SPARQL 1.0 (but 5 tests
involving the non implemented DESCRIBE clause).

4The prototype is available at http://exmo.inria.fr/software/psparql .

RR n° 8394

http://exmo.inria.fr/software/psparql

34 Faisal Alkhateeb, Jérôme Euzenat

Experiments have been carried out for evaluating the behaviour of the system and test its
ability to correctly answer SPARQL, PSPARQL, and CPSPARQL queries in reasonable time
(against different RDF graph sizes from 5, 10, . . . , up to 100,000 triples in memory graphs).
In particular, it showed the capability at stake here: answering SPARQL queries with the RDFS
semantics.

The implementation has been also tested thoroughly in [8] and the results show that PSPARQL
had better performances than other implementations of SPARQL with paths5.

It has not been possible to us to compare the performance of our CPSPARQL implementation
with other proposals. Indeed, contrary to CPSPARQL, nSPARQL is not implemented at the
moment, so we must leave the experimental comparison for future work.

However, the experimentation has allowed to make interesting observations. In particular, the
CPSPARQL prototype shows that queries with constraints are answered faster than the same
queries without constraints. Indeed, CPRDF constraints allow for selecting path expressions
with nodes satisfying constraints while matching (on the fly instead of filtering them a posteri-
ori). The implemented prototype follows this natural strategy, thus reducing the search space.
This strategy promises to be always more efficient than a strategy which applies constraints a
posteriori. More details are available in [2].

9 Related work

The closest work to ours, nSPARQL, has been presented and compared in detail in Section 5
[33]. However, there are other work which may be considered relevant.

RQL [23] attempts to combine the relational algebra with some special class hierarchies. It
supports a form of transitive expressions over RDFS transitive properties, i.e., rdfs:subPropertyOf
and rdfs:subClassOf, for navigating through class and property hierarchies. Versa [29], RxPath
[37] are all path-based query languages for RDF that are well suited for graph traversal. SPAR-
QLeR [24] extends SPARQL by allowing query graph patterns involving path variables. Each
path variable is used to capture simple, i.e., acyclic, paths in RDF graphs, and is matched
against any arbitrary composition of RDF triples between two given nodes. This extension offers
functionalities like testing the length of paths and testing if a given node is in the found paths.
SPARQ2L [7] also allows using path variables in graph patterns. However, these languages have
not been shown to evaluate queries with respect to RDF Schema and their evaluation procedure
has not been proved complete to our knowledge. Moreover, answering path queries to capture
acyclic (simple) paths is NP-complete [27] (see also [8]).

Path queries (queries with regular expressions) can be translated into recursive Datalog pro-
grams over a ternary relation triple 〈node, predicate, node〉, which encodes the graph [1]. This
could provide a way to evaluate path queries with Datalog. However, such translations may
yield to a Datalog program whose evaluation does not terminate. On the other hand, several
techniques can be used to optimize path queries and provide good results in comparison with
optimized Datalog programs as shown in [17]. Recently [13] extended Datalog in order to cope
with querying modulo ontologies. Ontologies are in DL-Lite and, in particular DL-LiteR which
contains the fragment of RDFS considered here. However, this work only considers conjunctive
queries which is not sufficient for evaluating SPARQL queries which contains constructs such as
UNION, OPT and constraints (FILTER) which are not found in Datalog. [9] studied from a
computational complexity the same fragments with queries containing UNION in addition. How-
ever, given that this fragment is larger than the simple path queries considered in nSPARQL

5The queries and the RDF data that are used for the experimental results can be found in
http://www.dcc.uchile.cl/~jperez/papers/www2012/

Inria

http://www.dcc.uchile.cl/~jperez/papers/www2012/

Answering SPARQL queries modulo RDF Schema with paths 35

and cpSPARQL, the complexity is far higher (coNP).

Standardization efforts by the W3C SPARQL working group have defined the notion of
inference regime for SPARQL [19, 18]. This notion is relevant to query evaluation modulo RDFS
that is exhibited by CPSPARQL and is obviously less relevant to cpSPARQL and nSPARQL. One
main difference is that we have departed from the strict definition of “matching graph patterns”
with the use of path for exploring the graph, and specifically the graph entailed by RDFS.
This avoids the use of RDF graph closure on which strict matching is applied. CPSPARQL
and nSPARQL use query rewriting for answering queries modulo RDFS, but, unlike DL-Lite
rewriting strategies, queries are rewritten by preserving their structure instead of producing
unions of conjunctive queries.

[16] studied the static analysis of PSPARQL query containment: determining whether, for
any graph, the answers to a query are contained in those of another query. This is achieved by
encoding RDF graphs as transition systems and PSPARQL queries as µ-calculus formulas and
then reducing the containment problem to testing satisfiability in the logic.

The language RPL extends nested regular expressions [40] to allow boolean node tests. How-
ever, using variables in nested regular expressions of nSPARQL requires extending its syntax
and semantics. Hence, comparison between variables and values as well as triple patterns with
variables in subject, predicate and object are not allowed (see examples in Section 7).

10 Conclusion

The SPARQL query language has proved to be very successful in offering access to triple stores
over SPARQL endpoints all over the web. It is a critical element of the semantic web infrastruc-
ture. However, by limiting it to querying RDF graphs, little consideration has been made of the
semantic aspect of RDF. In particular, querying RDF graphs modulo RDF Schemas or OWL
ontologies is a most needed feature [19].

One possible approach for querying an RDFS graph G in a sound and complete way is by
computing the closure graph of G, i.e., the graph obtained by saturating G with all informations
that can be deduced using a set of predefined rules called RDFS rules, then evaluating the query
Q over the closure graph. However, this approach takes time proportional to |Q| × |G|2 in the
worst case [28].

SPARQL PSPARQL CPSPARQL

NSPARQL

SPARQL gp PSPARQL gp CPSPARQL gpcpSPARQL

nSPARQL gp
= nSPARQL

is extended by

uses

Figure 4: Query languages and their graph patterns.

Over the years, several other languages, i.e., PSPARQL [5], nSPARQL [33] and CPSPARQL
[2], have been shown able to deal with RDFS graphs without computing the closure. They all
use different variations of path regular expressions as triple predicates and adopt a semantics
based on checking the existence of paths (without counting them) in the RDF graph. In order

RR n° 8394

36 Faisal Alkhateeb, Jérôme Euzenat

to ease their comparison, we defined cpSPARQL as very close to nSPARQL and NSPARQL as
very close to CPSPARQL.

Figure 4 shows the position of the various languages. nSPARQL and cpSPARQL are good
navigational languages for RDF(S). However, cpSPARQL is an extension of SPARQL graph
patterns, while nSPARQL does not contain all SPARQL graph patterns. Moreover, using such
a path language within the SPARQL structure allows for properly extending SPARQL. Some
features (such as filtering nodes inside expressions) are very simple to add to the syntax and
semantics of nested regular expressions.

More precisely, we showed that cpSPARQL, the fragment of CPSPARQL which is sufficient for
capturing RDFS semantics, admits an efficient evaluation algorithm while the whole CPSPARQL
language is in theory as efficient as SPARQL is. Moreover, we compared cpSPARQL with
nSPARQL and showed that cpSPARQL is strictly more expressive than nSPARQL.

It is likely that more expressive fragments of CPSPARQL graph patterns keeping the same
complexity may be found. In particular, we did not kept the capability to express the constraints
existentially or universally. This may be useful, for instance, to filter families all children of which
are over 18 or families one children of which is over 18.

This work can also be extended in the schema or ontology language on which it is applied.
OWL 2 opens the door to many OWL fragments for which it should be possible to design query
evaluation procedures.

Inria

Answering SPARQL queries modulo RDF Schema with paths 37

A Proofs

A.1 Induction lemma

All completeness proofs below follow the same style: because most of the results that we use are
based on entailment of graphs, i.e., basic graph patterns, we need to promote these results to all
graph patterns. This is done easily by defining query-structure preserving transformations and
using Lemma 1.

Definition 43 (Query-structure preserving transformation). A transformation ψ on RDFS
graphs and SPARQL graph patterns is said to be query structure preserving if and only if:

ψ(G |= P) = ψ(G) |= ψ(P) (1)

ψ(P AND P ′) = ψ(P) AND ψ(P ′) (2)

ψ(P UNION P ′) = ψ(P) UNION ψ(P ′) (3)

ψ(P OPT P ′) = ψ(P) OPT ψ(P ′) (4)

ψ(P FILTER K) = ψ(P) FILTER K (5)

As its name indicates, such a transformation preserves the structure of graph patterns. This
is the case of most transformations proposed here since they are defined on basic graph patterns
and extended to queries by applying them to basic graph patterns. The structure of P must
be preserved, but not be isomorphic to that of ψ(P). For instance, the transformation τ may
introduce extra UNION in the resulting pattern.

The induction lemma shows that if an entailment relation is complete for basic graph patterns,
then it is complete for all graph patterns.

Lemma 1 (Induction lemma). Let ψ be a query-structure preserving transformation, if for all
RDFS graph G, basic graph pattern B and map σ, ψ(G) |= σ(ψ(B)) iff G |= σ(B), then for all
graph pattern P , ψ(G) |= σ(ψ(P)) iff G |= σ(P).

Proof of Lemma 1. The lemma itself is proved by induction:

Base step For B a basic graph pattern and G an RDFS graph, ψ(G) |= σ(ψ(B)) iff G |=
σ(B), by hypothesis,

Induction step If for P and P ′, graph patterns, and G RDFS graph and σ map, ψ(G) |=

RR n° 8394

38 Faisal Alkhateeb, Jérôme Euzenat

σ(ψ(P)) iff G |= σ(P) and ψ(G) |= σ(ψ(P ′)) iff G |= σ(P ′), then:

G |= σ(P AND P ′) iff G |= σ(P) and G |= σ(P ′)

iff ψ(G) |= ψ(σ(P)) and ψ(G) |= ψ(σ(P ′))

iff ψ(G) |= σ(ψ(P AND P ′))

G |= σ(P UNION P ′) iff G |= σ(P) or G |= σ(P ′)

iff ψ(G) |= σ(ψ(P)) or G |= σ(ψ(P ′))

iff ψ(G) |= σ(ψ(P UNION P ′))

G |= σ(P OPT P ′) iff G |= σ(P) and [G |= σ(P ′)

or ∀σ′;G |= σ′(P ′), σ⊥σ′]

iff ψ(G) |= σ(ψ(P)) and [ψ(G) |= σ(ψ(P ′))

or ∀σ′;ψ(G) |= σ′(ψ(P ′)), σ⊥σ′]

iff ψ(G) |= σ(ψ(P OPT P ′))

G |= σ(P FILTER K) iff G |= σ(P) and σ(K) = ⊤

iff ψ(G) |= σ(ψ(P)) and σ(K) = ⊤

iff ψ(G) |= σ(ψ(P FILTER K))

The only difficult point is in the OPT part, but since the induction step strictly preserves the set
of maps satisfying a graph pattern, the universal quantification holds.

A.2 Completeness of partial non reflexive RDFS closure

We first have to extend the completeness proof of the partial closure (Proposition 4) to the non
reflexive case.

Proof of Proposition 5. The proof can be derived from Proposition 4. Indeed, it should be shown
that suppressing rules [RDFS8a] and [RDFS12a] does suppress all and only consequences of the
reflexivity of sc and sp.

[RDFS12a] generates 〈c sc c〉 which can be further used by [RDFS12b] and [RDFS11]. How-
ever, these two rules would only generate triples that are already in their premises. Hence the
only new generated triple is the reflexivity triple.

[RDFS8a] generates 〈p sp p〉 which can be further used by [RDFS8b], [RDF2] and [RDFS9].
Similarly, these three rules would only generate triples that are already in their premises or in
axiomatic triples. Hence the only new generated triple is the reflexivity triple.

Finally, both triples could be consumed by rules [RDFS6] and [RDFS7]. However, these rules
would require constraining the sp or sc relations through dom or range statements respectively.
This is not possible in genuine RDFS graphs.

In the other direction, the only way a model can contain 〈p, p〉 ∈ IEXT (ι
′(sp)) or 〈c, c〉 ∈

IEXT (ι
′(sc)) is through Definition 11 constraints:

– (1a) it is a triple of G. Then it is still in Ĝ\\H ;
– (4a) and (5a) by reflexivity;
– (4b), (6b) and (6c) which only apply to generate reflexive sc or sp statements when con-

straints are added to sc or sp.

Inria

Answering SPARQL queries modulo RDF Schema with paths 39

Proof of Corrolary 1. The proof is a simple consequence of Proposition 5. Proving that:

A#(~B,G, P) = A(~B, Ĝ\\P, P)

by Definition 13 and Proposition 2, is equivalent to proving that:

{σ|
~B
~B
|G |=nrx

RDFS σ(P)} = {σ|
~B
~B
|Ĝ\\P |=RDF σ(P)}

and Proposition 5 together with Lemma 1 means that this is true if G is satisfiable and genuine.

A.3 Completeness and complexity of the PSPARQL RDFS query en-
coding

Proof of Proposition 7. We use the same pattern as before, using Lemma 2 to be proved below.
Proving that:

A#(~B,G, P) = A⋆(~B,G, τ(P))

by Definition 13 and Definition 23, is equivalent to proving that:

{σ|
~B
~B
|G |=nrx

RDFS σ(P)} = {σ|
~B
~B
|G |=PSPARQL σ(τ(P))}

and Lemma 2 together with Lemma 1 means that this is true.

The proof is longer than the previous ones because it does not rely on externally proved
propositions. Instead, we need to prove the following lemma

Lemma 2. Given a basic SPARQL graph pattern P and an RDFS graph G,

G |=nrx

RDFS P iff G |=PSPARQL τ(P)

The proof relies on the notion of PRDF homomorphism, a particular sort of map [5]:

Definition 44 (PRDF homomorphism). Let G be a GRDF graph, and H be a PRDF graph.
A PRDF homomorphism from H into G is a map π from term(H) into term(G) such that
∀〈s,R, o〉 ∈ H, either

(i) the empty word ǫ ∈ L∗(R) and π(s) = π(o); or

(ii) ∃〈n0, p1, n1〉, . . . , 〈nk−1, pk, nk〉 in G such that n0 = π(s), nk = π(o), and p1 · . . . · pk ∈
L∗(π(R)).

Proof of Lemma 2. Since the answers to a graph pattern can be made by joining the answers to
its triple patterns [5], it is sufficient to show that answering a triple t is equivalent to answering
its transformed triple t′ = τ(t). Hence we consider each case of τ :

– Let t = 〈X , sc,Y〉, then t′ = 〈X , sc+,Y〉

(⇒) If σ ∈ A#(~B,G, t), then either 〈σ(X), sc, σ(Y)〉 ∈ G or 〈σ(X) = X0, sc,Y0〉, . . .,

〈Xn, sc, σ(Y) = Yn〉 ∈ G. In both cases, σ ∈ A⋆(~B,G, t′).

(⇐) If σ ∈ A⋆(~B,G, t′), then 〈σ(X) = X0, sc,Y0〉, . . ., 〈Xn, sc, σ(Y) = Yn〉 ∈ G. In what

follows, 〈σ(X), sc, σ(Y)〉 ∈ Ĝ. So, σ ∈ A#(~B,G, t).

RR n° 8394

40 Faisal Alkhateeb, Jérôme Euzenat

– Let t = 〈X , sp,Y〉, then t′ = 〈X , sp+,Y〉

(⇒) If σ ∈ A#(~B,G, t), then either 〈σ(X), sp, σ(Y)〉 ∈ G or 〈σ(X) = X0, sp,Y0〉, . . .,

〈Xn, sp, σ(Y) = Yn〉 ∈ G. In both cases, σ ∈ A⋆(~B,G, t′).

(⇐) If σ ∈ A⋆(~B,G, t′), then 〈σ(X) = X0, sp,Y0〉, . . ., 〈Xn, sp, σ(Y) = Yn〉 ∈ G. In what

follows, 〈σ(X), sp, σ(Y)〉 ∈ Ĝ. So, σ ∈ A#(~B,G, t).

– Let t = 〈X , p,Y〉, then t′ = {〈X , ?p,Y〉, 〈?p, sp∗, p〉}.

(⇒) If σ ∈ A#(~B,G, t), then either 〈σ(X), p, σ(Y)〉 ∈ G or 〈σ1(X), σ1(?p) = p0, σ1(Y)〉,
〈p0, sp, p1〉, . . ., 〈pn−1, sp, pn = p〉 ∈ G. In the first case, the map σ is a PRDF homomor-
phism from t′ into G. In the second case, the map σ1 is a PRDF homomorphism from t′

into G. The restriction of σ1 to the variables of the query ~B is σ. Hence in both cases,
σ ∈ A⋆(~B,G, t′).

(⇐) If σ|
~B
~B
∈ A⋆(~B,G, t′), then 〈σ|

~B
~B
(X), σ|

~B
~B
(?p) = p0, σ|

~B
~B
(Y)〉, 〈p0, sp, p1〉, . . ., 〈pn−1, sp, pn =

p〉 ∈ G. In what follows, 〈σ|
~B
~B
(X), p, σ|

~B
~B
Y)〉 ∈ Ĝ. So, σ|

~B
~B
∈ A#(~B,G, t).

– Let t = 〈X , type,Y〉,

(⇒) If σ ∈ A#(~B,G, t), then at least one of the following cases is satisfied:

– The triples 〈σ(X), type, o1〉, 〈o1, sc, o2〉, . . ., 〈on−1, sc, on = σ(Y)〉 belong to G. So that

σ is a PRDF homomorphism from the first part of t′ into G and σ ∈ A⋆(~B,G, t′).

– The triples 〈σ1(X), σ1(?p1) = p1, σ1(?y) = y〉, 〈p1, sp, p2〉, . . ., 〈pn−1, sp, pn〉, 〈pn, dom, o1〉,
〈o1, sc, o2〉, . . ., 〈on−1, sc, on = σ1(Y)〉 belong to G. So that σ1 is a PRDF homomor-
phism from the second part of t′ into G. The restriction of σ1 to the variables of the
query ~B is σ. Hence σ ∈ A⋆(~B,G, t′).

– The triples 〈σ1(?y) = y, σ1(?p1) = p1, σ1(X)〉, 〈p1, sp, p2〉, . . ., 〈pn−1, sp, pn〉, 〈pn, range, o1〉,
〈o1, sc, o2〉, . . ., 〈on−1, sc, on = σ1(Y)〉 belong to G. So that σ1 is a PRDF homomor-
phism from the second part of t′ into G. The restriction of σ1 to the variables of the
query ~B is σ. Hence σ ∈ A⋆(~B,G, t′).

(⇐) If σ|
~B
~B
∈ A⋆(~B,G, t′), then there exist three cases. The first case is that the triples

〈σ|
~B
~B
(X), type, o1〉, 〈o1, sc, o2〉, . . ., 〈on−1, sc, on = σ|

~B
~B
(Y)〉 belong to G. Using the sub-class

RDFS rules, 〈σ(X), type, σ(Y)〉 ∈ Ĝ. In the second case, the triples 〈σ(X), σ(?p1) = p1, y〉,
〈p1, sp, p2〉, . . ., 〈pn−1, sp, pn〉, 〈pn, dom, o1〉, 〈o1, sc, o2〉, . . ., 〈on−1, sc, on = σ(Y)〉 belong
to G. Using the sub-property RDFS rules, the triples 〈σ(X), p2, y〉, . . ., 〈σ(X), pn, y〉 ∈ Ĝ.
So that 〈σ(X), type, o1〉, . . ., 〈σ(X), type, on = σ(Y)〉 ∈ Ĝ (it is easy to prove the same

thing for the third case with range instead of dom). Hence σ|
~B
~B
∈ A#(~B,G, t).

Proof of Proposition 8. The complexity of answering queries modulo RDF Schema through the
PSPARQL RDFS encoding is the sequential combination of that of the two components: encoding
(τ) and evaluating the resulting query. The complexity of the encoding is linear in terms of triples
in the query graph pattern P , moreover its size is not more than seven times that of P (if all triples
are type statements). Since the complexity of PSPARQL query answering has been proved to be
PSPACE-complete in [5], the complexity of A⋆-Answer checking is PSPACE-complete.

Inria

Answering SPARQL queries modulo RDF Schema with paths 41

A.4 Completeness of NSPARQL query answering

Proof of Proposition 10. This is similar to the previous proof. The proof is a simple consequence
of Proposition 2. Proving that:

A#(~B,G, P) = Ao(~B,G, φ(P))

by Definition 13 and Definition 32, is equivalent to proving that:

{σ|
~B
~B
|G |=nrx

RDFS σ(P)} = {σ|
~B
~B
|G |=nSPARQL σ(φ(P))}

and Proposition 2 together with Lemma 1 means that this is true.

A.5 Complexity of cpSPARQL evaluation

Proof of Theorem 3. Let R be the a constrained regular expression, G be an RDF graph, 〈a, b〉
be a pair of nodes, and AR be the automaton recognizing the language of R.

The automaton of R can be constructed as described in §6.3 in nlogspace (as for the usual
automata [39, 27]). For simplicity and without loss of generality, we use the next axis to illustrate
the construction of the product automaton. This is because the axis determines the node to be
checked (subject, predicate or object) and thus does not affect the construction. The construction
of the product automaton is done as follows:

– If R = axis ::]?x : TRUE[then checking whether the pair 〈a, b〉 is in [[R]]G can be done in
O(|G|) since it is sufficient to substitute each node n to ?x and check whether 〈a, n, b〉 is
in G (according to the axis).

– Otherwise, call the Eval algorithm (where D0 is defined as done in [33]). If 〈si, next ::
[FILTER(?x)], sj〉 ∈ AR and 〈ni, next :: p, nj〉 ∈ G, then add 〈sj , nj〉 to the product
automaton if p satisfies the SPARQL filter constraint by substituting only the node p to
the variable ?x. Checking if a node n satisfies a SPARQL filter constraint can be done in
O(1).

Additionally, if 〈?x, next :: p, ?y〉.F ILTER(?x, ?y) ∈ AR and 〈ni, next :: p, nj〉 ∈ G, then
add 〈sj , nj〉 to the product automaton if 〈ni, next :: p, nj〉 ∈ G and the SPARQL filter
constraint is satisfied by substituting the node ni to the variable ?x and nj to the variable
?y.

So, the product automaton (G×AR) can be obtained in time O(|G| × |R|). Hence, checking
if the pair 〈a, b〉 ∈ [[R]]G is equivalent to checking if the language accepted by (G × AR) is not
empty, which can be done in O(|G|×|R|) (as in the case of usual regular expressions [39, 27]).

A.6 Correctness and completeness of RDFS translation to PSPARQL

The proof of Theorem 4 follows from the results in [33] except the last step.

Proof of Theorem 4. We need to prove only the last step since all other transformation steps are
the same as the ones in [33]. That is 〈σ(x), σ(y)〉 ∈ [[〈x, p, y〉]]rdfsG iff 〈σ(x), σ(y)〉 ∈ [[〈x, τ(p), y〉]]G.

– (⇒) Assume that 〈σ(x), σ(y)〉 ∈ [[〈x, p, y〉]]rdfsG . In this case, there exists p1 such that
(p1 sp p2 sp . . . sp pn = p) and 〈σ(x), p1, σ(y)〉 ∈ G as well as 〈σ(x), next::p1, σ(y)〉 ∈
G. Let us consider now the transformed triple τ(t) = 〈x, (next::ψ), y〉 (where ψ = [?p :
{〈?p, (next::sp)∗ , p〉}]). The maps for the variable ?p will be {〈?p, pi〉 | i = 1, . . . , n}
(since [[ψ]]G = {〈pi, p〉 | i = 1, . . . , n}). According to Definitions 40 and 41, 〈σ(x), σ(y)〉 ∈
[[〈x, (next::ψ), y〉]]G iff 〈σ(x), σ(y)〉 ∈ G and p1 ∈ [[ψ]]G, and this condition holds.

RR n° 8394

42 Faisal Alkhateeb, Jérôme Euzenat

– (⇐) We have to prove that, if 〈σ(x), σ(y)〉 ∈ [[〈x, (next::[ψ]), y〉]]G (with ψ =?p : {〈?p,

(next::sp)∗ , p〉}), then 〈σ(x), σ(y)〉∈ [[〈x, p, y〉]]rdfsG . Assume that 〈σ(x), σ(y)〉 ∈ [[〈x, (next::ψ), y〉]]G.
In this case, there exists p1 such that 〈σ(x), next::p1, σ(y)〉 ∈ G and p1 ∈ [[ψ]]G, that is,

〈p1,next::sp, p2〉, . . ., 〈pn−1,next::sp, pn = p〉 ∈ G. Therefore, 〈σ(x), σ(y)〉 ∈ [[〈x, p, y〉]]rdfsG

since 〈p1, (next::sp)∗ , p〉 and 〈σ(x), next::p1, σ(y)〉 ∈ G.

A.7 Expressiveness of nSPARQL and cpSPARQL

Proof of Theorem 5. Consider, without loss of generality, RDF graphs containing a predicate s
whose range is the set of integers. If one wants to select nodes which have a s-transition whose
value is over 3, this could be expressed by the following constrained regular expression:

R=self :: [?s :{〈?n, next ::s, ?s〉.F ILTER(?s> 3)}]

Consider a graph G with two triples 〈u, s, 2〉 and 〈v, s, 4〉. The evaluation of R will return
[[R]]G = {〈v, v〉}.

A nSPARQL nested regular expression R′ corresponding to R, should be able to select the
pair 〈v, v〉 as an answer. However, the two subgraphs made of the triples in G are isomorphic
with respect to their structure. Hence, any nSPARQL nested regular expression retrieving one
of them (a node which is the source of a s-edge) will retrieve both of them.

Even assuming that literals are followed and may be constrained by value, which is not the
case in the current definition of nSPARQL, it would be necessary to enumerate the s-values
larger than 3 (say 4, 5 . . .) to design an expression such as:

R′ = self :: [next :: s/self :: (4|5| . . .)]

However, there is an infinite number of such values and for the queries to be strictly equivalent,
i.e., to provide the same answers for any graph, it is necessary to cover them all. Indeed, if one
value is missing, then it is possible to create a graph G for which the answers to R and R′ do
not coincide.

It is thus not possible to express a query equivalent to R in nSPARQL.

Proof of Theorem 6. The equivalence of the cpSPARQL encoding of nested regular expressions
(trans) is given by induction on the structure of nested regular expressions.

– if R is either axis or axis::a, then trans(R) = R and thus [[R]]G = [[trans(R)]]G.

– Now assume that [[R1]]G = [[trans(R1)]]G and [[R2]]G = [[trans(R2)]]G, then [[R1|R2]]G =
[[trans(R1)]]G∪ [[trans(R2)]]G = [[trans(R1)| trans(R2)]]G = [[trans(R1|R2)]]G (based the
definition of regular languages). The same applies for the concatenation [[R1/R2]]G and
the closure (R1)

∗.

– If R = R1 :: [R2], then trans(R) = R1 :: [ψ], where ψ =?x : {〈?x, trans(R2), ?y〉}. Based
on Definition 29, [[R1 :: [R2]]]G = {〈x, y〉 |∃z, w ∧〈z, w〉 ∈ [[R2]]G}. If 〈z, w〉 ∈ [[R2]]G, then
〈z, w〉 ∈ [[trans(R2)]]G by substituting z and w to the variables ?x and ?y, respectively
(Definitions 39 and 40).

Inria

Answering SPARQL queries modulo RDF Schema with paths 43

References

[1] S. Abiteboul and V. Vianu. Regular path queries with constraints. In Proc. 16th ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems (PODS), pages
122–133, New York, NY, USA, 1997. ACM. pages 34

[2] F. Alkhateeb. Querying RDF(S) with regular expressions. Thèse d’informatique, Université
Joseph Fourier, Grenoble (FR), 2008. pages 3, 25, 29, 34, 35

[3] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Constrained regular expressions in SPARQL.
Research Report 6360, INRIA, Montbonnot (FR), 2007. pages 3, 4

[4] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Constrained regular expressions in SPARQL. In
H. Arabnia and A. Solo, editors, Proc. international conference on semantic web and web
services (SWWS), Las Vegas (NV US), pages 91–99, 2008. pages 3, 4

[5] F. Alkhateeb, J.-F. Baget, and J. Euzenat. Extending SPARQL with regular expression
patterns (for querying RDF). Journal of web semantics, 7(2):57–73, 2009. pages 3, 9, 10,
13, 15, 29, 35, 39, 40

[6] F. Alkhateeb and J. Euzenat. Constrained regular expressions for answering RDF-path
queries modulo RDFS. International journal of web information systems, 2014. to appear.
pages 1, 25, 26, 30

[7] K. Anyanwu, A. Maduko, and A. Sheth. SPARQ2L: towards support for subgraph extraction
queries in RDF databases. In Proc. 16th international conference on World Wide Web
(WWW), pages 797–806, 2007. pages 3, 34

[8] M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or how SPARQL 1.1
property paths will prevent adoption of the standard. In Proc. of the 21st World Wide
Web Conference 2012, WWW 2012, Lyon, France, April 16-20, 2012, pages 629–638, 2012.
pages 34

[9] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. Journal of artificial intelligence research, 36:1–69, 2009. pages 34

[10] J.-F. Baget. Homomorphismes d’hypergraphes pour la subsomption en RDF. In Proc. 3e
journées nationales sur les modèles de raisonnement (JNMR), Paris (France), pages 1–24,
2003. pages 14

[11] J.-F. Baget. RDF entailment as a graph homomorphism. In Proc. 4th International Semantic
Web Conference (ISWC), Galway (IE), pages 82–96, 2005. pages 5

[12] D. Brickley and R. Guha. RDF vocabulary description language 1.0: RDF schema. Recom-
mendation, W3C, 2004. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. pages
3, 10, 11

[13] A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable
query answering over ontologies. In Proc. 28th ACM Principle of Database Systems confer-
ence (PODS), Providence (RI US), pages 77–86, 2009. pages 11, 34

[14] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Vardi. View-based query processing
for regular path queries with inverse. In Proceedings of the 19th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS), pages 58–66, 2000. pages
18

RR n° 8394

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

44 Faisal Alkhateeb, Jérôme Euzenat

[15] J. Carroll and G. Klyne. RDF concepts and abstract syntax. Recommendation, W3C,
February 2004. pages 4

[16] M. W. Chekol, J. Euzenat, P. Genevès, and N. Layaïda. PSPARQL query containment. In
Proc. 13th International symposium on database programming languages (DBPL), Seattle
(WA US), 2011. pages 35

[17] M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. In
Proc. 14th International Conference on Data Engineering (ICDE), pages 14–23, 1998. pages
34

[18] B. Glimm and M. Krötzsch. SPARQL beyond subgraph matching. In Proc. 9th International
Semantic Web Conference (ISWC), Shanghai (CN), pages 59–66, 2010. pages 3, 35

[19] B. Glimm and C. Ogbuji. SPARQL 1.1 entailment regimes. Working draft, W3C, June
2010. http://www.w3.org/TR/sparql11-entailment. pages 13, 15, 35

[20] G. Grahne and A. Thomo. Query containment and rewriting using views for regular path
queries under constraints. In Proc. 22nd ACM symposium on Principles of database systems
(PODS), pages 111–122, New-York (NY US), 2003. ACM. pages 18

[21] C. Gutierrez, C. Hurtado, and A. Mendelzon. Foundations of semantic web databases. In
Proc. 23rd ACM Symposium on Principles of Database Systems (PODS), Paris (FR), pages
95–106, 2004. pages 10

[22] P. Hayes. RDF semantics. Recommendation, W3C, February 2004. pages 3, 4, 6, 7, 10, 11,
12, 14

[23] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A
declarative query language for RDF. In Proc. 11th International Conference on the World
Wide Web (WWW), Honolulu (HA US), 2002. pages 34

[24] K. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic association discovery.
In Proc. 4th European Semantic Web Conferenc (ESWC’07), pages 145–159, 2007. pages 3,
34

[25] I. Kollia and B. Glimm. Optimizing SPARQL query answering over OWL ontologies. Journal
of artificial intelligence research, 48:253–303, 2013. pages 3

[26] D. McGuinness and F. van Harmelen. OWL web ontology language overview. Recommen-
dation, W3C, 2004. http://www.w3.org/TR/owl-features/. pages 3, 10

[27] A. Mendelzon and P. Wood. Finding regular simple paths in graph databases. SIAM Journal
on Computing, 24(6):1235–1258, 1995. pages 28, 34, 41

[28] S. Muñoz, J. Pérez, and C. Gutierrez. Simple and efficient minimal RDFS. Journal of web
semantics, 7(3):220–234, 2009. pages 3, 7, 11, 13, 15, 23, 35

[29] M. Olson and U. Ogbuji. Versa: Path-based RDF query language, 2002.
http://copia.ogbuji.net/files/Versa.html. pages 34

[30] J. Pan, E. Thomas, and Y. Zhao. Completeness guaranteed approximation for OWL DL
query answering. In Proc. of the 22nd International Workshop on Description Logics (DL),
Oxford (UK), September 2009. pages 3

Inria

http://www.w3.org/TR/sparql11-entailment
http://www.w3.org/TR/owl-features/
http://copia.ogbuji.net/files/Versa.html

Answering SPARQL queries modulo RDF Schema with paths 45

[31] Y. Papakonstantinou and V. Vassalos. Query rewriting for semistructured data. In Proc.
ACM international conference on Management of data (SIGMOD), Philadelphia (PA US),
pages 455–466, ACM Press, New-York (NY US), 1999. pages 18

[32] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM
transactions on database systems, 34(3):16, 2009. pages 7, 8, 9, 10

[33] J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational
language for RDF. Journal of Web Semantics, 8(4):255–270, 2010.
http://www.sciencedirect.com/science/article/B758F-4Y95V3X-1/2/9e5098d690fbe4d05a099f4c90a29a10.
pages 3, 19, 21, 22, 23, 28, 30, 31, 34, 35, 41

[34] A. Polleres. From SPARQL to rules (and back). In Proc. 16th World Wide Web Conference
(WWW), pages 787–796, 2007. pages 7, 9

[35] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. Recommendation,
W3C, January 2008. pages 3, 7, 13

[36] E. Sirin and B. Parsia. SPARQL-DL: SPARQL query for OWL-DL. In Proc. 3rd OWL
Experiences and Directions Workshop (OWLED), Innsbruck (AT), 2007. pages 3

[37] A. Souzis. RxPath specification proposal, 2004. http://rx4rdf.liminalzone.org/RxPathSpec.
pages 34

[38] H. ter Horst. Completeness, decidability and complexity of entailment for RDF schema and a
semantic extension involving the OWL vocabulary. Journal of Web Semantics, 3(2):79–115,
2005. pages 14, 15

[39] M. Yannakakis. Graph-theoretic methods in database theory. In Proc. 9th ACM Symposium
on Principles of Database Systems (PODS), pages 230–242, 1990. pages 28, 41

[40] H. Zauner, B. Linse, T. Furche, and F. Bry. A RPL through RDF: Expressive navigation
in RDF graphs. In Proc. 4th International Conference on Web reasoning and rule systems
(RR), Bressanone/Brixen (IT), volume 6333 of Lecture Notes in Computer Science, pages
251–257, 2010. pages 35

RR n° 8394

http://www.sciencedirect.com/science/article/B758F-4Y95V3X-1/2/9e5098d690fbe4d05a099f4c90a29a10
http://rx4rdf.liminalzone.org/RxPathSpec

46 Faisal Alkhateeb, Jérôme Euzenat

Contents

1 Introduction 3

2 Querying RDF with SPARQL 4

2.1 RDF . 4
2.2 SPARQL . 7

3 Querying RDF modulo RDF Schema 10

3.1 RDF Schema . 10
3.2 Querying against ter Horst closure . 13

4 The PSPARQL query language 15

4.1 PRDF syntax . 16
4.2 PRDF semantics . 16
4.3 PSPARQL . 17
4.4 SPARQL queries modulo RDFS with PSPARQL 18

5 nSPARQL and NSPARQL 19

5.1 nSPARQL syntax . 19
5.2 nSPARQL semantics . 21
5.3 NSPARQL . 22
5.4 SPARQL queries modulo RDFS with nSPARQL 22
5.5 SPARQL queries modulo RDFS with NSPARQL 24

6 cpSPARQL and CPSPARQL 25

6.1 CPSPARQL syntax . 25
6.2 CPSPARQL semantics . 27
6.3 Evaluating cpSPARQL regular expressions . 28
6.4 SPARQL queries modulo RDFS with CPSPARQL 29

7 On the respective expressiveness of cpSPARQL and nSPARQL 30

7.1 Nested regular expressions (nSPARQL) cannot express all (SPARQL) triple patterns 30
7.2 nSPARQL without SELECT cannot express all CPSPARQL 30
7.3 nSPARQL cannot express all cpSPARQL, even with SELECT 31
7.4 cpSPARQL can express all nSPARQL . 33

8 Implementation 33

9 Related work 34

10 Conclusion 35

A Proofs 37

A.1 Induction lemma . 37
A.2 Completeness of partial non reflexive RDFS closure 38
A.3 Completeness and complexity of the PSPARQL RDFS query encoding 39
A.4 Completeness of NSPARQL query answering . 41
A.5 Complexity of cpSPARQL evaluation . 41
A.6 Correctness and completeness of RDFS translation to PSPARQL 41
A.7 Expressiveness of nSPARQL and cpSPARQL . 42

Inria

RESEARCH CENTRE

GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l’Europe Montbonnot

38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt

BP 105 - 78153 Le Chesnay Cedex

inria.fr

ISSN 0249-6399

	Introduction
	Querying RDF with SPARQL
	RDF
	RDF syntax
	RDF semantics

	SPARQL
	SPARQL syntax
	SPARQL semantics

	Querying RDF modulo RDF Schema
	RDF Schema
	RDF Schema vocabulary
	RDF Schema semantics

	Querying against ter Horst closure

	The PSPARQL query language
	PRDF syntax
	PRDF semantics
	PSPARQL
	SPARQL queries modulo RDFS with PSPARQL

	nSPARQL and NSPARQL
	nSPARQL syntax
	nSPARQL semantics
	NSPARQL
	SPARQL queries modulo RDFS with nSPARQL
	SPARQL queries modulo RDFS with NSPARQL

	cpSPARQL and CPSPARQL
	CPSPARQL syntax
	CPSPARQL semantics
	Evaluating cpSPARQL regular expressions
	SPARQL queries modulo RDFS with CPSPARQL

	On the respective expressiveness of cpSPARQL and nSPARQL
	Nested regular expressions (nSPARQL) cannot express all (SPARQL) triple patterns
	nSPARQL without SELECT cannot express all CPSPARQL
	nSPARQL cannot express all cpSPARQL, even with SELECT
	cpSPARQL can express all nSPARQL

	Implementation
	Related work
	Conclusion
	Proofs
	Induction lemma
	Completeness of partial non reflexive RDFS closure
	Completeness and complexity of the PSPARQL RDFS query encoding
	Completeness of NSPARQL query answering
	Complexity of cpSPARQL evaluation
	Correctness and completeness of RDFS translation to PSPARQL
	Expressiveness of nSPARQL and cpSPARQL

