59 research outputs found

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    D3.2 First performance results for multi -node/multi -antenna transmission technologies

    Full text link
    This deliverable describes the current results of the multi-node/multi-antenna technologies investigated within METIS and analyses the interactions within and outside Work Package 3. Furthermore, it identifies the most promising technologies based on the current state of obtained results. This document provides a brief overview of the results in its first part. The second part, namely the Appendix, further details the results, describes the simulation alignment efforts conducted in the Work Package and the interaction of the Test Cases. The results described here show that the investigations conducted in Work Package 3 are maturing resulting in valuable innovative solutions for future 5G systems.Fantini. R.; Santos, A.; De Carvalho, E.; Rajatheva, N.; Popovski, P.; Baracca, P.; Aziz, D.... (2014). D3.2 First performance results for multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Contextual Beamforming: Exploiting Location and AI for Enhanced Wireless Telecommunication Performance

    Full text link
    The pervasive nature of wireless telecommunication has made it the foundation for mainstream technologies like automation, smart vehicles, virtual reality, and unmanned aerial vehicles. As these technologies experience widespread adoption in our daily lives, ensuring the reliable performance of cellular networks in mobile scenarios has become a paramount challenge. Beamforming, an integral component of modern mobile networks, enables spatial selectivity and improves network quality. However, many beamforming techniques are iterative, introducing unwanted latency to the system. In recent times, there has been a growing interest in leveraging mobile users' location information to expedite beamforming processes. This paper explores the concept of contextual beamforming, discussing its advantages, disadvantages and implications. Notably, the study presents an impressive 53% improvement in signal-to-noise ratio (SNR) by implementing the adaptive beamforming (MRT) algorithm compared to scenarios without beamforming. It further elucidates how MRT contributes to contextual beamforming. The importance of localization in implementing contextual beamforming is also examined. Additionally, the paper delves into the use of artificial intelligence schemes, including machine learning and deep learning, in implementing contextual beamforming techniques that leverage user location information. Based on the comprehensive review, the results suggest that the combination of MRT and Zero forcing (ZF) techniques, alongside deep neural networks (DNN) employing Bayesian Optimization (BO), represents the most promising approach for contextual beamforming. Furthermore, the study discusses the future potential of programmable switches, such as Tofino, in enabling location-aware beamforming

    Antenna Array Enabled Space/Air/Ground Communications and Networking for 6G

    Get PDF
    Antenna arrays have a long history of more than 100 years and have evolved closely with the development of electronic and information technologies, playing an indispensable role in wireless communications and radar. With the rapid development of electronic and information technologies, the demand for all-time, all-domain, and full-space network services has exploded, and new communication requirements have been put forward on various space/air/ground platforms. To meet the ever increasing requirements of the future sixth generation (6G) wireless communications, such as high capacity, wide coverage, low latency, and strong robustness, it is promising to employ different types of antenna arrays with various beamforming technologies in space/air/ground communication networks, bringing in advantages such as considerable antenna gains, multiplexing gains, and diversity gains. However, enabling antenna array for space/air/ground communication networks poses specific, distinctive and tricky challenges, which has aroused extensive research attention. This paper aims to overview the field of antenna array enabled space/air/ground communications and networking. The technical potentials and challenges of antenna array enabled space/air/ground communications and networking are presented first. Subsequently, the antenna array structures and designs are discussed. We then discuss various emerging technologies facilitated by antenna arrays to meet the new communication requirements of space/air/ground communication systems. Enabled by these emerging technologies, the distinct characteristics, challenges, and solutions for space communications, airborne communications, and ground communications are reviewed. Finally, we present promising directions for future research in antenna array enabled space/air/ground communications and networking

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Català) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexistència de sistemes sense fils que comparteixen els mateixos recursos en una àrea geogràfica donada a causa de la interferència entre sistemes. Conseqüentment, la gestió d'interferència juga un paper fonamental per a facilitar la coexistència de diversos serveis de comunicació heterogenis. No obstant això, les estratègies clàssiques de gestió d'interferència requereixen informació lateral originant la necessitat de coordinació i cooperació entre sistemes, que no sempre és pràctica. Les comunicacions oportunistes ofereixen una solució potencial al problema de la gestió de les interferències entre sistemes. El principi bàsic de les comunicacions oportunistes és explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interferències entre sistemes. Per tant, les comunicacions oportunistes depenen de la inferència dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interferència en els nodes de comunicació coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les tècniques de comunicació oportunistes més prominents consisteixen en el disseny d'estratègies de precodificació/descodificació adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat això, les solucions clàssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecció i la necessitat de cooperació intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicació oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest propòsit, s'introdueix un model generalitzat d'error de detecció independent del mecanisme d'identificació de l'espai nul que permet el disseny de solucions que exhibeixen interferències mínimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de màxima relació de senyal a interferència (SIR), que és òptim en condicions de no cooperació. La metodologia proposada permet dissenyar una família de formes d'ona ortonormals que realitzen un spreading dels símbols modulats dins de l'espai nul detectat, que és clau per minimitzar la densitat d’interferència induïda. Les solucions proposades són invariants dins de l'espai nul inferit, permetent suprimir l'enllaç de retroalimentació i, tot i així, realitzar una detecció coherent de forma d'ona. Sota l’absència de coordinació, el disseny de la forma d'ona es basa únicament en la informació de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la solució proposada és robusta a aquest desajust, també s'estudia el disseny de receptors millorats fent ús de tècniques de detecció de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitràriament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretació en el domini freqüencial. Aquest comportament asimptòtic permet adaptar la solució proposada a entorns selectius en freqüència fent ús d'un prefix cíclic i estudiar una modulació eficient derivada de l'esquema de multiplexat per divisió de temps emprant formes d'ona circulant. Finalment, s’estudia l'impacte de l'ús de múltiples antenes en comunicacions oportunistes basades en l'espai nul. L'anàlisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicació oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Español) El incremento de los dispositivos inalámbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inalámbricos que comparten los mismos recursos en un área geográfica dada a causa de la interferencia inter-sistema. Por tanto, la gestión de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicación heterogéneos. Sin embargo, las estrategias clásicas de gestión de interferencia requieren información lateral originando la necesidad de coordinación y cooperación entre sistemas, que no siempre es práctica. Las comunicaciones oportunistas ofrecen una solución potencial al problema de la gestión de las interferencias entre sistemas. El principio básico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inalámbricas y adaptar las señales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicación coexistentes. Una vez identificados los recursos disponibles, las técnicas de comunicación oportunistas más prominentes consisten en el diseño de estrategias de precodificación/descodificación adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones clásicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detección y la necesidad de cooperación intra-sistema. Esta tesis propone diseñar un esquema de comunicación oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodologías existentes asumiendo que los nodos oportunistas no cooperan. Para este propósito, se introduce un modelo generalizado de error de detección independiente del mecanismo de identificación del espacio nulo que permite el diseño de soluciones que exhiben interferencias mínimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de máxima relación de señal a interferencia (SIR), que es óptimo en condiciones de no cooperación. La metodología propuesta permite diseñar una familia de formas de onda ortonormales que realizan un spreading de los símbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentación sin renunciar a la detección coherente de forma de onda. En ausencia de coordinación, el diseño de la forma de onda se basa únicamente en la información del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la solución propuesta es robusta a este desajuste, también se estudia el diseño de receptores mejorados usando técnicas de detección de subespacio activo. Cuando el número total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretación en el dominio frecuencial. Este comportamiento asintótico permite adaptar la solución propuesta a canales selectivos en frecuencia mediante un prefijo cíclico y estudiar una modulación eficiente derivada del esquema de multiplexado por división de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de múltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El análisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicación oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el número de sensores empleado se traduce en una mejora en términos de SIR.DOCTORAT EN TEORIA DEL SENYAL I COMUNICACIONS (Pla 2013

    Opportunistic communications in large uncoordinated networks

    Get PDF
    (English) The increase of wireless devices offering high data rate services limits the coexistence of wireless systems sharing the same resources in a given geographical area because of inter-system interference. Therefore, interference management plays a key role in permitting the coexistence of several heterogeneous communication services. However, classical interference management strategies require lateral information giving rise to the need for inter-system coordination and cooperation, which is not always practical. Opportunistic communications offer a potential solution to the problem of inter-system interference management. The basic principle of opportunistic communications is to efficiently and robustly exploit the resources available in a wireless network and adapt the transmitted signals to the state of the network to avoid inter-system interference. Therefore, opportunistic communications depend on inferring the available network resources that can be safely exploited without inducing interference in coexisting communication nodes. Once the available network resources are identified, the most prominent opportunistic communication techniques consist in designing scenario-adapted precoding/decoding strategies to exploit the so-called null space. Despite this, classical solutions in the literature suffer from two main drawbacks: the lack of robustness to detection errors and the need for intra-system cooperation. This thesis focuses on the design of a null space-based opportunistic communication scheme that addresses the drawbacks exhibited by existing methodologies under the assumption that opportunistic nodes do not cooperate. For this purpose, a generalized detection error model independent of the null-space identification mechanism is introduced that allows the design of solutions that exhibit minimal inter-system interference in the worst case. These solutions respond to a maximum signal-to-interference ratio (SIR) criterion, which is optimal under non-cooperative conditions. The proposed methodology allows the design of a family of orthonormal waveforms that perform a spreading of the modulated symbols within the detected null space, which is key to minimizing the induced interference density. The proposed solutions are invariant within the inferred null space, allowing the removal of the feedback link without giving up coherent waveform detection. In the absence of coordination, the waveform design relies solely on locally sensed network state information, inducing a mismatch between the null spaces identified by the transmitter and receiver that may worsen system performance. Although the proposed solution is robust to this mismatch, the design of enhanced receivers using active subspace detection schemes is also studied. When the total number of network resources increases arbitrarily, the proposed solutions tend to be linear combinations of complex exponentials, providing an interpretation in the frequency domain. This asymptotic behavior allows us to adapt the proposed solution to frequency-selective channels by means of a cyclic prefix and to study an efficient modulation similar to the time division multiplexing scheme but using circulant waveforms. Finally, the impact of the use of multiple antennas in opportunistic null space-based communications is studied. The performed analysis reveals that, in any case, the structure of the antenna clusters affects the opportunistic communication, since the proposed waveform mimics the behavior of a single-antenna transmitter. On the other hand, the number of sensors employed translates into an improvement in terms of SIR.(Català) El creixement incremental dels dispositius sense fils que requereixen serveis d'alta velocitat de dades limita la coexistència de sistemes sense fils que comparteixen els mateixos recursos en una àrea geogràfica donada a causa de la interferència entre sistemes. Conseqüentment, la gestió d'interferència juga un paper fonamental per a facilitar la coexistència de diversos serveis de comunicació heterogenis. No obstant això, les estratègies clàssiques de gestió d'interferència requereixen informació lateral originant la necessitat de coordinació i cooperació entre sistemes, que no sempre és pràctica. Les comunicacions oportunistes ofereixen una solució potencial al problema de la gestió de les interferències entre sistemes. El principi bàsic de les comunicacions oportunistes és explotar de manera eficient i robusta els recursos disponibles en una xarxa sense fils i adaptar els senyals transmesos a l'estat de la xarxa per evitar interferències entre sistemes. Per tant, les comunicacions oportunistes depenen de la inferència dels recursos de xarxa disponibles que poden ser explotats de manera segura sense induir interferència en els nodes de comunicació coexistents. Una vegada que s'han identificat els recursos de xarxa disponibles, les tècniques de comunicació oportunistes més prominents consisteixen en el disseny d'estratègies de precodificació/descodificació adaptades a l'escenari per explotar l'anomenat espai nul. Malgrat això, les solucions clàssiques en la literatura sofreixen dos inconvenients principals: la falta de robustesa als errors de detecció i la necessitat de cooperació intra-sistema. Aquesta tesi tracta el disseny d'un esquema de comunicació oportunista basat en l'espai nul que afronta els inconvenients exposats per les metodologies existents assumint que els nodes oportunistes no cooperen. Per a aquest propòsit, s'introdueix un model generalitzat d'error de detecció independent del mecanisme d'identificació de l'espai nul que permet el disseny de solucions que exhibeixen interferències mínimes entre sistemes en el cas pitjor. Aquestes solucions responen a un criteri de màxima relació de senyal a interferència (SIR), que és òptim en condicions de no cooperació. La metodologia proposada permet dissenyar una família de formes d'ona ortonormals que realitzen un spreading dels símbols modulats dins de l'espai nul detectat, que és clau per minimitzar la densitat d’interferència induïda. Les solucions proposades són invariants dins de l'espai nul inferit, permetent suprimir l'enllaç de retroalimentació i, tot i així, realitzar una detecció coherent de forma d'ona. Sota l’absència de coordinació, el disseny de la forma d'ona es basa únicament en la informació de l'estat de la xarxa detectada localment, induint un desajust entre els espais nuls identificats pel transmissor i receptor que pot empitjorar el rendiment del sistema. Tot i que la solució proposada és robusta a aquest desajust, també s'estudia el disseny de receptors millorats fent ús de tècniques de detecció de subespai actiu. Quan el nombre total de recursos de xarxa augmenta arbitràriament, les solucions proposades tendeixen a ser combinacions lineals d'exponencials complexes, proporcionant una interpretació en el domini freqüencial. Aquest comportament asimptòtic permet adaptar la solució proposada a entorns selectius en freqüència fent ús d'un prefix cíclic i estudiar una modulació eficient derivada de l'esquema de multiplexat per divisió de temps emprant formes d'ona circulant. Finalment, s’estudia l'impacte de l'ús de múltiples antenes en comunicacions oportunistes basades en l'espai nul. L'anàlisi realitzada permet concloure que, en cap cas, l'estructura de les agrupacions d'antenes tenen un impacte sobre la comunicació oportunista, ja que la forma d'ona proposada imita el comportament d'un transmissor mono-antena. D'altra banda, el nombre de sensors emprat es tradueix en una millora en termes de SIR.(Español) El incremento de los dispositivos inalámbricos que ofrecen servicios de alta velocidad de datos limita la coexistencia de sistemas inalámbricos que comparten los mismos recursos en un área geográfica dada a causa de la interferencia inter-sistema. Por tanto, la gestión de interferencia juega un papel fundamental para facilitar la coexistencia de varios servicios de comunicación heterogéneos. Sin embargo, las estrategias clásicas de gestión de interferencia requieren información lateral originando la necesidad de coordinación y cooperación entre sistemas, que no siempre es práctica. Las comunicaciones oportunistas ofrecen una solución potencial al problema de la gestión de las interferencias entre sistemas. El principio básico de las comunicaciones oportunistas es explotar de manera eficiente y robusta los recursos disponibles en una red inalámbricas y adaptar las señales transmitidas al estado de la red para evitar interferencias entre sistemas. Por lo tanto, las comunicaciones oportunistas dependen de la inferencia de los recursos de red disponibles que pueden ser explotados de manera segura sin inducir interferencia en los nodos de comunicación coexistentes. Una vez identificados los recursos disponibles, las técnicas de comunicación oportunistas más prominentes consisten en el diseño de estrategias de precodificación/descodificación adaptadas al escenario para explotar el llamado espacio nulo. A pesar de esto, las soluciones clásicas en la literatura sufren dos inconvenientes principales: la falta de robustez a los errores de detección y la necesidad de cooperación intra-sistema. Esta tesis propone diseñar un esquema de comunicación oportunista basado en el espacio nulo que afronta los inconvenientes expuestos por las metodologías existentes asumiendo que los nodos oportunistas no cooperan. Para este propósito, se introduce un modelo generalizado de error de detección independiente del mecanismo de identificación del espacio nulo que permite el diseño de soluciones que exhiben interferencias mínimas entre sistemas en el caso peor. Estas soluciones responden a un criterio de máxima relación de señal a interferencia (SIR), que es óptimo en condiciones de no cooperación. La metodología propuesta permite diseñar una familia de formas de onda ortonormales que realizan un spreading de los símbolos modulados dentro del espacio nulo detectado, que es clave para minimizar la densidad de interferencia inducida. Las soluciones propuestas son invariantes dentro del espacio nulo inferido, permitiendo suprimir el enlace de retroalimentación sin renunciar a la detección coherente de forma de onda. En ausencia de coordinación, el diseño de la forma de onda se basa únicamente en la información del estado de la red detectada localmente, induciendo un desajuste entre los espacios nulos identificados por el transmisor y receptor que puede empeorar el rendimiento del sistema. A pesar de que la solución propuesta es robusta a este desajuste, también se estudia el diseño de receptores mejorados usando técnicas de detección de subespacio activo. Cuando el número total de recursos de red aumenta arbitrariamente, las soluciones propuestas tienden a ser combinaciones lineales de exponenciales complejas, proporcionando una interpretación en el dominio frecuencial. Este comportamiento asintótico permite adaptar la solución propuesta a canales selectivos en frecuencia mediante un prefijo cíclico y estudiar una modulación eficiente derivada del esquema de multiplexado por división de tiempo empleando formas de onda circulante. Finalmente, se estudia el impacto del uso de múltiples antenas en comunicaciones oportunistas basadas en el espacio nulo. El análisis realizado revela que la estructura de las agrupaciones de antenas no afecta la comunicación oportunista, ya que la forma de onda propuesta imita el comportamiento de un transmisor mono-antena. Por otro lado, el número de sensores empleado se traduce en una mejora en términos de SIR.Postprint (published version

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    • …
    corecore