30 research outputs found

    Phytochemical Investigation and Pharmocological Studies of the Flowers of \u3cem\u3ePithecellobium Dulce\u3c/em\u3e

    Get PDF
    To evaluate the effects from the fresh flowers of Pithecellobium dulce (Roxb.) Benth, belonging to the family of Leguminosae subfamily Mimosoideae, a glycoside quercitin has been isolated. The ethyl acetate soluble of P. dulce containing the above glycoside was studied both in silico and in vitro for the anti-inflammatory and anti-bacterial properties. The concatenation of the in silico and in vivo has been done. Results indicated the activity of this flavonol glycoside in the protection of HRBC lysis and against the gram positive micro organisms, thus confirming its anti-inflammatory and anti-bacterial properties

    webchem: An R Package to Retrieve Chemical Information from the Web

    Get PDF
    A wide range of chemical information is freely available online, including identifiers, experimental and predicted chemical properties. However, these data are scattered over various data sources and not easily accessible to researchers. Manual searching and downloading of such data is time-consuming and error-prone. We developed the open-source R package webchem that allows users to automatically query chemical data from currently 14 web sources. These cover a broad spectrum of information. The data are automatically imported into an R object and can directly be used in subsequent analyses. webchem enables easy, structured and reproducible data retrieval and usage from publicly available web sources. In addition, it facilitates data cleaning, identification and reporting of substances. Consequently, it reduces the time researchers need to spend on chemical data compilation

    Conditional Constrained Graph Variational Autoencoders for Molecule Design

    Full text link
    In recent years, deep generative models for graphs have been used to generate new molecules. These models have produced good results, leading to several proposals in the literature. However, these models may have troubles learning some of the complex laws governing the chemical world. In this work, we explore the usage of the histogram of atom valences to drive the generation of molecules in such models. We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model, and shows improved results on several evaluation metrics on two commonly adopted datasets for molecule generation

    Functional Group and Substructure Searching as a Tool in Metabolomics

    Get PDF
    BACKGROUND: A direct link between the names and structures of compounds and the functional groups contained within them is important, not only because biochemists frequently rely on literature that uses a free-text format to describe functional groups, but also because metabolic models depend upon the connections between enzymes and substrates being known and appropriately stored in databases. METHODOLOGY: We have developed a database named "Biochemical Substructure Search Catalogue" (BiSSCat), which contains 489 functional groups, >200,000 compounds and >1,000,000 different computationally constructed substructures, to allow identification of chemical compounds of biological interest. CONCLUSIONS: This database and its associated web-based search program (http://bisscat.org/) can be used to find compounds containing selected combinations of substructures and functional groups. It can be used to determine possible additional substrates for known enzymes and for putative enzymes found in genome projects. Its applications to enzyme inhibitor design are also discussed

    Additive SMILES-Based Carcinogenicity Models: Probabilistic Principles in the Search for Robust Predictions

    Get PDF
    Optimal descriptors calculated with the simplified molecular input line entry system (SMILES) have been utilized in modeling of carcinogenicity as continuous values (logTD50). These descriptors can be calculated using correlation weights of SMILES attributes calculated by the Monte Carlo method. A considerable subset of these attributes includes rare attributes. The use of these rare attributes can lead to overtraining. One can avoid the influence of the rare attributes if their correlation weights are fixed to zero. A function, limS, has been defined to identify rare attributes. The limS defines the minimum number of occurrences in the set of structures of the training (subtraining) set, to accept attributes as usable. If an attribute is present less than limS, it is considered “rare”, and thus not used. Two systems of building up models were examined: 1. classic training-test system; 2. balance of correlations for the subtraining and calibration sets (together, they are the original training set: the function of the calibration set is imitation of a preliminary test set). Three random splits into subtraining, calibration, and test sets were analysed. Comparison of abovementioned systems has shown that balance of correlations gives more robust prediction of the carcinogenicity for all three splits (split 1: rtest2=0.7514, stest=0.684; split 2: rtest2=0.7998, stest=0.600; split 3: rtest2=0.7192, stest=0.728)

    Organic materials repurposing, a data set for theoretical predictions of new applications for existing compounds

    Get PDF
    We present a data set of 48182 organic semiconductors, constituted of molecules that were prepared with a documented synthetic pathway and are stable in solid state. We based our search on the Cambridge Structural Database, from which we selected semiconductors with a computational funnel procedure. For each entry we provide a set of electronic properties relevant for organic materials research, and the electronic wavefunction for further calculations and/or analyses. This data set has low bias because it was not built from a set of materials designed for organic electronics, and thus it provides an excellent starting point in the search of new applications for known materials, with a great potential for novel physical insight. The data set contains molecules used as benchmarks in many fields of organic materials research, allowing to test the reliability of computational screenings for the desired application, “rediscovering” well-known molecules. This is demonstrated by a series of different applications in the field of organi
    corecore