3,177 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Segmentation of turbulent computational fluid dynamics simulations with unsupervised ensemble learning

    Get PDF
    Computer vision and machine learning tools offer an exciting new way for automatically analyzing and categorizing information from complex computer simulations. Here we design an ensemble machine learning framework that can independently and robustly categorize and dissect simulation data output contents of turbulent flow patterns into distinct structure catalogs. The segmentation is performed using an unsupervised clustering algorithm, which segments physical structures by grouping together similar pixels in simulation images. The accuracy and robustness of the resulting segment region boundaries are enhanced by combining information from multiple simultaneously-evaluated clustering operations. The stacking of object segmentation evaluations is performed using image mask combination operations. This statistically-combined ensemble (SCE) of different cluster masks allows us to construct cluster reliability metrics for each pixel and for the associated segments without any prior user input. By comparing the similarity of different cluster occurrences in the ensemble, we can also assess the optimal number of clusters needed to describe the data. Furthermore, by relying on ensemble-averaged spatial segment region boundaries, the SCE method enables reconstruction of more accurate and robust region of interest (ROI) boundaries for the different image data clusters. We apply the SCE algorithm to 2-dimensional simulation data snapshots of magnetically-dominated fully-kinetic turbulent plasma flows where accurate ROI boundaries are needed for geometrical measurements of intermittent flow structures known as current sheets.Peer reviewe

    Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers

    Get PDF
    Low cost RGB-D cameras such as the Microsoft’s Kinect or the Asus’s Xtion Pro are completely changing the computer vision world, as they are being successfully used in several applications and research areas. Depth data are particularly attractive and suitable for applications based on moving objects detection through foreground/background segmentation approaches; the RGB-D applications proposed in literature employ, in general, state of the art foreground/background segmentation techniques based on the depth information without taking into account the color information. The novel approach that we propose is based on a combination of classifiers that allows improving background subtraction accuracy with respect to state of the art algorithms by jointly considering color and depth data. In particular, the combination of classifiers is based on a weighted average that allows to adaptively modifying the support of each classifier in the ensemble by considering foreground detections in the previous frames and the depth and color edges. In this way, it is possible to reduce false detections due to critical issues that can not be tackled by the individual classifiers such as: shadows and illumination changes, color and depth camouflage, moved background objects and noisy depth measurements. Moreover, we propose, for the best of the author’s knowledge, the first publicly available RGB-D benchmark dataset with hand-labeled ground truth of several challenging scenarios to test background/foreground segmentation algorithms
    corecore