114 research outputs found

    Iterative post-SIC processing schemes in V-BLAST wireless MIMO communication systems

    Get PDF
    In the conventional Vertical Bell Laboratory Layered Space-Time (V-BLAST) receiver with successive interference cancellation (SIC) decoding, the diversity order for the first detected symbol is the lowest, hence its error probability dominates the overall average error probability. In this thesis, a new SIC scheme was presented, called iterative post SIC (IP-SIC) that can increase the diversity order to a fixed desired value for all symbols, thereby significantly reduce the overall average error probability. The key to the technique is that after the interference from all substreams is subtracted from the received vector (the resulting vector will be referred to as the modified received vector), the detected symbol times its channel vector is added to the modified received vector one at a time and the symbol is detected again. Important features of the proposed approach are the increase in diversity order for those symbols detected earlier and the flexibility of balancing the increase in diversity order and the suppression of remaining interference. The latter feature can be used to further reduce the average error probability. The proposed technique is applied to the V-BLAST and space-time block coded V-BLAST system and its performance and computational complexity are analyzed

    ASEP of MIMO System with MMSE-OSIC Detection over Weibull-Gamma Fading Channel Subject to AWGGN

    Get PDF

    INTERFERENCE MANAGEMENT IN LTE SYSTEM AND BEYOUND

    Get PDF
    The key challenges to high throughput in cellular wireless communication system are interference, mobility and bandwidth limitation. Mobility has never been a problem until recently, bandwidth has been constantly improved upon through the evolutions in cellular wireless communication system but interference has been a constant limitation to any improvement that may have resulted from such evolution. The fundamental challenge to a system designer or a researcher is how to achieve high data rate in motion (high speed) in a cellular system that is intrinsically interference-limited. Multi-antenna is the solution to data on the move and the capacity of multi-antenna system has been demonstrated to increase proportionally with increase in the number of antennas at both transmitter and receiver for point-to-point communications and multi-user environment. However, the capacity gain in both uplink and downlink is limited in a multi-user environment like cellular system by interference, the number of antennas at the base station, complexity and space constraint particularly for a mobile terminal. This challenge in the downlink provided the motivation to investigate successive interference cancellation (SIC) as an interference management tool LTE system and beyond. The Simulation revealed that ordered successive interference (OSIC) out performs non-ordered successive interference cancellation (NSIC) and the additional complexity is justified based on the associated gain in BER performance of OSIC. The major drawback of OSIC is that it is not efficient in network environment employing power control or power allocation. Additional interference management techniques will be required to fully manage the interference.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Adaptive and Iterative Multi-Branch MMSE Decision Feedback Detection Algorithms for MIMO Systems

    Full text link
    In this work, decision feedback (DF) detection algorithms based on multiple processing branches for multi-input multi-output (MIMO) spatial multiplexing systems are proposed. The proposed detector employs multiple cancellation branches with receive filters that are obtained from a common matrix inverse and achieves a performance close to the maximum likelihood detector (MLD). Constrained minimum mean-squared error (MMSE) receive filters designed with constraints on the shape and magnitude of the feedback filters for the multi-branch MMSE DF (MB-MMSE-DF) receivers are presented. An adaptive implementation of the proposed MB-MMSE-DF detector is developed along with a recursive least squares-type algorithm for estimating the parameters of the receive filters when the channel is time-varying. A soft-output version of the MB-MMSE-DF detector is also proposed as a component of an iterative detection and decoding receiver structure. A computational complexity analysis shows that the MB-MMSE-DF detector does not require a significant additional complexity over the conventional MMSE-DF detector, whereas a diversity analysis discusses the diversity order achieved by the MB-MMSE-DF detector. Simulation results show that the MB-MMSE-DF detector achieves a performance superior to existing suboptimal detectors and close to the MLD, while requiring significantly lower complexity.Comment: 10 figures, 3 tables; IEEE Transactions on Wireless Communications, 201

    On the Derivation of Optimal Partial Successive Interference Cancellation

    Get PDF
    The necessity of accurate channel estimation for Successive and Parallel Interference Cancellation is well known. Iterative channel estimation and channel decoding (for instance by means of the Expectation-Maximization algorithm) is particularly important for these multiuser detection schemes in the presence of time varying channels, where a high density of pilots is necessary to track the channel. This paper designs a method to analytically derive a weighting factor α\alpha, necessary to improve the efficiency of interference cancellation in the presence of poor channel estimates. Moreover, this weighting factor effectively mitigates the presence of incorrect decisions at the output of the channel decoder. The analysis provides insight into the properties of such interference cancellation scheme and the proposed approach significantly increases the effectiveness of Successive Interference Cancellation under the presence of channel estimation errors, which leads to gains of up to 3 dB.Comment: IEEE GLOBECOM 201

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201
    corecore