55 research outputs found

    Model kompanzasyonlu birinci derece istatistikleri ile i-vektörlerin gürbüzlüğünün artırılması

    Get PDF
    Speaker recognition systems achieved significant improvements over the last decade, especially due to the performance of the i-vectors. Despite the achievements, mismatch between training and test data affects the recognition performance considerably. In this paper, a solution is offered to increase robustness against additive noises by inserting model compensation techniques within the i-vector extraction scheme. For stationary noises, the model compensation techniques produce highly robust systems. Parallel Model Compensation and Vector Taylor Series are considered as state-of-the-art model compensation techniques. Applying these methods to the first order statistics, a noisy total variability space training is aimed, which will reduce the mismatch resulted by additive noises. All other parts of the conventional i-vector scheme remain unchanged, such as total variability matrix training, reducing the i-vector dimensionality, scoring the i-vectors. The proposed method was tested with four different noise types with several signal to noise ratios (SNR) from -6 dB to 18 dB with 6 dB steps. High reductions in equal error rates were achieved with both methods, even at the lowest SNR levels. On average, the proposed approach produced more than 50% relative reduction in equal error rate.Konuşmacı tanıma sistemleri özellikle i-vektörlerin performansı sebebiyle son on yılda önemli gelişmeler elde etmiştir. Bu gelişmelere rağmen eğitim ve test verileri arasındaki uyumsuzluk tanıma performansını önemli ölçüde etkilemektedir. Bu çalışmada, model kompanzasyon yöntemleri i-vektör çıkarımı şemasına eklenerek toplanabilir gürültülere karşı gürbüzlüğü artıracak bir çözüm sunulmaktadır. Durağan gürültüler için model kompanzasyon teknikleri oldukça gürbüz sistemler üretir. Paralel Model Kompanzasyonu ve Vektör Taylor Serileri en gelişmiş model kompanzasyon tekniklerinden kabul edilmektedir. Bu metotlar birinci dereceden istatistiklere uygulanarak toplanabilir gürültülerden kaynaklanan uyumsuzluğu azaltacak gürültülü tüm değişkenlik uzayı eğitimi amaçlanmıştır. Tüm değişkenlik matrisin eğitimi, i-vektör boyutunun azaltılması, i-vektörlerin puanlanması gibi geleneksel i-vektör şemasının diğer tüm parçaları değişmeden kalmaktadır. Önerilen yöntem, 6 dB’lik adımlarla -6 dB’den 18 dB’ye kadar çeşitli sinyal-gürültü oranlarına (SNR) sahip dört farklı gürültü tipi ile test edilmiştir. Her iki yöntemle de en düşük SNR seviyelerinde bile eşit hata oranlarında yüksek azalmalar elde edilmiştir. Önerilen yaklaşım eşik hata oranında ortalama olarak %50’den fazla göreceli azalma sağlamıştır

    ROBUST SPEAKER RECOGNITION BASED ON LATENT VARIABLE MODELS

    Get PDF
    Automatic speaker recognition in uncontrolled environments is a very challenging task due to channel distortions, additive noise and reverberation. To address these issues, this thesis studies probabilistic latent variable models of short-term spectral information that leverage large amounts of data to achieve robustness in challenging conditions. Current speaker recognition systems represent an entire speech utterance as a single point in a high-dimensional space. This representation is known as "supervector". This thesis starts by analyzing the properties of this representation. A novel visualization procedure of supervectors is presented by which qualitative insight about the information being captured is obtained. We then propose the use of an overcomplete dictionary to explicitly decompose a supervector into a speaker-specific component and an undesired variability component. An algorithm to learn the dictionary from a large collection of data is discussed and analyzed. A subset of the entries of the dictionary is learned to represent speaker-specific information and another subset to represent distortions. After encoding the supervector as a linear combination of the dictionary entries, the undesired variability is removed by discarding the contribution of the distortion components. This paradigm is closely related to the previously proposed paradigm of Joint Factor Analysis modeling of supervectors. We establish a connection between the two approaches and show how our proposed method provides improvements in terms of computation and recognition accuracy. An alternative way to handle undesired variability in supervector representations is to first project them into a lower dimensional space and then to model them in the reduced subspace. This low-dimensional projection is known as "i-vector". Unfortunately, i-vectors exhibit non-Gaussian behavior, and direct statistical modeling requires the use of heavy-tailed distributions for optimal performance. These approaches lack closed-form solutions, and therefore are hard to analyze. Moreover, they do not scale well to large datasets. Instead of directly modeling i-vectors, we propose to first apply a non-linear transformation and then use a linear-Gaussian model. We present two alternative transformations and show experimentally that the transformed i-vectors can be optimally modeled by a simple linear-Gaussian model (factor analysis). We evaluate our method on a benchmark dataset with a large amount of channel variability and show that the results compare favorably against the competitors. Also, our approach has closed-form solutions and scales gracefully to large datasets. Finally, a multi-classifier architecture trained on a multicondition fashion is proposed to address the problem of speaker recognition in the presence of additive noise. A large number of experiments are conducted to analyze the proposed architecture and to obtain guidelines for optimal performance in noisy environments. Overall, it is shown that multicondition training of multi-classifier architectures not only produces great robustness in the anticipated conditions, but also generalizes well to unseen conditions

    The INTERSPEECH 2020 Far-Field Speaker Verification Challenge

    Full text link
    The INTERSPEECH 2020 Far-Field Speaker Verification Challenge (FFSVC 2020) addresses three different research problems under well-defined conditions: far-field text-dependent speaker verification from single microphone array, far-field text-independent speaker verification from single microphone array, and far-field text-dependent speaker verification from distributed microphone arrays. All three tasks pose a cross-channel challenge to the participants. To simulate the real-life scenario, the enrollment utterances are recorded from close-talk cellphone, while the test utterances are recorded from the far-field microphone arrays. In this paper, we describe the database, the challenge, and the baseline system, which is based on a ResNet-based deep speaker network with cosine similarity scoring. For a given utterance, the speaker embeddings of different channels are equally averaged as the final embedding. The baseline system achieves minDCFs of 0.62, 0.66, and 0.64 and EERs of 6.27%, 6.55%, and 7.18% for task 1, task 2, and task 3, respectively.Comment: Submitted to INTERSPEECH 202

    The Effect Of Acoustic Variability On Automatic Speaker Recognition Systems

    Get PDF
    This thesis examines the influence of acoustic variability on automatic speaker recognition systems (ASRs) with three aims. i. To measure ASR performance under 5 commonly encountered acoustic conditions; ii. To contribute towards ASR system development with the provision of new research data; iii. To assess ASR suitability for forensic speaker comparison (FSC) application and investigative/pre-forensic use. The thesis begins with a literature review and explanation of relevant technical terms. Five categories of research experiments then examine ASR performance, reflective of conditions influencing speech quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences quantity. Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, frequency bandwidth and transcoding (codecs). The ASR system is placed under scrutiny with examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker models). Output is examined in relation to baseline performance and metrics assist in informing if ASRs should be applied to suboptimal audio recordings. Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic contaminants and inhibitors examined, whilst remaining sensitive to higher levels. The thesis provides discussion on issues such as the complexity and fragility of the speech signal path, speaker variability, difficulty in measuring conditions and mitigation (thresholds and settings). The application of ASRs to casework is discussed with recommendations, acknowledging the different modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR output as evidence in criminal trials. In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be applied to pre-forensic cases, accepting extraneous issues endure which require governance such as validation of method (ASR standardisation) and population data selection. However, ASRs remain unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech data loss contributing to high error rates

    Towards Single-Channel Speech Separation in Noise and Reverberation

    Get PDF
    Many speech technologies, such as automatic speech recognition and speaker identification, are conventionally designed to only work on single speech streams. As a result, these systems can suffer severely degraded performance in cases of overlapping speech, i.e. when two or more people are speaking at the same time. Speech separation systems aim to address this problem by taking a recording of a speech mixture and outputting a single recording for each speaker in the mixture, where the interfering speech has been removed. The advancements in speech technology provided by deep neural networks have extended to speech separation, resulting in the first effectively functional single-channel speech separation systems. As performance of these systems has improved, there has been a desire to extend their capabilities beyond the clean studio recordings using close-talking microphones that the technology was initially developed on. In this dissertation, we focus on the extension of these technologies to the noisy and reverberant conditions more representative of real-world applications. Contributions of this dissertation include producing and releasing new data appropriate for training and evaluation of single-channel speech separation techniques, performing benchmark experiments to establish the degradation of conventional methods in more realistic settings, theoretical analysis of the impact, and development of new techniques targeted at improving system performance in these adverse conditions
    corecore