4 research outputs found

    Reputation-based network selection solution for improved video delivery quality in heterogeneous wireless network environments

    Get PDF
    The continuous innovations and advances in both high-end mobile devices and wireless communication technologies have increased the users demand and expectations for anywhere, anytime, any device high quality multimedia applications provisioning. Moreover, the heterogeneity of the wireless network environment offers the possibility to the mobile user to select between several available radio access network technologies. However, selecting the network that enables the best user perceived video quality is not trivial given that in general the network characteristics vary widely not only in time but also depending on the user location within each network. In this context, this paper proposes a user location-aware reputation-based network selection solution which aims at improving the video delivery in a heterogeneous wireless network environment by selecting the best value network. Network performance is regularly monitored and evaluated by the currently connected users in different areas of each individual network. Based on the existing network performance-related information and mobile user location and speed, the network that offers the best support for video delivery along the user’s path is selected as the target network and the handover is triggered. The simulation results show that the proposed solution improves the video delivery quality in comparison with the case when a classic network selection mechanism was employed

    Energy Efficient Small Cell Planning For High Capacity Wireless Networks

    Get PDF
    This thesis presents a new strategy to densify Small Cells (i.e., add more low powered base stations within macro networks) and enhance the coverage and capacity of Heterogeneous Networks. This is accomplished by designing Micro Cell for outdoor applications, Pico and Femtocell for indoor applications. It is shown that, there exists a free space propagation medium in all propagation environments due to Fresnel zones, and the path loss slope within this zone is similar to free space propagation medium. This forms the basis of our development of the present work. The salient feature of the proposed work has two main considerations (a) The cell radius of Small Cells must be within the first Fresnel zone break point, and (b) The minimum inter-cell distance must be greater than twice of Small Cell radius. The proposed network is simulated in real a radio network simulator called ATOLL. The simulation results showed that densify Small Cells not only enhanced the capacity and coverage of Heterogeneous Networks but also improved the carrier to interference ratio significantly. Since the proposed work allows UE (user equipment) to have Line of Sight (LOS) communication with the serving cell, and UE can have higher uplink (UL) signal to interference plus noise ratio (SINR) that will further allow UE to reduce its transmission power, which will consequently lead to a longer battery life for the UE and reduce the interference in the system

    SINR Based Network Selection Strategy in Integrated Heterogeneous Networks

    No full text
    International audienceFuture integrated wireless and mobile network are emerging to offer a wide range of services anywhere at any time. In these networks, each mobile terminal equipped with heterogeneous interfaces will be able to perform the corresponding user services using any available network. To select a network, users can choose the most suitable one according to the predetermined preferences. Several factors may be considered to select a network such as bandwidth availability, power consumption, received signal strength and cost. The interference represents also an important factor in this environment. In this paper, we consider a new network selection strategy based on the estimated Signal to Interference-plus-Noise Ratio (SINR) value in an integrated heterogeneous wireless network. This strategy always allows users to select the network that has a higher SINR value from all the available networks during its communication. We analyze the system performance in terms of the blocking probabilities of calls on the whole service area. Our results are compared with other strategies found in the literature

    Network reputation-based quality optimization of video delivery in heterogeneous wireless environments

    Get PDF
    The mass-market adoption of high-end mobile devices and increasing amount of video traffic has led the mobile operators to adopt various solutions to help them cope with the explosion of mobile broadband data traffic, while ensuring high Quality of Service (QoS) levels to their services. Deploying small-cell base stations within the existing macro-cellular networks and offloading traffic from the large macro-cells to the small cells is seen as a promising solution to increase capacity and improve network performance at low cost. Parallel use of diverse technologies is also employed. The result is a heterogeneous network environment (HetNets), part of the next generation network deployments. In this context, this thesis makes a step forward towards the “Always Best Experience” paradigm, which considers mobile users seamlessly roaming in the HetNets environment. Supporting ubiquitous connectivity and enabling very good quality of rich mobile services anywhere and anytime is highly challenging, mostly due to the heterogeneity of the selection criteria, such as: application requirements (e.g., voice, video, data, etc.); different device types and with various capabilities (e.g., smartphones, netbooks, laptops, etc.); multiple overlapping networks using diverse technologies (e.g., Wireless Local Area Networks (IEEE 802.11), Cellular Networks Long Term Evolution (LTE), etc.) and different user preferences. In fact, the mobile users are facing a complex decision when they need to dynamically select the best value network to connect to in order to get the “Always Best Experience”. This thesis presents three major contributions to solve the problem described above: 1) The Location-based Network Prediction mechanism in heterogeneous wireless networks (LNP) provides a shortlist of best available networks to the mobile user based on his location, history record and routing plan; 2) Reputation-oriented Access Network Selection mechanism (RANS) selects the best reputation network from the available networks for the mobile user based on the best trade-off between QoS, energy consumptions and monetary cost. The network reputation is defined based on previous user-network interaction, and consequent user experience with the network. 3) Network Reputation-based Quality Optimization of Video Delivery in heterogeneous networks (NRQOVD) makes use of a reputation mechanism to enhance the video content quality via multipath delivery or delivery adaptation
    corecore